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Abstract We consider the sphere S2n+1 equipped with its standard contact form. In this paper we

construct explicit contact forms on S2n+1 \S2k+1, which are conformal to the standard one and whose

related Webster metrics have constant Webster curvature; in particular it is positive if 2k < n − 2.

As main applications, we provide two perturbative results. In the first one we prove the existence of

infinitely many contact forms on S2n+1 \ τ(S1) conformal to the standard one and having constant

Webster curvature, where τ(S1) is a small perturbation of S1. In the second application, we show that

there exist infinitely many bifurcating branches of periodic solutions to the CR Yamabe problem on

S2n+1 \ S1 having constant Webster curvature.
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1 Introduction and statements of the results

For n ≥ 1, we consider the sphere S2n+1 equipped with its standard contact form θSn. The
related Webster metric gθSn has constant Webster scalar curvature SθSn

= 4n2 + 4n. The
existence of conformal contact forms having constant curvature is the standard CR Yamabe
problem on the sphere, which has been addressed by Jerison and Lee ([12, 13]) and many
other authors ([6, 7, 10, 11]).
As in the Riemannian case, one is then interested in the existence of contact forms on non-
compact manifolds which carry a (complete) Webster metric having constant Webster cur-
vature. In the Riemannian case, this question has been deeply studied. In fact, one finds
two directions in the literature. The first one addresses the case of negative constant scalar
curvature, see for instance [15, 1, 2, 3]. The second case addresses metrics of positive constant
scalar curvature, starting with the pioneering works of Schoen and Yau [23] and Schoen [22].
In particular, when considering a subset Λ on the standard sphere Sn, it is proved that if
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Sn \ Λ carries a complete metric with positive scalar curvature, then a bound on the dimen-
sion of Λ holds, that is 2dim(Λ) ≤ n − 2; moreover explicit examples are given of complete
conformally flat metrics with constant positive scalar curvature on special sets Λ.
These results have been widely used and generalized in various directions; see for instance
[17, 18, 19, 4, 8], and the references therein. In fact, one can prove the existence of com-
plete conformally flat metrics with constant positive scalar curvature on Sn \ Λ, where Λ is
a perturbation of some special sets, namely the equatorial spheres Sk ⊆ Sn ([19]). Moreover,
by means of the theory of bifurcation, one can show the existence of periodic solutions to
the standard Yamabe problem on Sn \ S1 ([4]): in these kind of results, the starting point
is the knowledge of explicit complete conformally flat metrics with constant positive scalar
curvature on the special manifolds Sn \ Sk.
In this paper we will show the existence of explicit contact forms on S2n+1 \ S2k+1, whose
related Webster metrics are complete and have constant Webster curvature; in particular it
is positive if 2k < n− 2.
Our construction mimics the one in the Riemannian case. In fact, we first stereographi-
cally project (by means of the Cayley transform, which is a conformal CR diffeomorphism)
the standard sphere S2n+1 to the Heisenberg group Hn endowed with its standard contact
form θHn , in such a way that a special equatorial sphere S2k+1 is mapped into the subgroup
Hk. Then in the complementary set we use polar coordinates, so that (with some abuse of
notation, which will be explained in details in the following sections) we have the product
manifold Hn = Hk × R+ × S2N+1, endowed with the contact form θHn = 2r2θSN + θHk ; here
n = k+N +1, and the polar coordinate r is the standard variable of R+. Then, we have the
following:

Theorem 1.1. Let us define the contact form θk,N := θSN+ 1
2r2
θHk on Hn\Hk ≃ S2n+1\S2k+1.

It holds that θk,N is conformal to the standard CR contact form θSn of S2n+1. Moreover, the
related Webster metric is complete and it has constant Webster scalar curvature Sθk,N =
4(n+ 1)(n− 2k − 2). In particular, Sθk,N is positive for 2k < n− 2.

Now some remarks are in order. First we notice that our construction works well for the odd
dimensional equatorial spheres S2k+1 that we will define in the next section; we are not able
to handle the even dimensional case with this strategy. Another interesting feature, which
seems to be different from the Riemannian case, is the following. In the Riemannian case one
can see the product Rn = Rk×R+×SN = Hk+1×SN , where Hk+1 is the standard hyperbolic
space, which in turn can be identified with the unit ball in Rk+1 equipped with the Poincaré
metric, having negative constant sectional curvature. For the CR case, in literature there
exists a hyperbolic Heisenberg group Hk × R+, which can be seen as the Siegel domain in
Ck+1 or equivalently as the unit ball in Ck+1 equipped with the Kähler Bergman metric,
having negative constant holomorphic sectional curvature (see for instance [9]). Now, if one
tries to write the product Hk × R+ × S2N+1 endowed with the contact form θk,N as the
product of a sort of hyperbolic Heisenberg group times the sphere S2N+1, this gives rise to
a model in which the complex structure J associated to θk,N mixes vector fields from the
Heisenberg group Hk and the sphere S2N+1; this will be clear from the explicit construction
in the Section 3. For similar results see also [5, 14, 20].
With these explicit contact forms in hand, as applications we will prove two perturbative
results. The first one is analogous to a result proved by Mazzeo and Smale in [19], which
gives the existence of CR contact structures having constant Webster curvature by means of
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a small perturbation of the singular set. More precisely, we have:

Theorem 1.2. Assume that n ≥ 3. There exists a set of diffeomorphisms TT such that if
τ : S2n+1 → S2n+1 is in TT and close to the identity in the C3,α topology, then there exists
an infinite family of contact forms on S2n+1 \ τ(S1) conformal to the standard one on S2n+1

and having complete Webster metric with constant Webster scalar curvature equal to Sθ0,n−1.

For the precise definition of TT as subset of the diffeomorphisms, we refer the reader to
Subsection 4.1.
The second application is about the existence of periodic solutions to the CR Yamabe equa-
tions, as in [4]. We recall here that we mean by a periodic solution, a solution obtained
by lifting the structure on CPn−1 ×H2/Γ; where Γ is a suitable group: we refer the reader
to Subsection 4.2 for further details. These solutions are obtained by using the theory of
bifurcation.

Theorem 1.3. Assume that n ≥ 3. There exist infinitely many branches of periodic solutions
to the CR Yamabe problem on S2n+1 \ S1 having constant Webster curvature, arbitrary close
to Sθ0,n−1.

