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Abstract In this paper we investigate the problem of existence of solutions

for a super-critical fourth order Yamabe type equation and we exhibit a fam-

ily of solutions concentrating at two points, provided the domain contains

one hole and we give a multiplicity result if we are given multiple holes.

1 Introduction and main results

In this paper we will study the existence of positive solutions for a homoge-

neous super-critical problem of the form ∆2u = |u|p−1+ε u on Ω

u = ∆u = 0 on ∂Ω
(Pε)

where Ω is a smooth bounded set of Rn, with n ≥ 5, and p = n+4
n−4 is the

critical exponent. This problem was studied in the case of the Laplacian by

Del Pino et al. in [11], [10], where they use the finite dimensional reduction
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method. Our work will be in the same spirit. Let us recall that problem

(Pε) was studied in [5] where the authors show that there is no one-bubble

solution to the problem and there is a one-bubble solution to the slightly

sub-critical case under some suitable conditions.

Recall that for ε = 0, this problem has a deep geometrical meaning, in fact if

(M, g) is an n−dimensional compact closed riemannian manifold with n ≥ 5,

we can define the Q−curvature (see for instance [18])

Q :=
n3 − 4n2 + 16n− 16

8 (n− 2)2 (n− 1)2
R2 − 2

(n− 2)2
|Ric|2 +

1

2(n− 1)
∆R,

then after a conformal change of the metric, one gets for g̃ = u
4

n−4 g ,

Qg̃u
n+4
n−4 = Pgu, (1)

where Pg is the Paneitz operator, defined by

Pgu := ∆2
gu− div

((
(n− 2)2 + 4

2 (n− 2) (n− 1)
Rg − 4

n− 2
Ric

)
du

)
+
n− 4

2
Qu.

Hence prescribing the Q−curvature problem is analogous to the scalar cur-

vature prescribing problem. Now remark that in the flat case, for instance

if we consider an open set of Rn, the problem of prescribing constant Q-

curvature coincides with (Pε) with ε = 0 that is

∆2u = |u|p−1 u. (2)

The variational formulation of (2) under Navier boundary conditions in a

bounded set was deeply studied, especially from the perspective of the theory

of critical points at infinity, introduced by Bahri [1] (see [9], [14] and [13]),

and this reveals more interesting analytical phenomena involving the topol-

ogy of the underlying set Ω. We bring the attention of the reader to the fact
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that this problem is not compact, that is for the case ε = 0 it corresponds ex-

actly to the limiting case of the Sobolev embeddingH2 (Ω)∩H1
0 (Ω) ↪→ L

2n
n−4 ,

(see [21]), and thus we loose the compact embedding. The case ε > 0 is even

worse since the continuous embedding is also violated, so the variational set-

ting in the classical spaces fails to show existence of solutions: in fact as in

the case of the Laplacian, if the domain is star shaped we know that it has

no solutions in the super-critical case and no positive solutions in the critical

case ([21], [22]). In this work we will show the existence of positive solutions

of (Pε) having two concentration points in a domain with holes and those

solutions do not survive when ε −→ 0.

We also recall that the authors in [17] proved also existence and multiplicity

results for the problem (Pε) with ε = 0 and with a non-homogeneous term.

The main result of this paper reads as follow :

Theorem 1.1. Let D be a bounded smooth open domain of Rn, and let

P ∈ D, then there exists µ0 > 0 such that if 0 < µ < µ0 and Ω = D−B(P, µ),

then there exists ε0 > 0 and a family of solutions uε for problem (Pε) with

0 < ε < ε0. Moreover uε reads as follows :

uε (x) =

(
αnλ1ε

1
n−4

ε
2

n−4λ2
1 + |x− ξε1|

2

)n−4
2

+

(
αnλ2ε

1
n−4

λ2
2ε

2
n−4 + |x− ξε2|

2

)n−4
2

+ ϕε (x)

where ϕε −→ 0 as ε −→ 0 uniformly, and αn is a constant depending on n.

λi and ξεi are critical points of a function that will be determined later and

there exists 0 < c < C such that

cµ < |ξεi − P | < Cµ, i = 1, 2.

Using the same idea and the estimates in the proof of the theorem, one

can then show:
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Corollary 1.2. Let D be a bounded smooth open domain of D − ∪1≤i≤mB(Pi, µi),

then there exists ε0 > 0 and 2m−1 solutions for problem (Pε) for 0 < ε < ε0,

moreover those solutions read as follows :

uk,ε (x) =
k∑
j=1

 αnλ1,jε
1

n−4

ε
2

n−4λ2
1,j +

∣∣∣x− ξε1,j∣∣∣2


n−4
2

+

 αnλ2,jε
1

n−4

λ2
2,jε

2
n−4 +

∣∣∣x− ξε2,j∣∣∣2


n−4
2

+ϕε (x)

where ϕε −→ 0 as ε −→ 0 uniformly, 1 ≤ k ≤ m and αn is a constant

depending on n. λi,j and ξεi,j are critical points of a function built using the

Green’s function and its regular part. Also, there exist 0 < c < C such that

cµj <
∣∣ξεi,j − Pj∣∣ < Cµj , i = 1, 2 and 1 ≤ j ≤ m.

As remarked in the paper [10], from the proof one can see that there is no

need for the excised domains to be balls: in fact the scheme of the proof ap-

plies in the same way if one considers any holes contained in some small balls

(see also Corollary 2.1 in [11]). Moreover we believe that our result can be

generalized with a condition similar to that of Theorem 1.1 in [11], where the

authors consider general holes with assumptions on the cohomology groups:

in fact one uses estimates on the expansions of the Green’s and Robin’s

functions in the abstract min-max argument, and for the bi-Laplacian these

last functions are essentially the same as in the classical case, just by taking

into account the related exponent.
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2 Preliminaries

Let us start by defining the following functions

U (ξ,λ) (x) =

(
λ

λ2 + |x− ξ|2

)n−4
2

,

where λ > 0 and ξ ∈ Ω. For u ∈ D2,2 (Ω) , we will denote by Pu the

projection on H2 (Ω)∩H1
0 (Ω) , defined as the unique solution of the problem ∆2v = up on Ω

v = ∆v = 0 on ∂Ω
,

We recall that for the bi-Laplacian operator, the Green’s function of a set

Ω with Navier boundary conditions is defined to be the solution of ∆2
xG (x, y) = δy on Ω

G (x, y) = ∆xG (x, y) = 0 on ∂Ω
.

