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A tribute to Abbas Bahri (1955–2016)
Ahmedou Mohameden (Mathematisches Institut, Giessen, Germany), Ben Ayed Mohamed (Faculté des Sciences,
Sfax, Tunisia), Maalaoui Ali (American University of Ras Al Khaimah, Ras Al Khaimah, UAE) and
Vittorio Martino (Università di Bologna, Bologna, Italy)

The eminent mathematician Abbas
Bahri passed away on 10 January
2016 at the age of 61 years. He was
a leading figure in nonlinear anal-
ysis and conformal geometry. In-
deed, he played a fundamental role
in the understanding of the lack of
compactness arising in certain vari-
ational problems. For example, his
book Critical Points at Infinity in
Some Variational Problems exerted

a tremendous influence on researchers working in the field
of nonlinear partial differential equations involving critical
Sobolev exponents. In particular, the book included finite di-
mensional reduction for Yamabe-type problems and the re-
lated shadow flow for an appropriate pseudogradient, as well
as the accurate expansion of the Euler-Lagrange functional
and its gradient, which later became tools widely used in this
field.

Abbas Bahri was born and grew up in Tunisia where he
attended elementary school and high school. At the age of 16,
he moved to Paris, where he was admitted to the prestigious
Ecole Normale Supérieure, Rue d’Ulm at the age of 19. He
later defended a Thèse d’Etat under the direction of Professor
Haim Brezis in 1981 at the age of 26.

Abbas’ remarkable achievements have been widely recog-
nised. He was awarded the Langevin and Fermat prizes1 in
1989 for “introducing new tools in the calculus of variation”
and in 1990 he received the Board of Trustees Award for Ex-
cellence, the Rutgers University highest honour for outstand-
ing research.

Abbas Bahri’s mathematical interests were very broad,
ranging from nonlinear partial differential equations arising
from geometry and physics to systems of differential equa-
tions of celestial mechanics. However, his research focus was
mainly on fundamental problems in contact form and confor-
mal geometry. The aim of this short note is to outline some of
the milestones of Abbas’ mathematical legacy.

1 The critical points at infinity approach to
non-compact variational problems

Many partial differential equations (PDEs) enjoy a variational
structure, that is, one can see their solutions as critical points
of functionals. The space where the functionals are defined
depends on the PDEs. For example, to study the following
nonlinear PDE:

− ∆u = |u|q−2u in Ω; u = 0 on ∂Ω (with q > 2), (1)

1 Prix Fermat 1989, Annales de la faculté des sciences de Toulouse, vol.
XI, no. 2, 1990, pp. 7–8.

where Ω is a bounded subset of Rn, n ≥ 3, one can define

I(u) =
1
2

∫

Ω

|∇u|2 − 1
q

∫

Ω

|u|q, u ∈ H1
0(Ω),

where H1
0(Ω) denotes the Sobolev space (the space of the

functions u ∈ L2(Ω) with ∇u ∈ (L2(Ω))n and u = 0 on ∂Ω).
It is clear that the solutions of (1) are in a one-to-one corre-
spondence with the critical points of I.

Recall that the embedding of H1
0(Ω) into Lq(Ω) is compact

for q < 2n
n−2 and it is only continuous if q = 2n

n−2 . Hence,
the exponent q − 1 = n+2

n−2 is said to be a critical exponent
for equations of type (1). Note that, for 1 < q − 1 < n+2

n−2 ,
using the compactness of the embedding, one can show that
I has at least one critical point by maximising I on the space
Σ := {u ∈ H1