One can show that these solutions are non-isometric. Indeed, we refer the reader to Remark
4.1 in [4]: in particular this applies to our setting, since after restricting our function spaces,
we are led back to a similar Riemannian setting.
We want to point out here that there are crucial difficulties and technicalities that appear
in our setting, compared to the Riemannian case. Indeed, the differential operator that we
are dealing with is sub-elliptic, moreover, the sub-Laplacian does not transform well within
a product structure as opposed to the Laplacian. The operator ∆θk,N obtained in Section 4
contains many cross terms, adding to the difficulty of the problem. That is why, in order to
apply both the methods in [19] and [4], we will restrict our study to the case k = 0 and by
choosing a specific space of functions as in Subsection 4.1, that allow us to be in a setting
relatively similar to the Riemannian one. Due to the lack of symmetries in the CR setting,
we are led to consider the action generated by the Reeb vector field, since for instance, we
need our set of diffeomorphisms to commutes with this action.
To the best of our knowledge, in this setting these are the first results in this kind of direction.

Acknowledgment The authors want to express their gratitude to the referees for their
careful reading of the paper. In particular, pointing out the reference [16] that provides an
alternative way of computing the indicial roots. These suggestions helped to improve the
results and the presentation of the paper.

2 Definitions and notation

We recall here some well known facts for further references and in order to fix our notations.
Let (M, θ) be a (2n+ 1)-dimensional contact manifold with contact form θ and Reeb vector
field T (i.e. the unique vector field satisfying θ(T ) = 1 and dθ(T, ·) = 0). We set gθ, the
Webster metric, which is a Riemannian metric associated to θ, and a (1, 1)-tensor ϕ satisfying:

gθ(T,X) = θ(X), ϕϕX = −X + θ(X)T, ∀X ∈ T (M) (1)

gθ(X,Y ) = −1

2
dθ(X,ϕY ),∀X,Y ∈ ker(θ).
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We define J = ϕ|ker(θ). If gθ is a Riemannian metric associated to θ, then (M, θ, gθ, ϕ) is called
a contact Riemannian manifold. We denote by △gθ the metric Laplacian and we consider the
operator

△θ = △gθ − T 2.

If {T,X1, . . . , Xn, Y1, . . . , Yn} is an orthonormal basis of the tangent space, such that Yi = JXi

for every i = 1, . . . , n, then the Webster scalar curvature Sθ is given by (see [24], for instance)

Sθ =
n∑

j=1

(Ricgθ(Xj , Xj) +Ricgθ(Yj , Yj)) + 4n. (2)

here we have denoted the Ricci tensor by Ricgθ . Let (M, θ, gθ, ϕ) be a contact Rieman-
nian manifold and let u be a positive smooth function on M , we consider a new manifold
(M, θ̃, g̃θ, ϕ̃), where θ̃ is the contact form defined by

θ̃ = up−2θ, p =
2n+ 2

n
,

with ϕ and ϕ̃ acting in the same way on ker(θ) = ker(θ̃). The scalar curvatures Sθ and Sθ̃
are related by the following identity (see [24]):

−△θu+
n

4(n+ 1)
Sθu =

n

4(n+ 1)
Sθ̃u

p−1. (3)

Now let Hn ≃ R× Cn ≃ R× R2n be the Heisenberg group. We denote the coordinates by

w = (t, z) = (t, x1, y1, . . . , x2n, y2n)

and the group law

w · w′ = (t, z) · (t′, z′) = (t+ t′ + 2Im(zz′), z + z′) ∀ w,w′ ∈ Hn,

where Im(·) denotes the imaginary part of a complex number and zz′ is the standard Hermi-
tian inner product in Cn. Left translations on Hn are defined by

τ : Hn → Hn τw(w
′) = w · w′ ∀ w ∈ Hn

and dilations are
δλ : Hn → Hn δλ(t, z) = (λ2t, λz) ∀ λ > 0.

We denote by Q = 2n+ 2 the homogeneous dimension of Hn with respect to δλ. On Hn we
consider the contact form

θHn = 2

n∑
j=1

(yjdxj − xjdyj)− dt.

The canonical orthonormal basis (with respect to gθHn ) of left invariant vector fields on Hn is

X
θHn
j =

1√
2

(
∂

∂xj
+ 2yj

∂

∂t

)
, Y

θHn
j =

1√
2

(
∂

∂yj
− 2xj

∂

∂t

)
, T θHn = − ∂

∂t
, j = 1, . . . , n.
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We set for every j = 1, . . . , n

ϕθ
H
n

(
X

θHn
j

)
= Y

θHn
j

ϕθ
H
n

(
∂

∂xj

)
=

∂

∂yj
− 2xj

∂

∂t

ϕθ
H
n

(
∂

∂yj

)
= − ∂

∂xj
− 2yj

∂

∂t

ϕθ
H
n

(
∂

∂t

)
= 0

(4)

Now let Cn+1 endowed with its standard complex structure J and S2n+1 ⊆ Cn+1 be the unit
sphere

S2n+1 = {ζ ∈ Cn+1 : |ζ| = 1}.

We denote by θSn its standard contact form

θSn =

n+1∑
j=1

(vjduj − ujdvj), with ζj = uj + ivj

and by gθSn the related standard metric. Then the Reeb vector field is

T θSn =
n+1∑
j=1

(
vj

∂

∂uj
− uj

∂

∂vj

)
and the Webster scalar curvature is

SθSn
= 4n2 + 4n.

The Cayley transform identifies the Heisenberg group with the unit sphere minus a point.
More precisely, for PS ∈ S2n+1, PS = (0, . . . , 0,−1) the Cayley transform is C : Hn →
S2n+1 \ {PS}

C(t, z) = (ζ1, . . . , ζn+1) =

(
2z

1 + |z|2 − it
,
1− |z|2 + it

1 + |z|2 − it

)
or equivalently

C(t, x1, y1, . . . , xn, yn) = (u1, v1 . . . , un+1, vn+1)

with

uj = 2
xj(1 + |z|2)− tyj
t2 + (1 + |z|2)2

, vj = 2
txj + (1 + |z|2)yj
t2 + (1 + |z|2)2

, j = 1, . . . , n

un+1 =
1− |z|4 − t2

t2 + (1 + |z|2)2
, vn+1 =

2t

t2 + (1 + |z|2)2
.

Then the contact forms θHn and θSn are related by the following identity

C∗θSn =
2

t2 + (1 + |z|2)2
θHn . (5)
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In the sequel we will need the inverse of C, that is C−1 : S2n+1 \ {PS} → Hn

C−1(ζ1, . . . , ζn+1) = (t, z1, . . . , zn) =

(
Re

(
i
1− ζn+1

1 + ζn+1

)
,

ζ1
1 + ζn+1

, . . . ,
ζn

1 + ζn+1

)
.

or equivalently
C−1(u1, v1 . . . , un+1, vn+1) = (t, x1, y1, . . . , xn, yn)

where

t =
2vn+1

v2n+1 + (1 + un+1)2
, xj =

uj(1 + un+1) + vjvn+1

v2n+1 + (1 + un+1)2
, yj =

vj(1 + un+1)− ujvn+1

v2n+1 + (1 + un+1)2

with j = 1, . . . , n.