This function can be written as

G (x, y) =
an

|x− y|n−4 −H(x, y), ∀x, y ∈ Ω and x 6= y,

where an is a positive constant depending on n and H is the positive smooth

solution of ∆2
xH (x, y) = 0 on Ω

H (x, y) = 1
|x−y|n−4 , ∆H (x, y) = ∆ 1

|x−y|n−4 on ∂Ω
(3)

Now let ξ1, ξ2 be two points in Ω, and λ1, λ2 > 0, we will write U i = U (ξi,λi)

and Ui = PU i. Then one has Ui = U i − ϕi and

ϕi(x) = H(x, ξi)λ
n−4
2

i

∫
Rn
U
p
(y)dy + o(λ

n−4
2

i ). (4)

Away from x = ξ, we have

Ui(x) = G(x, ξi)λ
n−4
2

i

∫
Rn
U
p
(y)dy + o(λ

n−4
2

i ). (5)
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For more details about these estimates we refer to the Appendix.

Let us set now J to be the functional defined by

J(u) =
1

2

∫
Ω
|∆u|2 − 1

p+ 1

∫
Ω
|u|p , (6)

and let us find an expansion of

J(U1 + U2) =
1

2

∫
Ω
|∆ (U1 + U2)|2 − 1

p+ 1

∫
Ω

(U1 + U2)p . (7)

We define the set

Oδ (Ω) = {(ξ1, ξ2) ∈ Ω× Ω; |ξ1 − ξ2| > δ and d(ξi, ∂Ω) > δ} , (8)

where δ > 0 is a small fixed number and let

Cn =
1

2

∫
Ω

∣∣∇U ∣∣2 − 1

p+ 1

∫
Ω
U
p
.

Then we have the following

Lemma 2.1. For (ξ1, ξ2) in Oδ (Ω) we get

J(U1 + U2) = 2Cn +
1

2

(∫
Rn
U
p
)(

H (ξ1, ξ1)λn−4
1 +H (ξ2, ξ2)λn−4

2 − 2λ
n−4
2

1 λ
n−4
2

2 G (ξ1, ξ2)

)
+o
(
max(λ1, λ2)n−4

)
.

The proof follows from the following estimates (see Appendix):∫
Ω
|∆Ui|2 =

∫
Rn

∣∣∆U ∣∣2 − (∫
Rn
U
p
)2

H (ξi, ξi)λ
n−4
i + o(λn−4

i ),

∫
Ω

∆U1∆U2 =

(∫
Rn
U
p
)2

λ
n−4
2

1 λ
n−4
2

2 G (ξ1, ξ2) + o
(
max(λ1, λ2)n−4

)
,

1

p+ 1

∫
Ω
Up+1
i =

1

p+ 1

∫
Ω
U
p+1 −

(∫
Rn
U
p
)2

H (ξi, ξi)λ
n−4
i + o(λn−4

i ),

and
1

p+ 1

∫
Ω

(U1 + U2)p+1 − Up+1
1 − Up+1

2 =
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= 2

(∫
Rn
U
p
)2

λ
n−4
2

1 λ
n−4
2

2 G (ξ1, ξ2) + o
(
max(λ1, λ2)n−4

)
.

Therefore one has

J(U1 + U2) =
1

2

∫
Ω
|∆ (U1 + U2)|2 − 1

p+ 1

∫
Ω

(U1 + U2)p

=
2∑
i=1

(
1

2

∫
Ω
|∆Ui|2 −

1

p+ 1
Up+1
i

)
+

∫
Ω

∆U1∆U2

− 1

p+ 1

∫
Ω

(U1 + U2)p+1 − Up+1
1 − Up+1

2

=

2∑
i=1

1

2

(∫
Rn

∣∣∆U ∣∣2 − (∫
Rn
U
p
)2

H (ξi, ξi)λ
n−4
i

)
− 1

p+ 1

∫
Ω
U
p+1

+

(∫
Rn
U
p
)2

H (ξi, ξi)λ
n−4
i +

(∫
Rn
U
p
)2

λ
n−4
2

1 λ
n−4
2

2 G (ξ1, ξ2)

−2

(∫
Rn
U
p
)2

λ
n−4
2

1 λ
n−4
2

2 G (ξ1, ξ2) + o
(
max(λ1, λ2)n−4

)
= 2Cn +

1

2

(∫
Rn
U
p
)2(

H (ξ1, ξ1)λn−4
1 +H (ξ2, ξ2)λn−4

2 − 2λ
n−4
2

1 λ
n−4
2

2 G (ξ1, ξ2)

)
+o
(
max(λ1, λ2)n−4

)
.

Consider now the perturbed energy functional Jε defined by

Jε(u) =
1

2

∫
Ω
|∆u|2 − 1

p+ 1 + ε

∫
Ω
up+1+ε,

and assume that (λi)
n−4 = cnΛ2

i ε . Hence we have

Jε(U1+U2) = J(U1+U2)+
ε

(p+ 1)2

∫
Ω

(U1 + U2)p+1− ε

p+ 1

∫
Ω

(U1 + U2)p+1 ln(U1+U2)+o (ε)

Using the fact that

∫
Ω

(U1 + U2)p+1 = 2

∫
Rn
U
p+1

+ o(1).
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and for ρ > 0 small, we have∫
Ω

(U1 + U2)p+1 ln(U1 + U2) =

∫
|x−ξ1|<ρ

(U1 + U2)p+1 ln(U1 + U2)

+

∫
|x−ξ2|<ρ

(U1 + U2)p+1 ln(U1 + U2) + o (ε) ,

Notice that∫
|x−ξ1|<ρ

(U1 + U2)p+1 ln(U1+U2) = − ln(λ
n−4
2

1 )

∫
|x−ξ1|<ρ

(U1 + U2)p+1 ln(U1+U2)+

+

∫
|x−ξ1|<ρ

(U1 + U2)p+1 ln(λ
n−4
2

1 U1 + λ
n−4
2

1 U2)

= − ln(λ
n−4
2

1 )

(∫
Rn
U
p+1

+O(λn1 )

)
+

∫
Rn
U
p+1

lnU + o(1),

so that∫
Ω

(U1 + U2)p+1 ln(U1+U2) = −n− 4

2
ln(λ1λ2)

∫
Rn
U
p+1

+2

∫
Rn
U
p+1

lnU+o(1)

(9)

Thus

Jε(U1 + U2) = J(U1 + U2)+

+ε

(
2

(p+ 1)2

∫
Rn
U
p+1

+
n− 4

2 (p+ 1)
ln(λ1λ2)

∫
Rn
U
p+1 − 2

p+ 1

∫
Rn
U
p+1

lnU

)
+o(ε)

Using the previous lemma we have the following

Lemma 2.2. Let us set (λi)
n−4 = cnΛ2

i ε. Then we get

Jε(U1 + U2) = 2Cn + γnε+ wnε ln (ε) + wnεΨ (ξ1, ξ2,Λ1,Λ2) + o(ε)

for every (ξ1, ξ2,Λ1,Λ2) ∈ Oδ (Ω)×
(
δ, δ−1

)2
. Where:

γn =
2

(p+ 1)2

∫
Rn
U
p+1 − 2

p+ 1

∫
Rn
U
p+1

lnU + wn ln(cn),

wn =
1

(p+ 1)2

∫
Rn
U
p+1

,

and finally

Ψ (ξ1, ξ2,Λ1,Λ2) =
1

2

(
H (ξ1, ξ1) Λ2

1 +H (ξ2, ξ2) Λ2
2 − 2Λ1Λ2G (ξ1, ξ2)

)
+ln (Λ1Λ2) .
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3 Linear Problem

From now on let Ωε = ε−
1

n−4 Ω and we will consider points ξ′i ∈ Ωε and

numbers Λi > 0 for i = 1, 2 such that |ξ′1 − ξ′2| > δε−
1

n−4 , d(ξ′i, ∂Ωε) >

δε−
1

n−4 and δ < Λi < δ−1. For the sake of simplicity we will adopt the

same notations as in [10], that is V i(x) = U ξ′i,Λ∗i for Λ∗i =
(
cnΛ2

i

) 1
n−4 .

