A Sub-Riemannian version of Benamou-Brenier theorem

Mattia Galeotti (Università di Bologna)

Joint work in progress with G. Citti (Università di Bologna) and A. Pinamonti (Università degli Studi di Trento)

Kantorovich formulation of Optimal Transport

Given a Polish space (M,d) and a Borel cost function

$$c: M \times M \to \mathbb{R} \cup \{+\infty\},$$

the classic formulation of **Optimal Transport** for $\mu_0, \mu_1 \in \mathcal{P}(M)$, is the minimization problem

$$C_{ ext{Mon}}(\mu_0,\mu_1) = \inf_{T_{\#}\mu_0 = \mu_1} \int_X c(x,T(x)) d\mu_0(x).$$

The condition $T_{\#}\mu_0=\mu_1$ lack closedness with respect to the principal weak topologies.

To avoid this problem, we introduce the more general formulation by Kantorovich. The set of admissible transport plans is

$$\Pi(\mu_0, \mu_1) := \left\{ \gamma \in \mathcal{P}(M \times M) : \ \pi_{\#}^{(0)} \gamma = \mu_0, \ \pi_{\#}^{(1)} \gamma = \mu_1 \right\}$$

$$C_{\mathrm{Kan}}(\mu_0, \mu_1) = \inf_{\gamma \in \Pi(\mu_0, \mu_1)} \int_{M \times M} c(x, y) \, d\gamma(x, y).$$

We work with cost $c(x,y) = d^2(x,y)$. If M is a Riemannian manifold, the cost is bounded from below and (lower semi)continuous, therefore for any $\mu_0, \mu_1 \in \mathcal{P}(M)$ there exists a minimizer of $C_{\text{Kan}}(\mu_0, \mu_1)$.

The Kantorovich cost induces the so called Wasserstein distance on the space $\mathcal{P}_2(M)$ of probability measures with finite 2-momentum.

We point out that if M is geodesic (such as a Riemannian or Sub-Riemannian manifold), then $\mathcal{P}_2(M)$ is geodesic as well. If μ_t is a geodesic between μ_0 and μ_1 this means that

$$\sqrt{C_{\text{Kan}}(\mu_t, \mu_s)} = |t - s| \cdot \sqrt{C_{\text{Kan}}(\mu_0, \mu_1)} \quad \forall s, t \in [0, 1].$$

See for example [2].

Just relax, the solution will come

We know that $C_{\rm BB}(\mu_0,\mu_1) \geq C_{\rm BB}^{\star}(\mu_0,\mu_1)$. Under the opportune assumptions, by a compactness result, if $C_{\rm BB}^{\star}(\mu_0,\mu_1)<+\infty$, then a minimizer η for the relaxed problem exists.

Consider $\pi\colon HM\to M$ the canonical projection. From η respecting the modified Continuity Equation (\spadesuit) , we build

$$\mu_t^{\eta} := \pi_{\#} \eta_t, \quad v_t^{\eta}(x) := \int_{H_x M} v \, d\eta_{t,x}(v).$$

The pair $(\mu_t^{\eta}, v_t^{\eta})$ respects the (original) Continuity Equation (.).

If η is a minimizer of $C^{\star}_{\mathrm{BB}}(\mu_0,\mu_1)$, by convexity we prove

$$\int ||v_t^{\eta}||^2 d\mu_t^{\eta} dt \le \iint ||v||^2 d\eta = C_{\text{BB}}^{\star}(\mu_0, \mu_1)$$

and therefore the BB and BB^* formulations are equivalent

In order to prove the equivalence with the Kantorovich formulation, we consider the measurable map

$$\omega \colon M \times M \to \mathsf{Geod}(M)$$

and the map $F:(t,x,y)\mapsto (t,\partial_t\omega(x,y))\in [0,1]\times HM$. Then, from a Kantorovich minimizer $\gamma \in \Pi(\mu_0, \mu_1)$ we build

$$\eta^{\gamma} := F_{\#}(\mathcal{L} \otimes \gamma)$$

the associated measure that follows the geodesics and respects (\spadesuit) .