0(Ω) : ‖u‖ = 1}.
PDEs with critical nonlinearities exhibit exceptional fea-

tures such as blowups, loss of compactness, energy quan-
tisation and formation of singularities, emerging from the
critical balance between the model linear PDE and strongly
nonlinear terms. At the frontier of stability, these behaviours
present great challenges to mathematical analysis and exam-
ples of such phenomena may be found in geometry (pre-
scribed curvature problems, conformal deformation laws),
physics (mean field equations, Chern-Simons-Higgs models,
electroweak theory, Yang-Mills equation) and general relativ-
ity (quasi-local mass, static metrics). The understanding of
the nonlinear features of these equations (bubbling off phe-
nomena, existence mechanisms) is one of the main concerns
of nonlinear geometric analysis and occupied a central posi-
tion in Abbas’ research. In a recent interview (Fifth Saudi Sci-
ence Conference, An Interview with Professor Abbas Bahri,
1 Dec 2011) when asked the question: “What are the most
fascinating discoveries scientists have made in your area dur-
ing the last 20 years?” he answered laconically: “The under-
standing of non-compact phenomena.” Indeed, Abbas became
fascinated by variational problems arising in contact geome-
try at the beginning of his career and kept working on that
topic all his life. He was, in particular, motivated by the We-
instein conjecture about the existence of periodic orbits of the
Reeb vector field of a contact form. Although this problem
features a variational structure, its corresponding variational
form is neither compact nor Fredholm. It is in this framework
that Abbas developed the concept of critical points at infin-
ity [3]. These are accumulating points of non-compact orbits
of the gradient flow. In fact, he discovered that the ω-limit
set of non-compact orbits of the gradient flow behaves like a
usual critical point once a Morse reduction in the neighbour-
hood of such geometric objects is performed. In particular,
one can associate to such asymptotes a Morse index (counting
the number of decreasing directions in the normal form given
by the Morse reduction) as well as a stable and an unstable
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manifold. This strategy turns out to be very useful in han-
dling non-compactness in other variational problems (such
as Yamabe-type equations, prescribed scalar curvature equa-
tions, the n-body problem in celestial mechanics and mean
field equations).

The following short sections highlight some of Abbas
Bahri’s main contributions in this field.

The Yamabe-type problem and the Bahri-Coron topological
argument
In [13], Abbas Bahri and Jean-Michel Coron studied the fol-
lowing Yamabe-type equation on domains Ω ⊂ Rn, n ≥ 3:

− ∆u = u
n+2
n−2 , u > 0 in Ω, u = 0 on ∂Ω. (2)

This nonlinear PDE involving a critical Sobolev exponent
does not have a solution when the domain is star-shaped but
it has a radial solution on annular domains. Such behaviour
suggests that the topology of the domain should play a cru-
cial role in the condition that ensures the existence of so-
lutions. Indeed, by exploring the impact of the topology of
the domain, Bahri and Coron proved that if the group homol-
ogy Hd(Ω,Z2) is not trivial for some d ≥ 1 then the equation
(2) always has at least one solution. In proving such a result,
they discovered a topological argument, which turns out to be
very useful in the study of some other Yamabe-type problems
(such as Yamabe-type problems on manifolds with or without
boundaries [4, 12, 1], the CR−Yamabe problem [26, 27], and
mean field-type equations on unbounded domains [15]).

To explain the strategy of the proof, we need to set up the
variational framework and recall some preliminaries.

Equation (2) has a very nice variational structure. Indeed,
its solutions are in a one-to-one correspondence with the crit-
ical points of the functional

J(u) :=
1

∫

Ω
|u| 2n

n−2

,

defined on Σ+ := {u ∈ H1
0(Ω); ||u|| = 1; u ≥ 0}, where H1

0(Ω)
stands for the Sobolev space and ||.|| its norm.

Note that the Palais-Smale (PS) condition is a crucial
property to extend the standard tools of the calculus of varia-
tion. A function f is said to satisfy the PS condition in [a, b] if
each sequence (xn) such that a ≤ f (xn) ≤ b and ∇ f (xn) tends
to 0 possesses a convergent subsequence.

Although J does not satisfy the PS condition, the flow
lines of the gradient violating this condition are well under-
stood (see [30], [20]). Namely, such flow lines should enter an
ε−neighbourhood V(p, ε) of some highly concentrated bub-
bles. Moreover, the limit energy levels of non-compact ones
are given by p2/(n−2)S , where p denotes the number of bubbles
and S the Sobolev constant.