The projections on H2 (Ωε) ∩ H1
0 (Ωε) will be denoted by Vi. Consider the

functions

Zij =
∂V i

∂ξij
, i = 1, ..., n and Zin+1 =

∂V i

∂Λ∗i

and their projections Zij = PZij . Let V = V1 + V2 and V = V 1 + V 2. Now

for a smooth function h, we want to solve the following linear problem :
∆2ϕ− (p+ ε)V p+ε−1ϕ = h+

∑
i,j cijV

p−1
i Zij on Ωε

ϕ = ∆ϕ = 0 on ∂Ωε〈
V p−1
i Zij , ϕ

〉
= 0 for i = 1, 2 ; j = 1, ..., n+ 1

,

(10)

We define the following weighted L∞ norms : for a function u defined on Ωε

‖u‖∗ =
∥∥∥(w1 + w2)−βu

∥∥∥
L∞

+
∥∥∥(w1 + w2)−β−

1
n−4∇u

∥∥∥
L∞

where wi =

(
1

1+|x−ξ′i|
2

)n−4
2

, β = 4
n−4 , and

‖u‖∗∗ =
∥∥(w1 + w2)−γu

∥∥
L∞

with γ = 8
n−4 .

Proposition 3.1. There exists ε0 > 0 and C > 0 such that for all 0 < ε < ε0

and all h ∈ Cα(Ωε) the problem (10) admits a unique solution ϕ = Lε(h).

Moreover we have

‖Lε(h)‖∗ ≤ C ‖h‖∗∗
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and

|cij | ≤ C ‖h‖∗∗ .

We need the following

Lemma 3.2. Assume there exists a sequence ε = εn such that there are

functions ϕε and hε such that
∆2ϕε − (p+ ε)V p+ε−1ϕε = hε +

∑
i,j cijV

p−1
i Zij on Ωε

ϕε = ∆ϕε = 0 on ∂Ωε〈
V p−1
i Zij , ϕε

〉
= 0 for i = 1, 2 ; j = 1, ..., n+ 1

for certain constants cij depending on ε, with ‖hε‖∗∗ = o(1) if n 6= 6, 8 and

ln(ε)4 ‖h‖∗∗ = o(1) in dimension 6 and 8. Then ‖ϕε‖∗ −→ 0.

Proof. Take ρ > 0 and define

‖ϕ‖ρ =
∥∥∥(w1 + w2)−(β−ρ)u

∥∥∥
L∞

+
∥∥∥(w1 + w2)−(β−ρ)− 2

n−4∇u
∥∥∥
L∞

Assume first that ‖ϕε‖ρ = 1. Then testing by Zij we get

∑
cij

〈
V p−1
i Zij , Zlk

〉
=
〈
ϕε,∆

2Zlk − (p+ ε)V p+ε−1Zlk
〉
− 〈hε, Zlk〉

which is an almost diagonal system (see Appendix). Since

∆2Zlk = pV
p−1
l Z lk,

we get 〈
ϕε,∆

2Zlk − (p+ ε)V p+ε−1Zlk
〉

= o(1) ‖ϕε‖ρ .

And since

|〈hε, Zlk〉| ≤ C ‖hε‖∗∗ ,
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we can deduce that cij = o(1). Now let us estimate ϕε. Using the Green’s

representation formula one has :

ϕε (x) = (p+ε)

∫
Ωε

G(x, y)V p+ε−1ϕε+

∫
Ωε

G(x, y)hε+
∑
i,j

cij

∫
Ωε

G(x, y)V p−1
i Zij ,

We recall that∫
Ωε

G(x, y)V p+ε−1 |ϕε| ≤ C ‖ϕε‖ρ
∫
Rn

1

|x− y|n−4V
p+ε−1+β ≤ C ‖ϕε‖ρ (w1(x) + w2(x))β

and∣∣∣∣∫
Ωε

G(x, y)hε

∣∣∣∣ ≤ C ‖hε‖∗∗
∫
Rn

1

|x− y|n−4

((
1 +

∣∣y − ξ′1∣∣2)−4
+
(

1 +
∣∣y − ξ′1∣∣2)−4

)
≤ C ‖hε‖∗∗ ln(ε)m (w1(x) + w2(x))β ,

where m = 1 if n = 6, 8 and m = 0 elsewhere. For the last term we have∫
Ωε

G(x, y)
∣∣∣V p−1
i Zij

∣∣∣ ≤ C
∑
i

∫
Rn

1

|x− y|n−4

∣∣∣V p−1
i Zij

∣∣∣
≤ C

∑
i

∫
Rn

1

|x− y|n−4

(
1 +

∣∣y − ξ′1∣∣2)−n+7
2

≤ C (w1(x) + w2(x))β

Now, we also recall that

∂ϕε
∂xi

(x) = (p+ε)

∫
Ωε

∂

∂xi
G(x, y)V p+ε−1ϕε+

∫
Ωε

∂

∂xi
G(x, y)hε+

∑
i,j

cij

∫
Ωε

∂

∂xi
G(x, y)V p−1

i Zij .

and one has the following∣∣∣∣∫
Ωε

∂

∂xi
G(x, y)hε

∣∣∣∣ ≤ C ‖hε‖∗∗
∫
Rn

1

|x− y|n−3

((
1 +

∣∣y − ξ′1∣∣2)−4
+
(

1 +
∣∣y − ξ′1∣∣2)−4

)
≤ C ‖hε‖∗∗ ln(ε)m (w1(x) + w2(x))β+ 1

n−4

In the same way, for the other terms we get∣∣∣∣∫
Ωε

∂

∂xi
G(x, y)V p+ε−1ϕε

∣∣∣∣ ≤ C ‖ϕε‖ρ (w1(x) + w2(x))β+ 1
n−4
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and ∣∣∣∣∫
Ωε

∂

∂xi
G(x, y)V p−1

i Zij

∣∣∣∣ ≤ C (w1(x) + w2(x))β+ 1
n−4

Hence one has

|ϕε (x)| ≤ C
(
‖ϕε‖ρ + ln(ε)m ‖hε‖∗∗

)
(w1(x) + w2(x))β (11)

|∇ϕε (x)| ≤ C
(
‖ϕε‖ρ + ln(ε)m ‖hε‖∗∗

)
(w1(x) + w2(x))β+ 1

n−4

In particular since ‖ϕε‖ρ = 1, we have

|ϕε (x)| (w1(x) + w2(x))−β−ρ+|∇ϕε (x)| (w1(x) + w2(x))−β−
1

n−4
−ρ ≤ C (w1(x) + w2(x))ρ .