3 Explicit construction of the singular contact structure

Here we will construct an explicit contact form θk,N on S2n+1 \S2k+1 which will be conformal
to the standard CR contact form θSn of S2n+1, having complete Webster metric and constant
Webster scalar curvature.
First of all we transform the problem on S2n+1 into a problem on Hn using the Cayley
transform. In Cn+1 we choose coordinates so that our equatorial sphere S2k+1 is defined by

S2k+1 := {ζ ∈ Cn+1 : ζ = (ζ1, . . . , ζk, 0, . . . , 0, ζn+1), |ζ| = 1} ⊆ S2n+1,

then we stereographically project S2n+1 using C−1. We observe that not all the equatorial
spheres can be written as in the previous formula: in particular the spheres that we are
considering are intersection of S2n+1 and a complex linear subspace in Cn+1. Notice that,
with this choice of coordinates, the sphere S2k+1 is projected down into Hk, so now we consider
Hn endowed with the standard contact form θHn and we split

Hn ≃ R× Cn ≃ R× R2k × R2(n−k) ≃ Hk × R2(n−k)

with coordinates

(t, z1, . . . , zn) ≃ (t, x1, y1, . . . , x2n, y2n) ≃ (t, x1, y1, . . . , xk, yk, ẑ)

where zj = xj+ iyj , j = 1, . . . , n. Then, let us set n−k = N +1, andM = Hk×R×S2N+1 ⊆
Hk × R× R2(N+1) and the map φ : Hn →M

φ(t, x1, y1, . . . , xk, yk, ẑ) = (t, x1, y1, . . . , xk, yk, s, ξ1, η1, . . . , ξN+1, ηN+1) (6)

which is the identity on t, xi, yi, for i = 1, . . . , k and

s = ln(|ẑ|), ξj =
xk+j

|ẑ|
, ηj =

yk+j

|ẑ|
j = 1, . . . , N + 1.

On M we consider the contact form

θk,N := θSN +
e−2s

2
θHk .

The following Proposition shows the relationship between θk,N , θHn and θSn
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Proposition 3.1. Using the notation above we have

(φ−1)∗θHn = 2e2sθk,N

and

(φ−1 ◦ C)∗θSn =
4e2s

t2 +
(
1 +

∑k
i=1(x

2
i + y2i ) + e2s

)2 θk,N . (7)

Proof. By straightforward computation we find

(φ−1)∗dxj+k = esξjds+ esdξj , (φ−1)∗dyj+k = esηjds+ esdηj , j = 1, . . . , N + 1

hence

(φ−1)∗θHn = −dt+ 2

k∑
i=1

(yidxi − xidyi) + 2e2s
N+1∑
j=1

(ηjdξj − ξjdηj) = θHk + 2e2sθSN . (8)

Then, equality (7) follows from (5) and the identity above.

Remark 3.1. Let us explicitly note that one can see the contact form θk,N defined on Hn\Hk

with the singularity along Hk, just by letting r =
√
2|ẑ| (see also formula (19) in the sequel).

We chose the variable s = ln(|ẑ|) in order to make the computations easier.

From now on we will consider the contact manifold (M, θk,N ), where

M = Hk × R× S2N+1

with coordinates

(t, x1, . . . , xk, y1, . . . , yk, s, ξ1, . . . , ξN+1, η1, . . . , ηN+1) = (t, x, y, s, ξ, η), |(ξ, η)| = 1

and contact form θk,N . Moreover we consider the metric g = gθk,N defined by (1) and the

associated (1, 1)-tensor ϕθk,N . In particular, since θk,N and θHn are conformal, we have that

Jθk,N = ϕ|ker(θk,N ) = ϕ|ker(θHn) = JθHn (9)

Moreover we notice that the metric g = gθk,N is complete. We will show that the Webster
scalar curvature Sθk,N is constant. In order to compute Sθk,N we choose a particular orthonor-

mal basis for TpM . Let us notice that, since θk,N = θSN + e−2s

2 θHk , the Reeb vector field T θk,N

of (M, θk,N ) is the Reeb vector field of (S2N+1, θSN ), so

T := Tθk,N =
N+1∑
j=1

(
ηj

∂

∂ξj
− ξj

∂

∂ηj

)
.

We consider the following vector fields in ker(θk,N )

X0 =
∂

∂s
, Y0 = −2e2s

∂

∂t
− T, Xi =

√
2esX

θHk
i , Yi =

√
2esY

θHk
i , i = 1, . . . , k.
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By straightforward computations we have

dφ−1(X0) =
N+1∑
j=1

(
xj+k

∂

∂xj+k
+ yj+k

∂

∂yj+k

)
=

√
2
N+1∑
j=1

(
xj+kX

θHn
j+k − yj+kY

θHn
j+k

)

dφ−1(Y0) = 2|ẑ|2 ∂
∂t

+

N+1∑
j=1

(
yj+k

∂

∂xj+k
− xj+k

∂

∂yj+k

)
=

√
2

N+1∑
j=1

(
yj+kX

θHn
j+k + xj+kY

θHn
j+k

)
then, recalling the identities JθHnX

θHn
j = Y

θHn
j for every j = 1, . . . , n, the above computations

show that
Jθk,NX0 = Y0. (10)

Similarly, for i = 1, . . . , k we have

dφ−1(Xi) = |ẑ|
√
2X

θHn
i and dφ−1(Yi) = |ẑ|

√
2Y

θHn
i

so
Jθk,NXi = Yi, i = 1, . . . , k. (11)

Now we notice that the metric and the endomorphism ϕ induced from (M, θk,N , g, ϕ) on
S2N+1 ⊆M are the standard ones. Indeed

dφ−1(T ) = dφ−1

(
−2e2s

∂

∂t
− Y0

)
= −2|ẑ|2 ∂

∂t
−
√
2

N+1∑
j=1

(
yj+kX

θHn
j+k + xj+kY

θHn
j+k

)
Wj := dφ−1

(
∂

∂ξj
− ηjT

)
= |ẑ| ∂

∂xj+k
−
yj+k

|ẑ|
dφ−1(T ), j = 1, . . . , N + 1

Zj := dφ−1

(
∂

∂ηj
+ ξjT

)
= |ẑ| ∂

∂yj+k
+
xj+k

|ẑ|
dφ−1(T ) j = 1, . . . , N + 1.