By setting

Wp :=
{

u ∈ Σ+; J(u) < (p + 1)2/(n−2)S
}

from a classical deformation lemma, it follows, under the as-
sumption that there are no critical points between the levels
p2/(n−2)S and (p + 1)2/(n−2)S , that the sublevel Wp retracts by
deformation onto Wp−1 ∪ A, where A ⊂ V(p, ε).
To study the equation above, Bahri and Coron argued as
follows. Firstly, they observed, under the assumption that
Hd(Ω,Z2) � 0, that it follows from a well known result of R.

Thom [31] that this nontrivial homology class can be realised
by a d−dimensional compact manifold without boundary V .
That is, denoting by ι : V → Ω the related embedding and
by ω the orientation class of the manifold V , we have that
0 � ι∗(ω) ∈ Hd(Ω,Z2).

Next, let

Bp(V) :=
{ p
∑

i=1

αiδai ; ai ∈ V, αi ≥ 0;
p
∑

i=1

αi = 1
}

denote the p-set of formal barycentres of V endowed with the
weak topology of measures. These are stratified sets of top
dimension dp + p − 1. Let ωp ∈ Hdp+p−1(Bp(V), Bp−1(V))
denote the top homology class of the pair (Bp(V), Bp−1(V)).

To perform their topological argument, Bahri and Coron
constructed, for a large real parameter λ, a continuous se-
quence of functions

fp(λ) : (Bp(V), Bp−1(V))→ (Wp,Wp−1).

These functions induce homeomorphisms in the homology
(

fp(λ)
)

∗ : H∗
(

Bp(V), Bp−(V)
)→ H∗(Wp,Wp−1).

Moreover, under the assumption that the functional J does not
have any critical point under the level 22/(n−2)S , we have that

(

f1(λ)
)∗ : Hd(V)→ Hd(W1)

is a homotopy equivalence. On the other hand, for large p,
all ( fp(λ))∗ are trivial in homology. Indeed, through a careful
expansion of J using the interaction terms, one can prove that
fp(λ) is homotopic to a map with its values in Wp−1.

Next, for a small number ε > 0, let q ∈ N be the smallest
integer such that

(

fq(λ)
)

∗(ωq) = 0 in Hdq+q−1(Wq,Wq−1)

and
(

fq(λ)
)

∗(ωq) � 0 in Hdq+q−1(JqS+ε,Wq−1).

It then follows, from an exact sequence argument in homol-
ogy of the triple (Wp, JpS+ε,Wp−1), that

Hdq+q(J(q+1)2/(n−2)S , Jq2/(n−2)S+ε) � 0.

Since the PS condition is satisfied in the range
(

q2/(n−2)S + ε, (q + 1)2/(n−2)S
)

for ε small,

one can derive the existence of a critical point of generalised
Morse index qd + q.

We point out that the topological argument above is of an
abstract nature; in fact, it is based on the following dynam-
ical features of the gradient in the neighbourhood at infinity
V(p, ε). Indeed, one can use the following two properties in a
crucial way.
• The unstable manifold Wu(V(p, ε)) of V(p, ε) does not in-

tersect V(m, ε) with m > p.
• The flow lines leaving V(p, ε) through the unstable man-

ifold of a critical point at infinity do not re-enter V(p, ε)
through the stable manifold of another critical point at in-
finity.

Finally, we point out that a necessary and sufficient condition
for the existence of solutions to equation (2) is still missing.
Moreover, the geometry of the domain should play an impor-
tant role in such a condition. Indeed, Wei Yue Ding [23] con-
structed solutions for (2) on a contractible domain. In order
to investigate the role of geometry, Abbas conjectured (pri-
vate communication) that the following result would be true.
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Denoting by G the Green’s function of the Laplace opera-
tor under Dirichlet boundary conditions and by H its regular
part, and setting �p(x) := �p(x1, · · · , xp) to be the least eigen-
value of the matrix M := (ai j) given by aii := H(xi, xi) and
ai j := −G(xi, x j) for i � j, one can define the set:

Ip :=
{

x = (x1, · · · , xp) ∈ Ωp; �(x1, · · · , xp) < 0
}

.