We prove that

$$\int ||v_t||^2 d\eta^{\gamma} = \int_{M \times M} d^2(x, y) d\gamma,$$

and therefore

$$C_{\mathrm{BB}}^{\star}(\mu_0, \mu_1) \leq C_{\mathrm{Kan}}(\mu_0, \mu_1).$$

Benamou-Brenier formulation(s) of Optimal transport

Let μ_t a narrowly continuous family of probabilities, where $t \in [0, 1]$, and v_t a Borel family of vector fields on M such that $\iint ||v_t|| d\mu_t dt < +\infty$. They respect the Continuity Equation if

$$(\clubsuit) \qquad \iint (\partial_t \phi + \langle v_t, \nabla \phi \rangle_x) \, d\mu_t(x) dt = \int \phi(1, \cdot) d\mu_1 - \int \phi(0, \cdot) d\mu_0$$

$$\forall \phi \in C_c^{\infty}([0, 1] \times M)$$

The Continuity Equation describes curves of measures μ_t that **follow the flow** of v_t (for example see [1]). Furthermore, it is the constraint for the Benamou-Brenier dynamic formulation of Optimal Transport.

$$C_{\mathrm{BB}}(\mu_0,\mu_1)=\inf_{igoplus b}\int\int ||v_t||^2\,d\mu_tdt.$$

The problems C_{Kan} and C_{BB} are equivalent in Riemannian setting.

We want to generalize to a **sub-Riemannian** manifold M. As done in [4] for a non-linear control systems in \mathbb{R}^n , we define a **relaxed version of the** Benamou-Brenier formulation. We consider the horizontal bundle $HM \subset TM$, v must lie in HM and ∇_H is the horizontal gradient.

$$\int (\partial_t \phi + \langle v, \nabla_H \phi \rangle) \, d\eta(t, v) = \int \phi(1, \cdot) d\mu_1 - \int \phi(0, \cdot) d\mu_0$$

$$\forall \phi \in C_c^{\infty}([0, 1] \times M)$$

We minimize among $\eta \in \mathcal{P}([0,1] \times HM)$ that disintegrate over [0,1], i.e. η is a so called **Young measure** (see [3]).

$$C_{\mathrm{BB}}^{\star}(\mu_0,\mu_1)=\inf_{igoplus_0}\iint ||v||^2\,d\eta(t,v).$$

Equivalence result

Finally, to prove the equivalence between Kantorovich and Benamou-Brenier, for any family of vector fields v_t we consider the space of admissible curves satisfying the following ODE,

$$\begin{cases} \partial_t \omega_t(x) = v_t(\omega_t(x)) \\ \omega_0(x) = x \end{cases}$$

$$\Omega_v := \{\omega \colon [0,1] \times M \to M : \text{ horizontal curve satisfying the ODE} \}$$

Consider the map $e_t \colon \Omega_v \to M$ such that $\omega \mapsto \omega_t$. For any (μ_t, v_t) satisfying (♣), by a superposition principle there exists a probability $\widetilde{\mu} \in \mathcal{P}(\Omega_v)$ such that $\mu_t = (e_t)_{\#}\widetilde{\mu}$.

If we define $E : \omega \mapsto (\omega_0, \omega_1) \in M \times M$, then $E_\# \widetilde{\mu} \in \Pi(\mu_0, \mu_1)$ and we can prove

$$\int d^2(x,y) dE_{\#}\widetilde{\mu} \le \int ||v_t||^2 d\mu_t dt.$$

Thus $C_{ ext{Kan}}(\mu_0,\mu_1) \stackrel{\circ}{\leq} C_{ ext{BB}}(\mu_0,\mu_1).$ We can conclude $C_{ ext{Kan}} \equiv C_{ ext{BB}} \equiv C_{ ext{BB}}^\star,$

$$C_{\mathrm{Kan}} \equiv C_{\mathrm{BB}} \equiv C_{\mathrm{BB}}^{\star}$$

the three formulations are equivalent.

[1] L. Ambrosio and G. Crippa.

Continuity equations and ODE flows with non-smooth velocity.

Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 144(6):1191–1244, Dec. 2014.

[2] L. Ambrosio and N. Gigli.

A user's guide to optimal transport.

In Modelling and Optimisation of Flows on Networks: Cetraro, Italy 2009, Editors: Benedetto Piccoli, Michel Rascle, pages 1–155. Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.

[3] P. Bernard.

Young Measures, Superposition and Transport.

Indiana University Mathematics Journal, 57(1):247–275, 2008.

[4] K. Elamvazhuthi.

Benamou-Brenier Formulation of Optimal Transport for Nonlinear Control Systems on Rd, July 2024.