Thus there exists R > 0 and γ > 0 such that ‖ϕε‖L∞(B(ξ′i,R)) ≥ γ for i =

1, 2. Also using elliptic regularity theory, one has that ϕε (x− ξ′i) converges

uniformly on every compact set to a function ϕ̃ solution of the following

equation :

∆2ϕ̃ = pU
p−1
Λ,0 ϕ̃ on Rn,

for a certain Λ > 0, and using the fact that

|ϕ̃| ≤ C

|x|(n−4)β
,

a simple boot-strap argument yields to

|ϕ̃| ≤ C

|x|(n−4)

Thus using the classification of solutions in [16] one finds that ϕ̃ is a linear

combination of ∂
∂xi
UΛ,0, i = 1, ..., n and ∂

∂ΛUΛ,0. But passing to the limit in

the orthogonality conditions, it yields to ϕ̃ = 0 which contradicts the fact

that ‖ϕε‖L∞(B(ξ′1,R)) ≥ γ. Now to finish the proof, notice that from (11) we

get that

‖ϕε‖∗ ≤ C
(
‖ϕε‖ρ + ln(ε)m ‖hε‖∗∗

)
.
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Proof. of proposition (3.1):

Consider the Space

H =
{
ϕ ∈ H2 (Ωε) ∩H1

0 (Ωε) ;
〈
V p−1
i Zij , ϕ

〉
= 0, ∀i, j

}
endowed with the H2 (Ωε) ∩H1

0 (Ωε) inner product, namely

(u, v) =

∫
Ωε

∆u∆v

The weak formulation of the problem then becomes

(ϕ, v) =
〈
(p+ ε)V p+ε−1ϕ− h, v

〉
, ∀v ∈ H.

Therefore using Riesz representation theorem, we get that

ϕ = Tε (ϕ) + h̃

where Tε is a linear operator that is compact on H because of the elliptic

regularity and Sobolev embedding, hence using the Fredholm alternative we

have existence of a unique solution if and only if the kernel of the operator

Id − Tε is trivial. One is led to consider then the solutions of ϕ = Tε (ϕ),

but this is equivalent to solving the problem
∆2ϕ− (p+ ε)V p+ε−1ϕ =

∑
i,j cijV

p−1
i Zij on Ωε

ϕ = ∆ϕ = 0 on ∂Ωε〈
V p−1
i Zij , ϕ

〉
= 0 for i = 1, 2 ; j = 1, ..., n+ 1

,

The conclusion thus follows from the lemma, and the unique solution for

this is ϕ = 0 . Also the fact that ‖ϕ‖∗ ≤ C ‖h‖∗∗ follows easily from the

previous lemma.

Now using the same strategy and following the argument in [10] we get

Proposition 3.3. Under the assumption of Proposition 3.1, we have∥∥∇ξ′,ΛLε (h)
∥∥
∗ ≤ C ‖h‖∗∗ .
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4 Finite dimensional reduction

In this section we want to reduce the resolution of the problem to the study

of critical points of a function defined on a finite dimensional manifold. So

here we will look for a solution of the form u = V + ϕ where ϕ ∈ H, the

Hilbert space defined in the previous section. We will split the difficulties

in several steps. First we will start by looking for a solution of the following

intermediate problem
∆2(V + ϕ)− (V + ϕ)p+ε+ =

∑
i,j cijV

p−1
i Zij on Ωε

ϕ = ∆ϕ = 0 on ∂Ωε〈
V p−1
i Zij , ϕ

〉
= 0 for i = 1, 2 ; j = 1, ..., n+ 1

,

(12)

Notice that this problem is equivalent to

∆2ϕ− (p+ ε)V p+ε−1ϕ = Nε(ϕ)−Rε +
∑
i,j

cijV
p−1
i Zij (13)

where ϕ ∈ H and

Nε(ϕ) = (V + ϕ)p+ε+ − (p+ ε)V p+ε−1ϕ− V p+ε

and

Rε = V p+ε − Up1 − U
p
2.

We will split the problem and then we will use a fixed point argument to

find a solution. If we take ψ = −Lε(Rε) then one is looking for a solution

to (13) of the form ϕ = ϕ+ ψ and thus ϕ will satisfy

ϕ = Lε(Nε(ϕ+ ψ)). (14)

Consider the fixed point problem

ϕ = Lε(Nε(ϕ+ ψ)) = Aε (ϕ) ,
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We want to show that Aε satisfies the contraction mapping theorem in an

appropriate complete set. Let us estimate Nε (u) for ‖u‖∗ ≤ 1. Using a

Taylor expansion we get the existence of t ∈ [0, 1] such that

Nε (u) =
(p+ ε)(p+ ε− 1)

2
(V + tu)p−2+εu2,

with p− 2 = n+4
n−4 − 2 = 8−n+4

n−4 = 12−n
n−4 . So if n ≤ 12 one gets∣∣∣Nε (u)V

− 8
n−4

∣∣∣ =
(p+ ε)(p+ ε− 1)

2
V
− 8
n−4 (V + tu)p−2+εu2

≤ CV
− 8
n−4

+2β
(V + tu)p−2+ε ‖u‖2∗

≤ CV
− 8
n−4

+2β+(p−2)β ‖u‖2∗

≤ CV
(p−2)β ‖u‖2∗ .

