The visual V_1 cortex action as a heterogeneous differential operator **Mattia Galeotti**¹, Giovanna Citti¹, Alessandro Sarti².

¹Università di Bologna, ²EHESS

Visual stimulus and perceived image

The **visual stimulus** is a function defined on the retinal plan

 $I \colon \mathbb{R}^2 o [0,1].$

The the cortical **receptive profiles** (RPs) act on the visual stimulus Cortical output Retinal input $\dot{O}(x,y) = RP(x,y) \star I(x,y)$ Receptive profile filter

The RPs are modeled by $\mathcal{L}G$ where \mathcal{L} is a differential operator and G is a Gaussian filter. Therefore if I_{σ} is the **smoothing** of the input,

 $O = \mathcal{L}G \star I = \mathcal{L}(G \star I) = \mathcal{L}I_{\sigma}$

Therefore cortical RPs, changing from point to point, act as a differential

Receptive profile and cortical connectivity action

Examples of the action of receptive profils

Mexican hat

 $RP_h = \Delta G(x, y)$

Primate simple cells

 $X_{ heta} = \cos(heta)\partial_x + \sin(heta)\partial_y$ $RP_s = X_{\theta}^* X_{\theta} G(x,y)$

where $heta \colon \mathbb{R}^2 o [0,\pi]$ is an orientation map depending on the case study and the model.

In our works, *e.g.* [1], we analyze the transform of the visual stimulus performed by the RPs on V_1 in order to reconstruct the image perceived by the subject. We consider the

operator on the visual stimulus [3]

 $I\mapsto \mathcal{L}I_{\sigma}.$

Cortical connectivity inverts the problem and recovers an image called perceived image. This consists in solving the inverse problem

 $\mathcal{L}u = \mathcal{L}I_{\sigma}.$

In the **retinex** model, $\mathcal{L} = \Delta$ the laplacian operator [5]. Recovering the perceived image is a Poisson's problem $\Delta u = \Delta I_{\sigma}$. In particular we recover (the smoothed version of) I up to an harmonic function.

Heterogeneous Poisson's operator

 $\mathcal{L}_\Lambda = a_1 \Delta + a_2 X_ heta^* X_ heta + a_3 (X_ heta^2)^* X_ heta^2.$

It depends on the coefficient and the orientation map θ

The solution of the steepest descent

 $\partial_t u = \mathcal{L}_\Lambda I_\sigma - \mathcal{L}_\Lambda u$

exists (under opportune regularity conditions) and it weakly converges to a solution of the heterogeneous Poisson's equation $\mathcal{L}_{\Lambda} u = \mathcal{L}_{\Lambda} I_{\sigma}$.

Image reconstruction

H-convergence

Consider a series of discrete Dirichlet problems $\mathcal{L}^arepsilon u^arepsilon = \sum X^arepsilon_{-z}(p^arepsilon_z X^arepsilon_z u^arepsilon) = f^arepsilon$

Figure 1:In this case the operator is the classic Laplacian Δ . (Left) Original image by Piero Della Francesca (Center) The RPs are visualized in a subsampled set of points. (Right) Reconstructed image using the steepest descent method. The slight change in color is due to the modulation effect of the cortical action; in fact the input is reconstructed up to an harmonic function. Stopping criterion depends on the error of convergence $dt = 0.1, \ arepsilon_c = 10^{-4}$

Figure 2:In this case the operator is heterogeneous of second or fourth order, meaning that $\mathcal{L}_{\Lambda} = a_2 X_{ heta}^* X_{ heta} + a_3 (X_{ heta}^2)^* X_{ heta}^2$ with $\mathbb{P}(a_i = 1) = 1/2$ for i = 1, 2 and orientation given by the map $heta(x,y) = rg \sum_{k=1}^N c_k e^{2\pi i (x \cos(2\pi k/N) + y \sin(2\pi k/N))}$ also called *pinwheel* distribution, see [6].

Stopping criterion depends on the error of convergence $dt=0.001,~arepsilon_c=10^{-4}$

and a classic Dirichlet problem

$$\mathcal{L}^0 u^0 = \sum_{z \in \Lambda} - \partial_z (p_z^0 \partial_z u^0) = f^0.$$

Where $\Lambda \subset \mathbb{Z}^d$ is a finite set symmetric with respect to 0. The sequence $\mathcal{L}^{\varepsilon}$ *H*-converges to \mathcal{L}^{0} , $\mathcal{L}^{\varepsilon} \xrightarrow{H} \mathcal{L}^{0}$, if for any sequence $f^arepsilon o f^0$ in $W^{-1,2}(Q)$, the $u^arepsilon$ weakly converge to u^0 in $W^{-1,2}(Q_arepsilon)$ and analogously for their first order derivatives in $L^2(Q_{arepsilon})$. The notion of H-convergence and the associated homogenization techniques are an important tool, see [4]

Main result

If the functions
$$p_{z}^{arepsilon}$$
 satisfy

$$egin{aligned} &\sum_z p_z^arepsilon(x) = 1 \; orall x; \ &\exists \delta > 0 \; ext{such that} \; p_z^arepsilon \geq \delta \; orall z \in \Lambda; \ &p_z^arepsilon(x) = p_{-z}^arepsilon(x+arepsilon z) \; orall z \in \Lambda, \; orall x. \end{aligned}$$

then a.s.

$$\mathcal{L}^arepsilon \xrightarrow{H} p^0 \cdot \Delta,$$

a multiple of the Laplace operator with $p^0 \in \mathbb{R}$.

Figure 3: Example with a test image from [2]. (Left Left): Original image. (Center Left): Our "cortical" transform. (Centee Right and Right Right): The retinex algorithm proposed in [2] with different choice of the parameters.

[1] M. Galeotti, G. Citti, and A. Sarti. Differential operators heterogenous in orientation and scale in the v 1 cortex.

In International Conference on Geometric Science of Information, pages 465–473. Springer, 2023.

- [2] R. Kimmel, M. Elad, D. Shaked, R. Keshet, and I. Sobel. A variational framework for retinex. International Journal of computer vision, 52:7–23, 2003.
- [3] J. J. Koenderink and A. J. van Doorn. Representation of local geometry in the visual system. *Biological cybernetics*, 55(6):367–375, 1987.
- [4] S. Kozlov. Averaging of difference schemes. Mathematics of the USSR-Sbornik, 57(2):351, 1987.
- [5] N. Limare, A. B. Petro, C. Sbert, and J.-M. Morel. Retinex poisson equation: a model for color perception.

Image Processing On Line, 1:39–50, 2011.

[6] J. Petitot. The neurogeometry of pinwheels as a sub-riemannian contact structure. Journal of physiology, Paris, 97:265–309, 03 2003.