Then, the following should hold true.
If Ω is contractible but for some p ≥ 2 the set Ip is not

contractible then equation (2) has at least one solution.
The reason behind the above conjecture is that the contri-

bution of critical points at infinity to the topology of the pair

(

Jp2/(n−2)S+ε, Jp2/(n−2)S−ε)

is described by the pair (Ωp, Ip) (see [19]).

The prescribed scalar curvature problem
A natural extension of the Yamabe problem is to ask the fol-
lowing question. Given a compact closed Riemannian man-
ifold (M, g) and a smooth function K ∈ C∞(M), does there
exist a conformal metric g̃ such that the scalar curvature with
respect to g̃ is given by the function K?

Note that g̃ is a conformal metric to g if there exists a
function f such that g̃ = e f g. Setting g̃ := u

4
n−2 g, this problem

amounts to solving the following nonlinear PDE involving a
critical Sobolev exponent:

Lgu = Ku
n+2
n−2 , u > 0 in M, (3)

where Lg stands for the conformal Laplacian.
Just as in the Yamabe case, problem (3) has a variational

formulation. However, the associated Euler-Lagrange func-
tional does not satisfy the PS condition. Moreover, there are
some obstructions to the existence of solutions (see [25] and
[21]).

Using the positive mass theorem of Schoen and Yau
[28], [29], Escobar and Schoen [24] proved, for a three-
dimensional closed Riemannian manifold, that as long as the
manifold is not conformally equivalent to the three round
sphere S3, problem (3) is always solvable under the assump-
tion that K is a positive function.

In [14], Bahri and Coron, inspired by earlier work of Ab-
bas on contact form geometry [3], developed a critical points
at infinity approach for the scalar curvature problem on S3 un-
der the non-degeneracy assumption that at a critical point a of
K we have ∆K(a) � 0. Their strategy consists of studying the
ω-limit set of non-compact orbits of the gradient flow. Follow-
ing the work of Michael Struwe [30], we know that such non-
compact orbits will be trapped in an ε-neighbourhood V(p, ε)
of highly concentrated p-bubbles δai,λi . The strategy adopted
by Bahri and Coron consists of tracking down such flow lines
that remain indefinitely in V(p, ε) by showing that they de-
compose into an infinite part, which will vanish as time tends
to infinity, and a shadow flow, which is a finite dimensional
part and which splits in a canonical way into an ordinary dif-
ferential equation, whose variables are: matching parameters
αi(t), concentration points ai(t) ∈ S3 and concentration rates

λi(t). Namely, we have that, as t → +∞,

− λ̇i

λi
= A1

∆K(ai)

λ2
i K(ai)

5
4

− A2

∑

j�i

λi
∂εi j

∂λi
+ l.o.t. ,

ȧi = B1
∇K(ai)

λ2
i K(ai)

5
4

+ B2

∑

j�i

∂εi j

∂ai
+ l.o.t. ,

(4)

where Ai, Bi are positive constants and εi j :=< δi, δ j >, which
behaves like G(ai,a j)

(λiλ j)1/2 , denotes the interactions of two bubbles.
It then follows from the system of equations above that

such a flow line will exit any set V(p, ε) for p ≥ 2 since the
interaction terms εi j, which are the leading ones, would bring
the flow lines down. Hence, the only possible non-compact
flow lines are those that concentrate at single points. More-
over, analysing the above ordinary differential equation in the
set V(1, ε), one can derive that the only possibility for a flow
line to build a critical point at infinity is that ai(t) converges to
a critical point ai of K such that ∆K(ai) < 0. Conversely, any
gradient flow line, starting from a bubble δb,λ where b ∈ S3

is a critical point of K such that ∆K(b) < 0, would remain
forever in V(1, ε) for ε → 0. Hence, the only singularities of
the gradient flows are those of the above type. The index of
such a critical point at infinity is defined as the coindex of K
at the concentration point a. It follows then, from an Euler-
Poincaré-type argument, that:

∑

a∈S3;∇K(a)=0,∆K(a)<0

(−1)3−Morse(K,a) = 1.