For n > 12, the proof is more involved, since we have to distinguish two

cases. First consider δ > 0 and take the region d(y, ∂Ωε) > δε−
1

n−4 , then

one has the existence of Cδ > 0 such that V > CδV and therefore we get∣∣∣Nε (u)V
− 8
n−4

∣∣∣ =
(p+ ε)(p+ ε− 1)

2
V
− 8
n−4 (V + tu)p−2+εu2

≤ V
2β− 8

n−4C ‖u‖2∗

≤ CV
2β−1 ‖u‖2∗ ≤ Cε

2β−1 ‖u‖2∗

If d(y, ∂Ωε) ≤ δε−
1

n−4 , by using Hopf lemma, we have that for δ sufficiently

small V (y) ∼ ∂V
∂ν d(y, ∂Ωε). Then we recall that |∇V | =

∣∣∇V ∣∣+ o (1) ,

|∇V | ≥ Cε
n−3
n−4 for ε small enough

and thus V (y) ≥ Cε
n−3
n−4d(y, ∂Ωε). Therefore∣∣∣Nε (u)V
− 8
n−4

∣∣∣ ≤ CV
− 8
n−4

(
ε
n−3
n−4d(y, ∂Ωε)

)p−2
u2

≤ Cε
n−3
n−4

(p−2)− 8
n−4d(y, ∂Ωε)

p ‖u‖2∗

≤ Cε
n−3
n−4

(p−2)− 8
n−4
− p
n−4

+2β+ 2
n−4 ‖u‖2∗

≤ Cε2β−1 ‖u‖2∗ ,
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hence

‖Nε (u)‖∗∗ ≤

 CV
(p−2)β ‖u‖2∗ , if n ≤ 12

Cε2β−1 ‖u‖2∗ if n > 12
(15)

Now consider

|Rε| = V
p+ε − V p

1 − V
p
2 + V p+ε − V p+ε

= V
p+ε − V p

1 − V
p
2 + o(εp)

≤
∑
i

CεV
p
i ln(V i) + o(εp),

thus

‖Rε‖∗∗ ≤ Cε.

We get then the following

Lemma 4.1. There exists C > 0 such that for ε small enough and for

‖u‖∗ ≤ 1 we have

‖Nε(u+ ψ)‖∗∗ ≤

 C
(
‖u‖2∗ + ε2

)
if n ≤ 12

C
(
ε2β−1 ‖u‖2∗ + ε2β+1

)
if n > 12

. (16)

Now, we can state the following

Proposition 4.2. There exists C > 0 such that for ε small enough, the

problem (14) has a unique solution ϕ with ‖ϕ‖∗ < Cε.

Proof. Let

F =
{
u ∈ H2 (Ω) ∩H1

0 (Ω) , ‖u‖∗ < ε
}
,

and then consider Aε : F −→ H2 (Ω)∩H1
0 (Ω). By using the previous lemma
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and proposition 3.1 we get

‖Aε (u)‖∗ ≤ C ‖Nε(u+ ψ)‖∗∗

≤

 C
(
‖u‖2∗ + ε2

)
if n ≤ 12

C
(
ε2β−1 ‖u‖2∗ + ε2β+1

)
if n > 12

≤

 Cε2 if n ≤ 12

Cε2β+1 if n > 12
,

so for ε > 0 small enough, we have that Aε maps F into itself. Now let us

estimate ‖Aε (u)−Aε (v)‖∗ for u, v ∈ F. Since

‖Aε (u)−Aε (v)‖∗ ≤ C ‖Nε(u+ ψ)−Nε(v + ψ)‖∗∗ ,

it suffices to show that Nε is a contraction to finish the proof of the propo-

sition. Notice that by construction

DuNε(u) = (p+ ε)
(

(V + u)p+ε−1
+ − V p+ε−1

)
,

thus

|Nε(u+ ψ)−Nε(v + ψ)| ≤ CV p−2 |h| |u− v| ,

where h belongs to the segment u+ ψ, v + ψ. Hence

V
− 8
n−4 |Nε(u+ ψ)−Nε(v + ψ)| ≤ V p−2

C ‖h‖∗ ‖u− v‖∗ ,

and this leads to

V
− 8
n−4 |Nε(u+ ψ)−Nε(v + ψ)| ≤ CV p−2

(‖u‖∗ + ‖v‖∗ + ‖ψ‖∗) ‖u− v‖∗ .

Therefore

‖Nε(u+ ψ)−Nε(v + ψ)‖∗∗ ≤

 C (‖u‖∗ + ‖v‖∗ + ‖ψ‖∗) ‖u− v‖∗ if n ≤ 12

Cεp−2 (‖u‖∗ + ‖v‖∗ + ‖ψ‖∗) ‖u− v‖∗ if n > 12

≤ Cεmin(1,p−1) ‖u− v‖∗ ,

and thus for ε small it is a contraction, and that finishes the proof.
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Lemma 4.3. The map (ξ′,Λ) −→ ϕ (ξ′,Λ) is of class C1 for the norm ‖‖∗
and there exists C > 0 such that

∥∥∇ξ′,Λϕ̃∥∥∗ ≤ Cε.
Proof. Let K be the map defined by

K
(
ξ′,Λ, ϕ̃

)
= ϕ̃−Aε(ϕ̃)

We recall that

DuNε(u) = (p+ ε)
(

(V + u)p+ε−1
+ − V p+ε−1

)
and

Dξ′Nε(u) = (p+ ε)
[
(V + u)p+ε−1

+ − (p+ ε− 1)V p+ε−2u− V p+ε−1
]
Dξ′V.

The same holds for DΛNε(u). Also,

DuK
(
ξ′,Λ, u

)
h = h+ Lε(DuNε(u+ ψ)h) = h+M(h).

Now

‖M(h)‖∗ ≤ C ‖DuNε(u+ ψ)h‖∗∗

≤ C
∥∥∥V − 8

n−4
+β
DuNε(u+ ψ)

∥∥∥
∞
‖h‖∗

and since ∣∣∣V − 8
n−4

+β
DuNε(u+ ψ)

∣∣∣ ≤ CV 2β−1 ‖u+ ψ‖∗ ,

we get ∥∥∥V − 8
n−4

+β
DuNε(u+ ψ)

∥∥∥
∞
≤ C

 ε if n ≤ 12

ε2β if n > 12

Therefore

‖M(h)‖∗ ≤ Cε
min(1,2β) ‖h‖∗
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and by using the implicit function theorem, ϕ depends continuously on the

parameter (ξ′,Λ) .

In the other hand if we differentiate with respect to ξ′ we get

Dξ′K
(
ξ′,Λ, u

)
= Dξ′u+Dξ′Lε(Nε(u+ ψ))

From proposition (3.3) we have that∥∥Dξ′Lε(h)
∥∥
∗ ≤ C ‖h‖∗∗

and thus we need to compute

Dξ′ψ = (Dξ′Lε)(Rε) + Lε(Dξ′Rε)

But

Dξ′1
Rε = (p+ ε)V p+ε−1Dξ′1

V − pV p−1
1 Dξ′1

V 1

which depends continuously on the parameters, and this is enough to prove

that ϕ̃ is C1 with respect to the parameters (ξ′,Λ) . Moreover we have

Dξ′ϕ = − (DϕK (ξ′,Λ, ϕ))−1 [(Dξ′Lε) (Nε (ϕ+ ψ)) +

+Lε
(
Dξ′(Nε (ϕ+ ψ))

)
+ Lε

(
Dϕ(Nε) (ϕ+ ψ)Dξ′ψ

)]
,

(17)

hence∥∥Dξ′ϕ
∥∥
∗ ≤ C

(
‖Nε (ϕ+ ψ)‖∗∗ +

∥∥Dξ′(Nε (ϕ+ ψ))
∥∥
∗∗ +

∥∥Dϕ(Nε) (ϕ+ ψ)Dξ′ψ
∥∥
∗∗
)
.