Thus, recalling (4),

ϕθ
H
n (Wj) = Zj j = 1, . . . , N + 1,

we have

ϕθk,N
(
∂

∂ξj
− ηjT

)
=

(
∂

∂ηj
+ ξjT

)
,

and as usual ϕθk,N (T ) = 0. Since the metric and the endomorphism ϕ induced on S2N+1

from (M, θk,N , g) are the standard ones, locally, at each point p ∈ M we can consider 2N
orthonormal geodesic Killing vector fields for (S2N+1, θSN )

Uj , Vj , j = 1, . . . , N (12)

such that JθHndφ−1(Uj) = dφ−1(Vj) and Uj , Vj ∈ ker
(
θSN

)
.

We define the set B := {X0, Y0, X1, . . . , Xk, Y1, . . . , Yk, T, U1, . . . , UN , V1, . . . , VN}.

Proposition 3.2. The set B is an orthonormal basis for TM , and Jθk,N = ϕθk,N |ker θk,N acts
as follows

Jθk,NX0 = Y0, Jθk,NXi = Yi, Jθk,NUj = Vj . (13)
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Proof. Identities in (13) follows from (10), (11) and the definition of Uj and Vj . Now it is
straightforward to check that B is orthonormal using the definition of g (see (1)):

g(Z,W ) = −1

2
dθk,N (Z, ϕW ), dθk,N = dθSN − e−2sds ∧ θHk +

e−2s

2
dθHk

Z,W ∈ ker θk,N . We just compute g(X0, X0) as an example:

g(X0, X0) = −1

2
dθk,N (X0, Y0) = −1

2
(−e−2s)2e2s = 1.

We will compute the Webster scalar curvature Sθk,N with the aid of three lemmas. Let ∇ be
the Levi-Civita connection on (M, θk,N , g), then we have the following

Lemma 3.1. For every j = 1, . . . , N we have

∇TT = 0 ∇TUj = Vj ∇TVj = −Uj

∇UjT = −Vj , ∇UjUj = 0, ∇UjVj = T,

∇VjT = Uj , ∇VjUj = −T, ∇VjVj = 0.

Proof. Since T , Uj and Vj are geodesic, we have ∇TT = 0, ∇UjUj = 0, ∇VjVj = 0 for every
j = 1, . . . , N . Moreover Uj is a Killing vector field on (S2N+1, gθSN

), so

g(∇XUj , Y ) + g(X,∇Y Uj) = 0 for every X,Y ∈ TS2N+1. (14)

We denote by J̃ the complex structure on CN+1, by ν the outward unit normal to S2N+1 and
by g̃ and ∇̃ the standard metric and Levi-Civita connection of CN+1 respectively. We will use
the same notation for the induced metric and connection on S2N+1. Then on TS2N+1 ⊆ TM ,
J̃T = ν and J̃ , Jθk,N have the same actions on kerθSN ⊆ kerθk,N and g̃ = gθk,N . Also,

we denote by h(Z,W ) = g̃(∇̃ZW,−ν), Z,W ∈ TS2N+1, the second fundamental form of M
restricted to S2N+1. Notice that, with respect to the basis {T,U1, V1, . . . , UN , VN}, the second
fundamental form h is the (2N + 1)× (2N + 1) identity matrix. Since g̃ is Kähler, we have

g̃(·, ·) = g̃(J̃ ·, J̃ ·), ∇̃J̃ · = J̃∇̃· (15)

Then for every j, l = 1, . . . , N we have

g(∇TUj , Ul)
(14)
= −g(T,∇Ul

Uj) = −g̃(T, ∇̃Ul
Uj) =

= −g̃(J̃T, ∇̃Ul
J̃Uj)

(15)
= g̃(ν, ∇̃Ul

Vj) = h(Ul, Vj) = 0

and similarly

g(∇TUj , Vl)
(14)
= −g(T,∇Vl

Uj)
(15)
= h(Vl, Vj) = δjl

g(∇TUj , T )
(14)
= −g(T,∇TUj)

(15)
= h(T, Vj) = 0.

Also
g(∇TUj , Xi) = 0, g(∇TUj , Yi) = 0 for every i = 0, . . . , k.
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Thus
∇TUj = Vj for every j = 0, . . . , N.

Recalling that V ′
j s are geodesic Killing vector fields, the same argument gives

∇TVj = −Uj for every j = 0, . . . , N.

Moreover

g(∇UjT,Ul)
(15)
= h(Uj , Vj) = 0

g(∇UjT, Vl)
(15)
= −h(Uj , Ul) = −δjl

g(∇UjT, T ) = g(∇UjT,Xi) = g(∇UjT, Yi) = 0 for i = 0, . . . , k.

hence
∇UjT = −Vi.

Since Uj ’s are geodesic we have ∇̃UjUj = −ν, from which we get

∇̃UjVj = ∇UjVj = T.

Analogous computations give ∇VjT = Uj and ∇VjUj = −T .

In the sequel we will use the following formula to compute some covariant derivatives:

g(∇XY, Z) =
1
2

{
X
(
g(Y, Z)

)
+ Y

(
g(Z,X)

)
− Z

(
g(X,Y )

)
+

+ g
(
[X,Y ], Z

)
− g

(
[Y,Z], X

)
− g

(
[X,Z], Y

)}
, (16)

where X,Y, Z ∈ TM . So, first we compute the necessary commutators.

Lemma 3.2. For every i, l = 1, . . . , k and every j = 1, . . . , N , we have

[X0, Y0] = 2Y0 + 2T, [X0, Xi] = Xi, [X0, Yi] = Yi, [X0, T ] = 0,

[X0, Uj ] = 0, [X0, Vj ] = 0, [Y0, Xi] = 0, [Y0, Yi] = 0,

[Y0, T ] = 0, [Y0, Uj ] = −2Vj , [Y0, Vj ] = 2Uj , [Xi, Xl] = 0,

[Xi, Yl] = δil(2Y0 + 2T ), [Xi, T ] = 0, [Xi, Uj ] = 0, [Xi, Vj ] = 0,

[Yi, Yl] = 0, [Yi, T ] = 0, [Yi, Uj ] = 0, [Yi, Vj ] = 0,

[Uj , T ] = −2Vj , [Vj , T ] = 2Uj .

Proof. Using Lemma 3.1, for every j = 1, . . . , N we compute

[Uj , T ] = ∇UjT −∇TUj = −2Vj

[Vj , T ] = ∇VjT −∇TVj = 2Uj

from which we get

[Y0, Uj ] = [−T,Uj ] = −2Vj

[Y0, Vj ] = [−T, Vj ] = 2Uj .