Hence, any function violating such an equality can be re-
alised as a scalar curvature of a Riemannian metric confor-
mally equivalent to the standard metric on S3.

To study the non-compactness in the case of spheres of di-
mension n ≥ 4, Abbas introduced a family of bounded pseu-
dogradients in the neighbourhood at infinity. A vector field W
is said to be a pseudogradient for J if it satisfies the following
condition: there exists a positive constant c such that

〈∇J(u),W(u)〉 ≥ c‖∇J(u)‖2, ∀u.
This family allowed him to determine the end-points of the
flow lines and he proved that they are in a one-to-one corre-
spondence with the critical points at infinity. He then asso-
ciated to this family a topological invariant I(V) (see [11]),
a kind of degree that has to be non-zero, to ensure the ex-
istence of solutions. Such an invariant has been extended by
Ben Ayed, Chtioui and Hammami [18] and has been used to
investigate the problem of prescribed scalar curvature on high
dimensional spheres.

2 The lack of compactness and Fredholm
structure in contact form geometry

Bahri has made many contributions in the field of contact ge-
ometry, which is in some sense the counterpart of symplectic
geometry for the odd dimensional case. One can see this dual-
ity as follows. Let us consider a particle q moving on the plane
under a force field −∇V . Then, Newton’s equation reads as

mq̈ = −∇V(q) .
If we assume for simplicity that m = 1 and we set p = q̇ then
we have the system

{

q̇ = p
ṗ = −∇V(q).
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So, if we denote by H(p, q) = 1
2 |p|2 + V(q) the total energy

(kinetic and potential), the previous system reads as














q̇ = ∂H
∂p

ṗ = − ∂H
∂q .

Such a system is called Hamiltonian. Now, let us suppose
that we are looking for periodic solutions of such a system,
namely periodic orbits of the vector field

(

∂H
∂p ,−

∂H
∂q

)

. We have
two choices. Either we fix the period T , therefore working
on a manifold of dimension four and meeting the theory of
symplectic manifolds and the Arnold conjecture, or we fix the
energy level H, therefore being constrained on a manifold of
dimension three and meeting the theory of contact manifolds
and the Weinstein conjecture. The study of such problems is
variational, i.e. there exists a functional J on a suitable space
such that the critical points of J are solutions to our system.
Clearly, since we are looking for periodic orbits, the space of
variations should be in the space of loops.

This approach can be formalised for the general setting
of a compact three-dimensional manifold (M, α), where α is a
1-form on M such that α∧dα is a volume form (never vanish-
ing). Such a form has a very intrinsic vector field associated
to it, called the Reeb vector field, which we denote by ξ and
which satisfies

{

dα(ξ, ·) = 0
α(ξ) = 1.

Now, the problem turns to looking for periodic orbits of the
vector field ξ. This is equivalent to studying the critical points
of the functional J : H1(S 1; M)→ R defined by

J(x) =
∫

S 1
α(ẋ) .

Here, we denote by H1(S 1; M) the H1-loops space on M, that
is, the space of the curves x : [0, 1] → M, x(0) = x(1), that
have the regularity of the Sobolev space H1. This functional
basically measures the contribution of ξ along ẋ. Indeed, if
we assume that the manifold has a global frame of the form
(ξ, v,w), where v and w are in ker(α), then for a loop x we
have ẋ = aξ + bv + cw for some functions a, b, c, and thus
J(x) =

∫ 1
0 a(t)dt. It is important to notice that this functional

defined on H1(S 1; M) is unbounded from below and above,
since a can take any form; moreover, it is not Morse.

Bahri first focused on finding a better space of variations
for the functional J. In order to restrict the functional on a
smaller space and avoid the degeneracy, he introduced a sort
of Legendre transform similar to the classical one. Indeed,
the standard contact form α0 on S 3 is a pull-back from the
standard contact form on P(R3), i.e. the unit sphere cotangent
bundle of S 2. Therefore, it is equipped with its Liouville form:
the Legendre duality can be completed for this Liouville form.
This transform can be viewed as the data of a vector field v in
ker(α0) such that β0(·) := dα0(v, ·) is a contact form with the
same orientation as α0. This Legendre transform allows one
to move from a Hamiltonian problem on the cotangent sphere
of S 2 to a Lagrangian problem.

