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Kantorovich formulation of Optimal Transport

Given a Polish space (M,d) and a Borel cost function

c : M ×M → R ∪ {+∞},
the classic formulation of Optimal Transport for µ0, µ1 ∈ P(M), is the
minimization problem

CMon(µ0, µ1) = inf
T#µ0=µ1

∫
X

c(x, T (x))dµ0(x).

The condition T#µ0 = µ1 lack closedness with respect to the principal weak
topologies.

To avoid this problem, we introduce the more general formulation by
Kantorovich. The set of admissible transport plans is

Π(µ0, µ1) :=
{
γ ∈ P(M ×M) : π

(0)
# γ = µ0, π

(1)
# γ = µ1

}

CKan(µ0, µ1) = inf
γ∈Π(µ0,µ1)

∫
M×M

c(x, y) dγ(x, y).

We work with cost c(x, y) = d2(x, y). If M is a Riemannian manifold, the
cost is bounded from below and (lower semi)continuous, therefore for any
µ0, µ1 ∈ P(M) there exists a minimizer of CKan(µ0, µ1).

The Kantorovich cost induces the so called Wasserstein distance on the
space P2(M) of probability measures with finite 2-momentum.

We point out that if M is geodesic (such as a Riemannian or
Sub-Riemannian manifold), then P2(M) is geodesic as well. If µt is a
geodesic between µ0 and µ1 this means that√

CKan(µt, µs) = |t− s| ·
√

CKan(µ0, µ1) ∀s, t ∈ [0, 1].

See for example [2].

Benamou-Brenier formulation(s) of Optimal transport

Let µt a narrowly continuous family of probabilities, where t ∈ [0, 1], and vt
a Borel family of vector fields on M such that

∫∫
||vt||dµtdt < +∞. They

respect the Continuity Equation if

(♣)

∫∫
(∂tϕ + ⟨vt,∇ϕ⟩x) dµt(x)dt =

∫
ϕ(1, ·)dµ1 −

∫
ϕ(0, ·)dµ0

∀ϕ ∈ C∞
c ([0, 1]×M)

The Continuity Equation describes curves of measures µt that follow the
flow of vt (for example see [1]). Furthermore, it is the constraint for the
Benamou-Brenier dynamic formulation of Optimal Transport.

CBB(µ0, µ1) = inf
(♣)

∫∫
||vt||2 dµtdt.

The problems CKan and CBB are equivalent in Riemannian setting.

We want to generalize to a sub-Riemannian manifold M . As done in [4]
for a non-linear control systems in Rn, we define a relaxed version of the
Benamou-Brenier formulation. We consider the horizontal bundle
HM ⊂ TM , v must lie in HM and ∇H is the horizontal gradient.

(♠)

∫
(∂tϕ + ⟨v,∇Hϕ⟩) dη(t, v) =

∫
ϕ(1, ·)dµ1 −

∫
ϕ(0, ·)dµ0

∀ϕ ∈ C∞
c ([0, 1]×M)

We minimize among η ∈ P([0, 1]×HM) that disintegrate over [0, 1],
i.e. η is a so called Young measure (see [3]).

C⋆
BB(µ0, µ1) = inf

(♠)

∫∫
||v||2 dη(t, v).

Just relax, the solution will come

We know that CBB(µ0, µ1) ≥ C⋆
BB(µ0, µ1). Under the opportune

assumptions, by a compactness result, if C⋆
BB(µ0, µ1) < +∞, then a

minimizer η for the relaxed problem exists.

Consider π : HM → M the canonical projection. From η respecting the
modified Continuity Equation (♠), we build

µη
t := π#ηt, vηt (x) :=

∫
HxM

v dηt,x(v).

The pair (µη
t , v

η
t ) respects the (original) Continuity Equation (♣).

If η is a minimizer of C⋆
BB(µ0, µ1), by convexity we prove

∫
||vηt ||2dµ

η
t dt ≤

∫∫
||v||2 dη = C⋆

BB(µ0, µ1)

and therefore the BB and BB⋆ formulations are equivalent

In order to prove the equivalence with the Kantorovich formulation, we
consider the measurable map

ω : M ×M → Geod(M)

and the map F : (t, x, y) 7→ (t, ∂tω(x, y)) ∈ [0, 1]×HM . Then, from a
Kantorovich minimizer γ ∈ Π(µ0, µ1) we build

ηγ := F#(L ⊗ γ)

the associated measure that follows the geodesics and respects (♠).

We prove that ∫
||vt||2 dηγ =

∫
M×M

d2(x, y) dγ,

and therefore
C⋆

BB(µ0, µ1) ≤ CKan(µ0, µ1).

Equivalence result

Finally, to prove the equivalence between Kantorovich and
Benamou-Brenier, for any family of vector fields vt we consider the space of
admissible curves satisfying the following ODE,{

∂tωt(x) = vt(ωt(x)))
ω0(x) = x

Ωv := {ω : [0, 1]×M → M : horizontal curve satisfying the ODE}

Consider the map et : Ωv → M such that ω 7→ ωt. For any (µt, vt)
satisfying (♣), by a superposition principle there exists a probability
µ̃ ∈ P(Ωv) such that µt = (et)#µ̃.

If we define E : ω 7→ (ω0, ω1) ∈ M ×M , then E#µ̃ ∈ Π(µ0, µ1) and we
can prove

∫
d2(x, y) dE#µ̃ ≤

∫
||vt||2 dµtdt.

Thus CKan(µ0, µ1) ≤ CBB(µ0, µ1). We can conlude

CKan ≡ CBB ≡ C⋆
BB,

the three formulations are equivalent.

[1] L. Ambrosio and G. Crippa.

Continuity equations and ODE flows with non-smooth velocity.

Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 144(6):1191–1244, Dec. 2014.

[2] L. Ambrosio and N. Gigli.

A user’s guide to optimal transport.

In Modelling and Optimisation of Flows on Networks: Cetraro, Italy 2009, Editors: Benedetto Piccoli, Michel

Rascle, pages 1–155. Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.

[3] P. Bernard.

Young Measures, Superposition and Transport.

Indiana University Mathematics Journal, 57(1):247–275, 2008.

[4] K. Elamvazhuthi.

Benamou-Brenier Formulation of Optimal Transport for Nonlinear Control Systems on Rd, July 2024.

® http://www.dm.unibo.it/~mattia.galeotti4/ B mattia.galeotti4@unibo.it