Now we know that from (16)

‖Nε(ϕ+ ψ)‖∗∗ ≤

 Cε2 if n ≤ 12

Cε2β+1 if n > 12

and∣∣Dξ′(Nε (u))
∣∣ = (p+ ε)

∣∣∣[(V + u)p+ε−1
+ − (p+ ε− 1)V p+ε−2u− V p+ε−1

]
Dξ′V

∣∣∣
≤ CV p−2

∣∣Dξ′V
∣∣ |u|

≤ CV
p−2+n−3

n−4
+β ‖u‖∗ .
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From this we get

V
− 8
n−4

∣∣Dξ′(Nε (u))
∣∣ ≤ CV n−3

n−4
+β−1 ‖u‖∗ ,

therefore ∥∥Dξ′(Nε (ϕ̃+ ψ))
∥∥
∗∗ ≤ Cε,

and a similar estimate gives

∥∥Dϕ̃(Nε) (ϕ̃+ ψ)Dξ′ψ
∥∥
∗∗ ≤ Cε.

Since there is no difference for the case of the differentiation with respect to

Λ, we omit that proof.

5 The reduced functional

Here we will use the same notations for the rescaled parameters and domain,

and we recall that so far we have ϕ = ϕ+ ψ is the unique solution of
∆2(V + ϕ)− (V + ϕ)p+ε+ =

∑
i,j cijV

p−1
i Zij on Ωε

ϕ = ∆ϕ = 0 on ∂Ωε〈
V p−1
i Zij , ϕ

〉
= 0 for i = 1, 2 ; j = 1, ..., n+ 1

,

with ‖ϕ‖∗ ≤ ε and it is smooth with respect to (ξ′,Λ) and more than that∥∥∇ξ′,Λ (ϕ)
∥∥
∗ ≤ Cε. So, now we want to go back to our original set Ω,

therefore we will denote ξ′i = ε−
1

n−4 ξi where ξi ∈ Ω and we recall that if

we take ξi and Λ so that it cij = 0 then we have a solution of our original

problem.

Let Iε be the functional defined by

Iε(v) =
1

2

∫
Ωε

|∆v|2 − 1

p+ ε+ 1

∫
Ωε

|v|p+ε+1
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so that v = V + ϕ is a solution to our problem if and only if it is a critical

point for this functional.

Let us set κ = 8
8+ε(n−4) and consider the functions defined on Ω by

ϕ̂(ξ,Λ) (x) = ε−
κ
2ϕ
(
ε−

1
n−4 ξ,Λ

)(
ε−

1
n−4x

)
,

ψ̂ (x) = ε−
κ
2ψ
(
ε−

1
n−4x

)
,

and

Ûi(x) = ε−
κ
2 Vi

(
ε−

1
n−4x

)
.

Therefore if we set Û(x) = Û2(x) + Û1(x) and

I (ξ,Λ) = Jε

(
Û + ψ̂ + ϕ̂(ξ,Λ)

)
then

I (ξ,Λ) = ε1−κIε (V + ψ + ϕ̂) .

Lemma 5.1. u = Û + ψ̂ + ϕ̂(ξ,Λ) is a solution of the problem Pε if and

only if (ξ,Λ) is a critical point of I.

Proof. Notice that

DIε (V + ϕ)Zij =
∑
k,l

ckl

〈
ZklV

p−1
l , Zij

〉
hence using the fact that the system is almost diagonal, we get that

DIε (V + ϕ)Zij = 0

for every i, j if and only if cij = 0 for every i, j. Notice also that if we assume

that ∂
∂ξkl

I (ξ,Λ) = 0 then

∂

∂ξ′kl
Iε (V + ϕ) = 0.
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Namely if and only if

DIε(V + ϕ)

(
∂

∂ξ′kl
V +

∂

∂ξ′kl
ϕ

)
= 0

Now it is easy to see that

∂

∂ξ′kl
V = Zkl + o(1)

hence

DIε(V + ϕ) (Zkl + o(1)) = 0. (18)

Now for a given a smooth function u, we can find constants aij such that〈
u−

∑
ij

aijZij , ZklV
p−1
l

〉
= 0, for every k, l

But by construction DIε(V +ϕ)v = 0 for every v ∈ H, the space defined in

section 3. Notice that one can show that |aij | = O(‖u‖∗). Combining this

fact with (18) we get

DIε(V + ϕ) (Zkl + wo(1)) = 0,

where w is a uniformly bounded function in the space spanned by Zij , and

hence

DIε(V + ϕ)Zkl = 0,

which finishes the proof.

Proposition 5.2. We have the following expansion

εκ−1I(V + ϕ) = 2Cn + γnε+ wnεΨ (ξ,Λ) + o(ε),

where o(ε) −→ 0 as ε −→ 0 in the C1 sense, uniformly in Oδ (Ω)×
(
δ, δ−1

)2
.
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Proof. Let us show first that

I (ξ,Λ)− Jε
(
Û
)

= o(ε).

Indeed, using a Taylor expansion we have

Jε

(
Û + ψ̂

)
− Jε

(
Û + ψ̂ + ϕ̂

)
=

∫ 1

0
tD2Jε

(
Û + ψ̂ + tϕ̂

)
[ϕ̂, ϕ̂] dt

and this holds since DJε

(
Û + ψ̂ + ϕ̂

)
= 0. Therefore, we have

∫ 1

0
tD2Jε

(
Û + ψ̂ + tϕ̂

)
[ϕ̂, ϕ̂] dt = ε1−κ

∫ 1

0
tD2Iε

(
Û + ψ̂ + tϕ̂

)
[ϕ̂, ϕ̂] dt

= ε1−κ
∫ 1

0
t

[∫
Ωε

|∇ϕ|2 − (p+ ε) (V + ψ + tϕ)p+ε−1 ϕ2

]
dt

= ε1−κ
∫ 1

0
t

[∫
Ωε

(p+ ε)
[
V p+ε−1 − (V + ψ + tϕ)p+ε−1

]
ϕ2 +Nε (ϕ+ ψ)ϕ

]
dt.

But we have ‖ϕ‖∗ + ‖ψ‖∗ = O (ε) , using (16), we get∫
Ωε

Nε (ϕ+ ψ)ϕ ≤
∫

Ωε

V
p−1+β ‖Nε (ϕ+ ψ)‖∗∗ ‖ϕ‖∗ ≤ Cε

3

∫
Ωε

V
p−1+β ≤ Cε3.