This duality was then extended by Bahri-Bennequin in
[10] to the more general framework of a contact form α
on a three-dimensional compact orientable manifold without
boundary M, leading to a variational problem on a space of
curves. In fact, assuming that v is a non-vanishing vector field

in ker(α), we say that the Legendre transform of α with re-
spect to v can be completed if the dual non-singular one-form
β(·) := dα(v, ·) is again a contact form on M with the same
orientation as α. In this situation, by restricting the functional
J on the subspace of the H1-loops on M:

Cβ = {x ∈ H1(S 1; M) s.t. β(ẋ) = 0; α(ẋ) = a},

where a is a positive constant, the following result by Bahri-
Bennequin holds [10]:

J is a C2 functional on Cβ whose critical points are peri-
odic orbits of ξ and they are of finite Morse index.

We notice that the curves in Cβ can be expressed in a
simple way, that is, if x ∈ Cβ then ẋ = aξ + bv, where a is
now just a constant (eventually depending on x) and therefore
J(x) = a > 0. The understanding of this variational problem,
such as the study of the existence and the multiplicity of criti-
cal points of J, is closely related to problems such as the We-
instein conjecture and the definition and well-posedness of a
contact homology. However, this variational formulation has
two main difficulties: the lack of compactness and the Fred-
holm assumption.

Non-compactness. The functional J defined on Cβ is non-
compact, in the sense that it does not satisfy the PS condition.
In fact, one can see this fact directly from the functional: if we
have a curve x ∈ Cβ with ẋ = aξ + bv then, as was mentioned
above, the functional just controls the value a of the curve but
the b-component along v is free. Therefore, it can have any
behaviour along a PS sequence.

In his works [10, 6], Bahri constructed a flow in order to
give a precise description of the violation of the PS assump-
tion. Moreover, the introduced flow has many important topo-
logical properties on the curves, such as the decreasingness
of the linking number, and it has asymptotes going to criti-
cal points at infinity. The description of the PS sequences is
made by means of curves that lie on a stratified space and that
are made of pieces of ξ and pieces of ±v (since the functional
does not catch the variation along v), in terms of conjugate
points and characteristic pieces. In order to describe this fact,
let x be a curve belonging to Cβ. Then, ẋ = aξ + bv for some
function b and positive constant a. Then, one defines the set

Γ2k =
{

γ ∈ Cβ, ab = 0
}

,

where the curve γ in Cβ is made by k pieces along ξ and k
jumps on ±v (see Figure 1 for a typical element of Γ10). This
set will be the limiting set of the flow and we can again con-
sider the functional J on it (after passing to the limiting pro-
cess). The set of variations at infinity is defined as

⋃

k≥0 Γ2k

and on this set the functional at infinity reads as

J∞(γ) =
k=∞
∑

k=0

ak.

The critical points of this functional are what Bahri called
critical points at infinity. Next, he gave an exact geometric
definition of these critical points by introducing the follow-
ing definitions. First, let φs be the transport map of v, namely
the one parameter group of diffeomorphisms generated by the
flow

d
ds
(

φs(x)
)

= vφs(x), φ0(x) = x.
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Figure 1. Typical element of Γ10

Then, one says that a v-jump between two points x0 and x1 =

x(s1), s1 � 0, is a v-jump between conjugate points if the
following holds:

(

φ∗s1
α
)

x1
= αx0 .

In other words, conjugate points are points on the same v-orbit
such that the form α is transported onto itself by the transport
map along v.

Also, a ξ-piece [x0; x1] of an orbit is characteristic if v
completes an exact number k ∈ Z of half revolutions from x0
to x1.

Now, Bahri gave the following characterisation for critical
points at infinity.

A curve in
⋃

k≥0 Γ2k is a critical point at infinity if it satis-
fies one of the following assertions:
(1) The v-jumps are between conjugate points. These critical

points are called true critical points at infinity.
(2) The ξ-pieces have characteristic length and, in addition,

the v-jumps send ker(α) to itself.
The main result of Bahri, in this setting, is the understanding
of how these critical points at infinity contribute to the change
of topology in the variational problem.