All the other commutators are computed using the explicit expression of the vector fields
involved and the fact that M is a product manifold.
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Using (16) and Lemma 3.2 we compute the following covariant derivatives:

Lemma 3.3. For every i, l = 1, . . . , k and every j = 1, . . . , N , we have

∇X0X0 = 0, ∇X0Y0 = T, ∇X0Xi = 0, ∇X0Yi = 0,

∇X0T = −Y0, ∇X0Uj = 0, ∇X0Vj = 0, ∇Y0X0 = −2Y0 − T,

∇Y0Y0 = 2X0, ∇Y0Xi = −Yi, ∇Y0Yi = Xi, ∇Y0T = X0,

∇Y0Uj = −2Vj , ∇Y0Vj = 2Uj , ∇XiX0 = −Xi, ∇XiY0 = −Yi,
∇XiXl = δilX0, ∇XiYl = δil(T + Y0), ∇XiT = −Yi, ∇XiUj = 0

∇XiVj = 0, ∇YiX0 = −Yi, ∇YiY0 = Xi, ∇YiXl = −δil(T + Y0),

∇YiYl = δilX0, ∇YiT = Xi, ∇YiUj = 0, ∇YiVj = 0,

∇TX0 = −Y0, ∇TY0 = X0, ∇TXi = −Yi, ∇TYi = Xi,

∇UjX0 = 0, ∇UjY0 = 0, ∇UjXi = 0, ∇UjYi = 0,

∇VjX0 = 0, ∇VjY0 = 0, ∇VjXi = 0, ∇VjYi = 0.

Proof. Since B is an orthonormal basis, formula (16) reduces to

g(∇XY,Z) =
1

2

{
g
(
[X,Y ], Z

)
− g

(
[Y,Z], X

)
− g

(
[X,Z], Y

)}
, for every X,Y, Z ∈ B.

Here we compute ∇X0X0 as an example, the other covariant derivatives are computed simi-
larly. Recalling Lemma 3.2, for every i = 1, . . . , k and j = 1, . . . , N we have

g (∇X0X0, X0) = 0,

g (∇X0X0, Y0) = −g ([X0, Y0], X0) = −g (2Y0 + 2T,X0) = 0,

g (∇X0X0, Xi) = −g ([X0, Xi], X0) = 0,

g (∇X0X0, Yi) = −g ([X0, Yi], X0) = 0,

g (∇X0X0, T ) = −g ([X0, T ], X0) = 0,

g (∇X0X0, Uj) = −g ([X0, Uj ], X0) = 0,

g (∇X0X0, Vj) = −g ([X0, Vj ], X0) = 0.

Thus ∇X0X0 = 0.

Now we are ready to conclude the proof of Theorem 1.1

Proof of Theorem 1.1 . We first note that the Webster metric associated to θk,N is complete.
So, it remains to compute Sθk,N . For every W ∈ B we have

Ricg(W,W ) =
∑
Z∈B

g
(
∇Z∇WW −∇W∇ZW −∇[Z,W ]W,Z

)
. (17)

We explicitly compute Ricg(Xi, Xi) for every i = 1, . . . , k. By Lemma 3.1 and Lemma 3.3 we
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have

Ricg(Xi, Xi) =
∑
Z∈B

g
(
∇Z∇XiXi −∇Xi∇ZXi −∇[Z,Xi]Xi, Z

)
=

∑
Z∈B

g
(
∇ZX0 −∇Xi∇ZXi −∇[Z,Xi]Xi, Z

)
= g (−∇XiXi, X0) + g (∇Y0X0 +∇XiYi, Y0) +

k∑
l=1

g (∇Xl
X0 − δli∇XiX0, Xl)+

+
k∑

l=1

g
(
∇Yl

X0 − δli∇Xi(T + Y0) +∇δli(2Y0+2T )Xi, Yl
)
+

+ g (∇TX0 −∇XiYi, T ) +

N∑
l=1

g (∇Ul
X0, Ul) +

N∑
l=1

g (∇Vl
X0, Vl)

= g (−X0, X0) + g (−2Y0 − T + T + Y0, Y0) +

k∑
l=1

g (−Xl + δliXi, Xl)+

+
k∑

l=1

g (−Yl − 6δliYi, Yl) + g (−Y0 + T + Y0, T ) + 0 + 0

= −1− 1 + (−k + 1) + (−k − 6) + 1 + 0 + 0

= −6− 2k.

Similarly

Ricg(Yi, Yi) = −1− 1 + (−k − 6) + (−k + 1) + 1 + 0 + 0 = −6− 2k

Ricg(X0, X0) = 0− 7− k − k + 1 + 0 + 0 = −6− 2k

Ricg(Y0, Y0) = −7 + 0− k − k + 1 + 0 + 0 = −6− 2k

here we have considered (17) with W ∈ B, Z running in the ordered basis B and we have
written, in the order, each of the terms in the sum in the right hand side of (17). Moreover
since M = Hk × R× S2N+1 and {T,U1, V1, . . . , UN , VN} is an orthonormal basis for TS2N+1

with respect to the metric gθSN
, we have

Ricg(Uj , Uj) = Ricg
θS
N

(Uj , Uj) +
∑

Z=X0,Y0,Xi,Yi
i=1,...,k

g
(
∇Z∇UjUj −∇Uj∇ZUj −∇[Z,Uj ]Uj , Z

)
= Ricg

θS
N

(Uj , Uj) = 2N

and

Ricg(Vj , Vj) = 2N.

Hence, recalling (2) and the definition N = n− k − 1, we have

Sθk,N = (2k + 2)(−6− 2k) + (N +N)2N + 4n

= 4
(
(N − k)(N + k) + 2(N − k)− (N + k)

)
= 4(N + k + 2)(N − k − 1)
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that is
Sθk,N = 4(n+ 1)(n− 2k − 2).

In particular, we notice that Sθk,N is positive for k < n−2
2 .

4 Singularity along a circle

Here we will use the explicit contact structure that we found in order to obtain some existence
results as applications.
We will need the explicit expression of △θk,N , which is

△θk,N = T 2 +△θSN
+ 2e2s△θHk

+ 4e4s
∂2

∂t2
− 4e2sT

∂

∂t
+

∂2

∂s2
− 2(k + 1)

∂

∂s
.