Now, the remaining part can be estimated as follows∫
Ωε

[
V p+ε−1 − (V + ψ + tϕ)p+ε−1

]
ϕ2 ≤ Cε2

∫
Ωε

V
2β
[
V p+ε−1 − (V + ψ + tϕ)p+ε−1

]
≤ Cε2,

therefore

I (ξ,Λ)− Jε(Û + ψ̂) = o (ε) .

For the second stage we consider the derivative with respect to ξ of the

difference, then one gets

Dξ

[
I (ξ,Λ)− Jε(Û + ψ̂)

]
=
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ε1−κ− 1
n−4

∫ 1

0
t

[∫
Ωε

Dξ [Nε (ϕ+ ψ)ϕ] + (p+ ε)Dξ

([
V p+ε−1 − (V + ψ + tϕ)p+ε−1

]
ϕ2
)]
dt,

hence using the same argument in [10] and the rescaling for ξ, we get the

desired result.

Now we want to estimate the difference between Jε(Û + ψ̂) and Jε(Û). In

fact one has

Jε(Û + ψ̂)− Jε(Û) = ε1−κ (Iε(V + ψ)− Iε(V ))

= ε1−κ
[∫ 1

0
(1− t)

([
(p+ ε)

∫
Ωε

(
(V + tψ)p+ε−1 − V p+ε−1

)
ψ2

]
− 2

∫
Ωε

Rεψ

)
dt

]
.

By using the same estimates as above we get

Jε(Û + ψ̂)− Jε(Û) = o (ε)

Now, to finish, we need to estimate the derivative of the difference :

Dξ

[
Jε(Û + ψ̂)− Jε(Û)

]
= ε1−κ− 1

n−4Dξ′

[∫ 1

0
(1− t) ·([

(p+ ε)

∫
Ωε

(
(V + tψ)p+ε−1 − V p+ε−1

)
ψ2

]
− 2

∫
Ωε

Rεψ

)
dt

]
,

hence

Dξ

[
Jε(Û + ψ̂)− Jε(Û)

]
= o (ε)− 2ε1−κ− 1

n−4Dξ′

∫
Ωε

Rεψ.

Thus an argument similar to [11] adapted to our problem yields to the result,

that is

Dξ

[
Jε(Û + ψ̂)− Jε(Û)

]
= o(ε).

We also notice that if we set ς = 1
2 −

κ
2 then we get

Jε

(
Û
)

= Jε
(
ες (U1 + U2)

)
.
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Hence

ε−2ςJε
(
ες (U1 + U2)

)
= Jε (U1 + U2) +

1− ε
ε
2

p+ 1 + ε

∫
Ωε

(U1 + U2)p+1+ε

Now we remark that

1− ε
ε
2

p+ 1 + ε

∫
Ωε

(U1 + U2)p+1+ε =
1

p+ 1
(−ε ln (ε) + o (ε))

(∫
Ω
ε ln(U1 + U2) (U1 + U2)p+1 +

∫
Ω

(U1 + U2)p+1 + o (ε)

)
=
−2ε ln (ε)

p+ 1

∫
Rn
U
p+1

+ o (ε)

and therefore the proposition follows.

6 The exterior domain case

In this case let us consider the domain D = Rn−B(0, 1), and we recall that

the regular part of the Green’s function of the exterior of a the unit ball is

given by:

H∗ (x, y) =
an

||y| (x− y)|n−4 ,

where y = y

|y|2 is the reflection with respect to the unit ball. Hence one can

see that if

ρ∗ (x, y) = H∗ (x, x)
1
2 H∗ (y, y)

1
2 −G∗(x, y)

then

a−1
n ρ∗ (x, y) =

1(
|x|2 − 1

)n−4
2
(
|y|2 − 1

)n−4
2

+
1(

1 + |x|2 |y|2 − 2 |x| |y| cos (θ)
)n−4

2

− 1(
|x|2 + |y|2 − 2 |x| |y| cos (θ)

)n−4
2

By this formula one can see that critical points of ρ∗ (x, y) are located so

that x and y point in opposite directions, that is when sin(θ) = 0. Therefore
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we will take x = se and y = −te, where e is a unit vector and s and t are

real numbers greater than 1. Hence our function reads as

ρ̃ (s, t) = an

(
1

(t2 − 1)
n−4
2 (s2 − 1)

n−4
2

+
1

(1 + st)n−4 −
1

(s+ t)n−4

)
and it is easy to see that it has a negative absolute minimum in a point of

the form (k, k). Hence we can write

c∗ = −ρ̃ (k, k) = − min
x,y∈D

ρ∗ (x, y) (19)

and consider the set

A =
{

(x, y) ∈ D2; ρ∗ (|x| , |y|) < −r
}

where r is a small positive real number so that ρ̃ = −r is a closed curve

on which ∇ρ̃ 6= 0. Observe then that two situations might happen on ∂A:

either there exists a tangential direction τ so that ∇ρ·τ 6= 0 or x and y point

in two different directions and ∇ρ∗ (x, y) 6= 0 points in the normal direction.

Also, it is important to observe that if we consider Dµ = Rn − B (0, µ)

then Gµ (x, y) = µ4−nG∗
(
µ−1x, µ−1y

)
and hence we set Aµ = µA and that

corresponds to the set ρµ (|x| , |y|) < −µ4−nr.

For a general domain Ω = D −B(p, µ) one has

G(x, y) = Gµ (x− p, y − p) +O(1),

for (x, y) ∈ (p, p) +Aµ, and O(1) is bounded in the C1 sense independently

of µ.

7 Main Theorem

Since the function Ψ defined in section 2 is singular in the diagonal of Ω×Ω,

we replace the term G (ξ1, ξ2) by GM (ξ1, ξ2) = min (G (ξ1, ξ2) ,M) for a
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constant M > 0 to be fixed later. We will restrict our study to Ωα×Ωα×R2
+

where

Ωα = {ξ ∈ Ω; d (ξ, ∂Ω) > α}

and in fact we will restrict more our function to the set A2
µ × R2

+.

Recall that using this restriction we get that ρ < 0 and hence the principal

part of Ψ, which is a quadratic form, has a negative direction, and we will set

e (ξ1, ξ2) the vector defining it. In fact if e (ξ1, ξ2) = (e1 (ξ1, ξ2) , e2 (ξ1, ξ2)) ,

then

e (ξ1, ξ2) =

(
H (ξ1, ξ1)

1
2

H (ξ2, ξ2)
1
2 ρ (ξ1, ξ2)

,
H (ξ2, ξ2)

1
2

H (ξ1, ξ1)
1
2 ρ (ξ1, ξ2)

)
.