A major difference to the Yamabe-type problems is that,
in this situation, there can be characteristic pieces where a
single curve can behave as many superposed critical points at
infinity, with different indices, and they can interact [7].
Violation of Fredholm. The second difficulty that Bahri tack-
led in this variational problem was the violation of the Fred-
holm assumption [7, 17]. Let us briefly recall the definition
of a Fredholm operator and a basic example. Let X and Y be
two Banach spaces and F : X → Y be a bounded linear op-
erator. F is called Fredholm if its kernel and co-kernel are
of finite dimension and, in that case, the Fredholm index is
the difference between these two dimensions. Fredholm op-
erators are close cousins of invertible operators, in the sense
that the non-invertibility of F is mild. As an example, if we
take X = Y separable Hilbert spaces and F = Id + K, where
Id is the identity and K is a compact operator (in this case
F has index 0), then the Fredholm alternative says that the
problem F(x) = y is solvable if and only if y is orthogonal to
the kernel of F, that is, y satisfies a finite number of orthog-
onality conditions. This allows, in many cases, the reduction
from an infinite dimensional problem to a finite dimensional
one: first solving orthogonally to the kernel (since we have
invertibility) and then solving in the kernel, which is a finite
dimensional space. Now, we say that a nonlinear operator F
is Fredholm if its differential dF is Fredholm at every point.
For these operators, one has a version of the implicit function
theorem, which is needed in order to apply a Morse theory ap-

Figure 2. The functional and the v-jumps

proach to variational problems and make use of transversality,
gluing and perturbations.

In his work, Bahri found simple a criterion to check if
violation of the Fredholm property occurs or not based on
some properties of the transport map φ. The main idea comes
from the fact that the functional does not control b properly.
Therefore, it might be an infinite space of perturbations that
are invisible to the linearised operator. In fact, by looking at
the functional J in the larger space

C+β = {x ∈ H1(S 1; M) s.t. β(ẋ) = 0; α(ẋ) ≥ 0},
one can see that it remains insensitive to the introduction of a
±v piece (see Figure 2). Moreover, the modified functional is
Fredholm in the following way:

J̃(x) =
∫ 1

0
α(ẋ)(t)dt + δ log(1 +

∫ 1

0
|b(t)|dt),

since one has control of b, as shown in [7]. Now, let x be
a curve that is transverse to v and, at a point x(t0), one in-
troduces a “back and forth” v piece of length s. Let xε be
the curve obtained by introducing a small “opening” piece of
length ε between the two v pieces. Then, one has

J(xε) = J(x) − ε(αx(t0)(dφ−s(ξ)) − 1) + o(ε).

Thus, if there exists s > 0 such that α(φ−s(ξ)) > 1 then one
would have a decreasing direction from the level J(x) and one
would be able to bypass a critical point without changing the
topology, even though it has a finite Morse index, and this is
due exactly to the violation of the Fredholm condition. There-
fore, the criterion is the following.

If φ∗−s(α)(ξ) < 1, for every s � 0, then J satisfies the Fred-
holm condition.

For instance, the Fredholm assumption is violated for the
standard contact structure α0 and the first exotic structure of
Gonzalo and Varela defined on S 3 and for a family of tight
contact structures on the torus T 3.

In particular, Bahri pointed out the point to circle rela-
tions, where a circle of critical points, under the S 1-action,
can have Morse relations with a single point. The fact is
that, during the perturbation procedure, the S 1-action could
be lost. In order to explain and give some applications of
these phenomena, Bahri made explicit computations on two
main examples: the sphere equipped with its standard contact
form and with the first overtwisted contact form of Gonzalo-
Varela. In his works [5], he showed how it is possible to
overcome the Fredholm violation by carefully studying the
Fadell-Rabinowitz index of different sets bounding the critical
points. In particular, it led to another proof of the Weinstein
conjecture on the sphere.
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