Indeed we have

X2
0 =

∂2

∂s2

Y 2
0 = T 2 + 4e4s

∂2

∂t2
+ 4e2sT

∂

∂t

X2
i = 2e2s

(
X

θHk
i

)2

Y 2
i = 2e2s

(
Y

θHk
i

)2

for i = i, . . . , k,

so
k∑

i=1

(X2
i + Y 2

i ) = 2e2s△θHk

and by Lemma 3.3

∇X0X0 = 0, ∇Y0Y0 = 2
∂

∂s
, ∇XiXi =

∂

∂s
, ∇YiYi =

∂

∂s
∇TT = 0

for i = 1, . . . , k. Hence

△θk,N = △gθk,N
− T 2

= X2
0 −∇X0X0 + Y 2

0 −∇Y0Y0 +
k∑

i=1

(X2
i + Y 2

i )−
k∑

i=1

(∇XiXi +∇YiYi)+

+

N+1∑
j=1

(U2
j + V 2

j )−
N+1∑
j=1

(∇UjUj +∇VjVj)−∇TT

=
∂2

∂s2
+ T 2 + 4e4s

∂2

∂t2
+ 4e2sT

∂

∂t
− 2

∂

∂s
+ 2e2s△θHk

− 2k
∂

∂s
+△θSN

. (18)

Next we will need a kind of expansion of the Webster scalar curvature. So let us consider
(6) with the additional change of variable r =

√
2es. We denote it by φ̄−1 : Hn → Hk ×

(0,+∞)× S2N+1. In these coordinates the standard contact form of Hn is

θ̄ = φ̄∗θHn = θHk + r2θSN = r2θk,N (19)
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with ϕ̄ the related (1, 1)-tensor. We consider smooth perturbations (let say at least C3) (θ̂, ϕ̂)
as

θ̂ = (1 +O(r2))θ̄, ϕ̂ = ϕ̄, as r → 0. (20)

We recall that the tensor field φ̂ depends on the contact distribution and not the form. Hence,
it is invariant under a conformal change of the contact form θ̂. We have the following

Proposition 4.1. Let (θ̂, ϕ̂) be as in (20) and consider θ̃ = r−2θ̂. Then the Webster scalar
curvature of (M, θ̃, ϕ̂) is

Sθ̃ = Sθk,N +O(r2), as r → 0.

Proof. Let f be a smooth function depending on r, by (19) we let

θ̃ = r−2θ̂ = r−2(1 + f(r))θ̄ = (1 + f(r))θk,N = (u(r))
2
n θk,N ,

where u(r) = (1 + f(r))
n
2 . We will use formula (3)

−△θk,Nu+
n

4(n+ 1)
Sθk,Nu =

n

4(n+ 1)
Sθ̃u

2
n
+1.

Now, after the change of variable r =
√
2es (∂s = r∂r), by formula (18) we have

△θk,Nu(r) = r2u′′(r)− (2k + 1)ru′(r).

We compute

u′(r) =
n

2
(1 + f(r))

n
2
−1f ′(r),

u′′(r) =
n

2
(1 + f(r))

n
2
−1f ′′(r) +

n

2

(n
2
− 1

)
(1 + f(r))

n
2
−2(f ′(r))2,

therefore

△θk,Nu(r) =
n

2
(1 + f(r))

n
2
−1

[
r2f ′′(r)− (2k + 1)rf ′(r) +

(n
2
− 1

)
(1 + f(r))−1r2(f ′(r))2

]
.

We obtain

Sθ̃ = (1 + f(r))−1Sθk,N

− 2(n+ 1)(1 + f(r))−2
[
r2f ′′(r)− (2k + 1)rf ′(r) +

(n
2
− 1

)
(1 + f(r))−1(rf ′(r))2

]
.

Now, if f is a smooth function such that f(r) = O(r2) as r → 0, then for every a ∈ R we
have (1 + f(r))a = 1+O(r2), as r → 0; also rf ′(r) = O(r2) and r2f ′′(r) = O(r2), as r → 0.
Substituting in the last equation we get

Sθ̃ = Sθk,N +O(r2), as r → 0.
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4.1 Existence by perturbation

In this subsection, we will follow closely the perturbation approach developed in [19]. First
let us set Lθ = ∆θ − n

4(n+1)Sθ. We consider a smooth diffeomorphism τ that is close to the

identity in the C3,α-topology. We will focus on the restriction of τ to the equatorial S2k+1 as
detailed above. Hence, we view this restriction as an embedding τ : S2k+1 → S2n+1 close to
the identity, and we want to find a complete contact structures on S2n+1 \ τ(S2k+1) having
constant Webster curvature. Namely, we want to solve on S2n+1 \ τ(S2k+1), the problem

LθSn
v +

n

4(n+ 1)
Sθk,N v

p−1 = 0,

with v a positive function that blows-up on τ(S2k+1). This is equivalent to solving the
problem

Lθ(τ)v +
n

4(n+ 1)
Sθk,N v

p−1 = 0,

where θ(τ) = u
2
n τ∗θSn and u is the function giving the conformal change from θSn to θk,N .

Since we plan to perturb the equation with respect to the diffeomorphism τ and around the
constant solution 1, we introduce the functional

K(τ, w) = Lθ(τ)(1 + w) +
n

4(n+ 1)
Sθk,N (1 + w)p−1.

We want then to solve K(τ, w) = 0 via the implicit function theorem, after perturbation
around (id, 0). So we start by linearizing with respect to w:

∂wK(τ, w)|(id,0) = ∆θk,N + 2(n− 2k − 2).

Now we will consider the case τ : S1 → S2n+1, that is k = 0, N = n − 1. Notice that the
expression of ∆θ0,n−1 is quite complicated. But, if we restrict it to functions that are invariant
under T , then its expression becomes more familiar. Though, this restriction on the function
space, needs to be preserved by ∆θ(τ) and that is why one needs to choose the diffeomorphism
τ carefully. For instance, it needs to commutes with the action of T . We will provide below,
an explicit description of the set of considered diffeomorphisms. In this setting, the operator
L takes form

L = ∆S2n−1 + 4e4s∂2t + ∂2s − 2∂s.

If one now uses the change of variable r = e2s, one gets

L = ∆S2n−1 + 4r2∂2t + 4r2∂2r = ∆S2n−1 + 4∆H2 , (21)

where H2 = HR2 is the standard hyperbolic space of dimension 2. The linearized equation
becomes then,

L1 = ∆S2n−1 + 4∆H2 + 2(n− 2)

So we first investigate its kernel. For this purpose, we move to the unit disk model of the
hyperbolic space with coordinates x = (σ, ϑ, y) where σ ∈ [0, 1], ϑ ∈ S1 and y ∈ S2n−1.
We introduce then the family of spaces Cν,α,k(S2n−1 ×H2) that are adapted to the study of
singular problems (see [16, 19, 17, 18]), by

Ck,α,ν(S2n−1 ×H2) := {u ∈ Ck,α
loc (S

2n−1 ×H2); ∥u∥k,α,ν <∞}
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where

∥u∥k,α,ν = sup
x1,x2∈S2n−1×H2

(σ1 + σ2)
−ν

( k∑
j=1

(σ1 + σ2)
j |∇ju|+ (σ1 + σ2)

k+α[∇ku]α

)
.