Hence we have

Ψ ((ξ1, ξ2) , e (ξ1, ξ2)) = −1

2
− ln (|ρ (ξ1, ξ2)|) ,

Now let k be the number defined in (19), then we set

S = S (0, µk)

and define the class of curves γ : S2×
[
s, s−1

]
×[0, 1] −→ Aµ×R2

+ defined by:

i) for (ξ1, ξ2) ∈ S2, t ∈ [0, 1], the following holds

γ (ξ1, ξ2, s, t) = (ξ1, ξ2, se (ξ1, ξ2)) ,

γ
(
ξ1, ξ2, s

−1, t
)

=
(
ξ1, ξ2, s

−1e (ξ1, ξ2)
)

ii) γ (ξ1, ξ2, t, 0) = (ξ1, ξ2, te (ξ1, ξ2)) , for all (ξ1, ξ2, t) ∈ S2 ×
[
s, s−1

]
.

Now we have the following
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Proposition 7.1. The min-max value defined by

C (Ω) = inf
γ

sup
(ξ1,ξ2,t)∈S2×[s,s−1]

Ψ (γ (ξ1, ξ2, t, 1)) ,

is a critical value of Ψ.

The proof of this proposition is similar to the one in [11], therefore it

will be omitted. The main result is then proved.

8 Appendix

Here we will give a list of estimates used in some of the proofs.

Let U (ξ,λ) (x) =
(

λ
1+λ2|x−ξ|2

)n−4
2

and for i = 1, 2 we will set U i = U (ξi,λi).

Also using the same notation as in section 1, we set Ui = PU i, ε12 =

1
λ2
λ1

+
λ1
λ2

+λ1λ2|ξ1−ξ2|2
and di = dis(ξi, ∂Ω). Here the O is for di

λi
−→ ∞ and

ε12 −→ 0.

Proposition 8.1. Let θ1 = U1 − U1, then :

i)0 ≤ θ1 ≤ U1,

ii)θ1 (x) = H (ξ1, x)λ
n−4
2

1 + f1 (x)

iii)f1 (x) = O

(
λ
n
2
1

dn−2
1

)
, ∂
∂λ1

f1 (x) = O

(
λ
n
2 +1

1

dn−2
1

)
iv) ∂

∂ξ1
f1 (x) = O

(
λ
n
2
1

dn−1
1

)
Lemma 8.2. i) ‖U1‖2 = 〈U1, U1〉 = Cn − c1H (ξ1, ξ1)λn−4

1 +O
(
λn−2
1

dn−2
1

)
ii) 〈U2, U1〉 = c1

(
ε12 −H (ξ1, ξ2)λ

n−4
2

1 λ
n−4
2

2

)
+O

(
ε
n−2
n−4

12 +
λn−2
1

dn−2
1

+
λn−2
2

dn−2
2

)
iii)
∫

Ω U
2n
n−4

1 = Cn − 2n
n−4H (ξ1, ξ1)λn−4

1 +O
(
λn−2
1

dn−2
1

)
iv)
∫

Ω U
n+4
n−4

1 U2 = 〈U2, U1〉+


O
(
ε

n
n−4

12 ln
(
ε−1

12

)
+

λn1
dn1

ln
(
d1
λ1

))
if n ≥ 8

O

(
ε12 ln

(
ε−1

12

)n−4
n λn−4

1

dn−4
1

)
if n ≤ 7

.
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Lemma 8.3. We have the following estimates on ∂
∂λU1.

i)
〈
U1,

1
λ1

∂
∂λU1

〉
= n−4

2 c1H (ξ1, ξ1)λn−4
1 +O

(
λn−2
1

dn−2
1

)
ii)
∫

Ω U
n+4
n−4

1
1
λ1

∂
∂λU1 = 2

〈
U1,

1
λ1

∂
∂λU1

〉
+O

(
λn−2
1

dn−2
1

)
iii)
〈
U2,

1
λ1

∂
∂λU1

〉
= c1

(
1
λ1

∂
∂λ1

ε12 + n−4
2 H (ξ1, ξ2)λ

n−4
2

1 λ
n−4
2

2

)
+O

(
ε
n−2
n−4

12 +
λn−2
1

dn−2
1

+
λn−2
2

dn−2
2

)

iv)
∫

Ω U
n+4
n−4

2
1
λ1

∂
∂λU1 =

〈
U2,

1
λ1

∂
∂λU1

〉
+


O
(
ε

n
n−4

12 ln
(
ε−1

12

)
+

λn1
dn1

ln
(
d1
λ1

))
if n ≥ 8

O

(
ε12 ln

(
ε−1

12

)n−4
n λn−4

1

dn−4
1

)
if n ≤ 7

v)
∫

Ω U2
1
λ1

(
∂
∂λU1

)n+4
n−4 =

〈
U2,

1
λ1

∂
∂λU1

〉
+


O
(
ε

n
n−4

12 ln
(
ε−1

12

)
+

λn1
dn1

ln
(
d1
λ1

))
if n ≥ 8

O

(
ε12 ln

(
ε−1

12

)n−4
n λn−4

1

dn−4
1

)
if n ≤ 7

Lemma 8.4. We have the following estimates on ∂
∂ξU1

i)
〈
U1,

1
λ1

∂
∂ξ1
U1

〉
= −1

2c1H (ξ1, ξ1)λn−3
1 +O

(
λn−2
1

dn−2
1

)
ii)
∫

Ω U
n+4
n−4

1
1
λ1

∂
∂ξ1
U1 = 2

〈
U1,

1
λ1

∂
∂ξ1
U1

〉
+O

(
λn−2
1

dn−2
1

)
iii)
〈
U2,

1
λ1

∂
∂ξ1
U1

〉
= c1

(
1
λ1

∂
∂ξ1
ε12 − ∂

∂ξ1
H (ξ1, ξ2)λ

n−4
2

1 λ
n−4
2

2

)
+O

(
ε
n−1
n−4

12
|ξ1−ξ2|
λ2

+
λn−2
1

dn−2
1

+
λn−2
2

dn−2
2

)

iv)
∫

Ω U
n+4
n−4

2
1
λ1

∂
∂ξ1
U1 =

〈
U2,

1
λ1

∂
∂ξ1
U1

〉
+


O
(
ε

n
n−4

12 ln
(
ε−1

12

)
+

λn1
dn1

ln
(
d1
λ1

))
if n ≥ 8

O

(
ε12 ln

(
ε−1

12

)n−4
n λn−4

1

dn−4
1

)
if n ≤ 7

v)
∫

Ω U2
1
λ1

(
∂
∂ξ1
U1

)n+4
n−4

=
〈
U2,

1
λ1

∂
∂ξ1
U1

〉
+


O
(
ε

n
n−4

12 ln
(
ε−1

12

)
+

λn1
dn1

ln
(
d1
λ1

))
if n ≥ 8

O

(
ε12 ln

(
ε−1

12

)n−4
n λn−4

1

dn−4
1

)
if n ≤ 7

The proofs of these estimates are similar to the ones in [1] and we refer

also to [5], [6] and [13] for more details.
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