Now, because of our restriction on the functions, we will be working on the space

Ck,α,ν
T (S2n−1 ×H2) := {u ∈ Ck,α,ν(S2n−1 ×H2);Tu = 0}.

In these coordinates, we can express the operator L1 as follows:

L1 =
[
(1− σ2)2∂2σ +

(1− σ2)2

σ
∂σ +

(1− σ2)2

σ2
∆S1

]
+∆S2n−1 + 2(n− 2),

where σ ∈ (0, 1). We look for solutions of the form u =
∑

i,j ai,j(σ)ϕiψj where the ψj are
T -invariant eigenfunctions of ∆S2n−1 with eigenvalue λj and the ϕi are the eigenfunctions of
∆S1 with eigenvalue µi (see [19], formula (2.13) with the squared eigenvalues). This yields
the family of equations

Ai,jai,j = 0

where

Ai,j = (1− σ2)2
[
∂2σ +

1

σ
∂σ − µi

σ2

]
− λj + 2(n− 2)

This is a Bessel type equation and the singularity at zero and 1 is regular. Since we are looking
for bounded solutions, there is only a unique regular solution to this equation corresponding
to the indicial root γ = i ∈ N, that is a function rotationally invariant. So, we move now to
the singularity at 1. We set ρ = 1− σ2, then the operator Ai,j becomes

Ai,j = 4ρ2
[
(1− ρ)∂2ρ − ∂ρ

]
− ρ2

1− ρ
µi − λj + 2(n− 2)

In this case, the indicial roots take the form

γ±j =
1

2
± 1

2

√
1 + λj − 2(n− 2).

We recall that the surjectivity of the operator L1 depends on the value ν+0 (using the notation
of [19, Theorem 4.54]). The value of ν+0 depends on the real part of the indicial roots. Indeed,
we notice that if j > 0, then γ± are real and in that case ν+0 > 1

2 . But, if j = 0, and hence,
λj = 0, then γ± is complex and its real part is 1

2 . Hence, we set ν0 = 1
2 and the function

space that we will take is C2,α,ν
T (S2n−1 ×H2) where ν < 1

2 . The kernel is then

K(α, ν) = {u ∈ C2,α,ν
T ;Lu = 0}.

We recall now a result of Mazzeo-Smale [19, Theorem 4.54]

Lemma 4.1 ([19]). For ν < 1
2 , the operator L1 : C

2,α,ν
T → C0,α,ν

T is onto.
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As suggested by the referee, we point out that there is a different way of finding the indicial
roots and hence deducing the surjectivity with less technicalities, using the results in [16] .
We recall that a vector field X is said to be a contact vector field for a given contact form
θ, if and only if there exists a smooth function f on M such that LXθ = fθ. The set of
contact vector fields forms a Lie algebra that we denote by CV ect(M, θ) and there exists
a one to one correspondence between CV ect(M, θ) and C∞(M). The flow of a vector field
X ∈ CV ect(M, θ) generates a one parameter family of contactomorphisms. We then consider
the set

TT := {φX
1 (·);X ∈ r2CV ect(M, θ̄); [X,T ] ∈ Span(T )},

where φX
1 is the flow generated by X at time one. Notice now that if τ ∈ TT then τ∗θ =

(1 +O(r2))θ.

Proposition 4.2. The map K is C∞ from a neighborhood N of (id, 0) ∈ TT ×C2,α,ν
T (S2n−1×

H2) to C0,α,ν
T (S2n−1 ×H2).

Proof. It is clear that N is mapped to C0,α
loc . Based on the construction above, we have

θ(τ) = (1 +O(r2))θk,N . So by Proposition 4.1, we compute

K(τ, w)−K(id, 0) =

= ∆θ(τ)(1 + w)−∆θk,N 1−
n

4(n+ 1)
(Sθ(τ)(1 + w)− Sθk,N ) +

n

4(n+ 1)
Sθk,N ((1 + w)p−1 − 1)

Clearly ∆θ(τ)(1 + w) − ∆θk,N 1 ∈ C0,α,ν
T . Next, we have that Sθ(τ) = Sθk,N + O(r) hence,

the second term also belongs to C0,α,ν
T and similarly for the third term. The higher order

derivatives of K can be treated in a similar way.

Theorem 4.1. Let 0 < ν < 1
2 , then there exist a closed subspace W such that C2,α,ν

T =
W ⊕ K(α, ν) and a smooth map Φ : N ⊂ TT × K(α, ν) → W such that K(τ, w) = 0, where
w = (Φ(τ, w1), w1) ∈W ⊕K(α, ν).

Proof. The proof is a direct corollary from the implicit function theorem and Lemma 4.1.

As a corollary, we get our first application Theorem 1.2.

4.2 Existence by bifurcation

In this last subsection we will show the existence of another kind of solutions to the CR
Yamabe problem on S2n+1\S1, via bifurcation (in the sense of Definition 4.1 below), following
the work [4]. We recall again that similarly to the previous section, the operator L, in (21),
takes the form L = ∆S2n−1 + 4∆H2 , when restricted to functions invariant under T and we
propose to solve the problem

−Lu+
n

4(n+ 1)
Sθ0,n−1u =

n

4(n+ 1)
κup−1, (22)

where κ is a positive constant. Notice now that the problem is purely Riemannian. That is, all
the operators involved depend on the Riemannian metric defined on S2n−1 ×H2. A solution
of (22) corresponds to a complete solution to our problem in S2n+1 \S1. Hence, now, we are
just dealing with an analytical problem in a Riemannian setting rather than a geometrical
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problem. After taking the quotient of H2 by a Fuchsian group Γ ⊂ PSL(2,R) we can reduce
the study to the manifoldM = CPn−1×ΣΓ, where ΣΓ = H2/Γ and CPn−1 = S2n−1/S1 since
the vector field T generate an S1 isometric action corresponding to the Hopf fibration. Notice
that there is no need to verify that the action of Γ preserves the original contact structure
since we are interested in solving a purely analytical problem. From now on, we will write Σ
instead of ΣΓ and we define the space M(Σ) of hyperbolic metrics on Σ. In this way we can
track the change of the hyperbolic structure by using the metrics gΣ. Now, given gΣ ∈ M(Σ),
we define the Banach manifold

MΣ,gΣ =

{
u ∈ H1(M);

∫
M
up dvg = V olg(M);u > 0 a.e.

}
,

where g = gCPn−1 ⊕ 1
2gΣ, H

1(M) is the classical Sobolev space on M with the metric g, dvg
is the volume form corresponding to the metric g and V olg(M) is the volume of the metric
M with respect to g. Next, we introduce the functional defined on MΣ,gΣ by

Ag(u) =
1

2

∫
M

(
|∇M,gu|2 +

n

4(n+ 1)
Sθ0,n−1u

2
)
dvg,

where ∇M,g = ∇CPn−1 ⊕ 2∇gΣ . Clearly, critical points of Ag lift to solutions to the problem
(22). We notice also that 1 is always a solution to our problem with κ = Sθ0,n−1 . We have
then,

∇Ag(u) = LMu+
n

4(n+ 1)
Sθ0,n−1u− n

4(n+ 1)
κup−1,

where LM = −∆CPn−1 − 4∆Σ,g and

JΣ,g = ∇2Ag(1) = LM − 2(n− 2).

The operator JΣ,g is the Jacobi operator, corresponding to the functional Ag at the critical
point u = 1. We refer the reader to [4, Section 3] for more details about the construction
above. We want to investigate the negative eigenvalues of JΣ,g, which correspond to the
Morse index of Ag at the critical point 1. So we consider the number

nt(gΣ) := max{k ∈ N : λk(gΣ) ≤ t}

where 0 < λ1(gΣ) ≤ · · · ≤ λk(gΣ) ≤ · · · are the eigenvalues of the Laplacian on (Σ, gΣ)
repeated according to their multiplicities. The next two lemmas are in [4].

Lemma 4.2 ([4]). Let t > 1
4 , and fix g0 ∈ M(Σ), then for any k ∈ N, there exists g1 ∈ M

such that nt(Σ, g1) ≥ k + nt(Σ, g0).

Lemma 4.3 ([4]). Given a hyperbolic surface Σ and λ > 1
4 , then the set Mλ(Σ) = {g ∈

M(Σ);λ ̸∈ σ(−∆gΣ)} is open and dense in M(Σ).

Now we notice that every eigenvalue λℓ of JΣ,g takes the form

λℓ = 4λj(gΣ) + λk(CPn−1)− 2(n− 2),

for a certain j, k ≥ 0.
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Corollary 4.1. Let n ≥ 3, and let d ∈ N. Then there exists gΣ ∈ M(Σ) such that JΣ,g has
at least d negative eigenvalues.

Proof. Indeed, we always have

1 < 2(n− 2) < λ1(CPn−1) = 4n.

Hence, one looks for eigenvalues of the form λℓ = 4λj(gΣ)− 2(n− 2). Since 2(n− 2) > 1, we

can always find gΣ ∈ M(Σ) such that σ(−∆gΣ)∩ (14 ,
(n−2)

2 ) is arbitrarily large. Which proves
the claim.

In order to prove existence and multiplicity results for our problem, we will show the existence
of bifurcation points while perturbing the metric. We will use the following definition of
bifurcation [8]:

Definition 4.1. Given two Banach spaces B0 and B1 and a C1-family of submanifolds [0, 1] ∋
λ 7→ Dλ ⊂ B1 and closed subspaces [0, 1] ∋ λ 7→ Eλ ⊂ B0. We define the fiber bundles
D = {(x, λ) ∈ B1 × [0, 1];x ∈ Dλ} and E = {(y, λ) ∈ B0 × [0, 1]; y ∈ Eλ}. Let F : D → E
be a C1 bundle morphism. Let λ 7→ xλ and λ 7→ yλ be C1 sections of D and E respectively,
satisfying F (xλ, λ). We say that λ∗ ∈ [0, 1] is a bifurcation point of the equation

F (x, λ) = (yλ, λ)

for xλ, if there exist a sequence (λn)n≥1 and a sequence xn ∈ Dλn such that

i) limn→∞ λn = λ∗

ii) xn ̸= xλn

iii) limn→∞ xn = xλ∗

iv) F (xn, λn) = (yλn , λn).

Now given a path of metrics [0, 1] : t → gΣ,t ∈ M(Σ) and gt = gCPn−1 ⊕ 1
2gΣ,t, the manifold

MΣ,gt , will play the role of Dt, F (u, t) = ∇Agt(u), in the definition above and Et = H−1(M),
the dual space of H1(M), carrying its canonical Hilbert space structure. We can see the
constant solution 1 as a section of D, that is, [0, 1] : t 7→ 1t, and we have

F (1, t) = (0, t).

We want to show that we have a bifurcation point for F which corresponds to a sequence of
solutions to equation (22) that are arbitrarily close to 1.

Theorem 4.2. Assume that n ≥ 3. Given g0 ∈ M(Σ), then there exists g′0, g
′
1 ∈ M(Σ), with

g′0 arbitrarily close to g0 and a path (g′t)t∈[0,1] joining g
′
0 and g′1 such that F has at least one

bifurcation point t∗ ∈ (0, 1).

Proof. We use the bifurcation theorem proved in [8, Theorem A.2]. First, we notice that for
all metrics g ∈ M(Σ) the operator JΣ,g is symmetric and Fredholm of index 0. We consider
now a metric g0 ∈ M(Σ). If JΣ,g0 is degenerate (ker JΣ,g0 ̸= 0, so 1 is a degenerate critical
point for Ag0), then by Lemma 4.3, we can choose g′0 ∈ M(Σ) arbitrarily close to g0 and
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such that JΣ,g′0
is invertible (i.e. Ag′0

is Morse at 1), so we let µ(g0) its Morse index. Using
Lemma 4.3, we can choose yet another metric g′1 ∈ M(Σ) such that Ag′1

is Morse at the
critical point 1 and µ(g′1)− µ(g′0) ̸= 0. In order to conclude now, we consider a smooth path
g′t connecting g′0 to g′1 (such a path exists since M(Σ) is path connected). It is enough to
notice now that d1F (·, t) = JΣ,g′t

. It is important to point out that in the notation of [8,

Theorem A.2], (Ht, ⟨·, ·⟩t) is the space H−1(M) with its canonical Hilbert structure induced
by the metric gt. Hence, the assumptions of the bifurcation theorem [8] are satisfied and we
have at least one bifurcation point t∗ ∈ (0, 1).

Notice that since the bifurcation occurring in the previous theorem is from the constant
solution 1, then the new scalar curvature κ will also be close to Sθ0,n−1 . As a corollary, we
get our second application Theorem 1.3.
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