- 1. Semplificare la seguente espressione (scrivendo tutti i passaggi): $\frac{(x-1)^2\cos(x+1)}{x+1}.$
- 2. Calcolare le derivate di:
 - a) $\log(\sqrt{x})$ b) $(2x)^{3/4}$...
- 3. Data la funzione: $f(x) = \log(\frac{1}{x})$; and the same in the sam
 - determinare il dominio di f;
 - trovare i limiti agli estremi ed eventuali asintoti;
 - determinare crescenza e decrescenza e punti di massimo e minimo (se esistono);
 - determinare concavità e convessità e punti di flesso (se esistono);
 - disegnare il grafico di f
- 4. Disegnare (senza eseguire lo studio di funzione) il grafico di $f(x) = \frac{1}{x-1}$.
- 5. Calcolare l'area della regione del piano limitata dal grafico della funzione $f(x) = \frac{1}{x-1} \text{ e dalle rette } x = 2, x = 3.$
- 6. Data la funzione sinusoidale $y = A + B \sin(Cx + D)$, determinare i valori di A, B, C, D in modo tale che il periodo sia $\frac{5}{3}\pi$, il valore massimo della funzione sia 10, ottenuto per $x = \pi$, e il valore minimo sia y = 0.
- 7. In una popolazione di studenti, il voto ad un certo esame è distribuito normalmente con media $\mu = 20$ e deviazione standard $\sigma = 8$.
 - a) Quale è la probabilità che, scelto a caso uno studente nella popolazione; il suo voto all'esame sia maggiore o uguale a 24.
 - b) Quale è la probabilità che, scelti a case 4 studenti nella popolazione, esattamente 2 abbiano un voto maggiore o ugale a 24?
 - c) Quale voto minimo dobbiamo stabilire per il superamento dell'esame, se vogliamo che ad ogni appello sia promosso il 40% degli studenti.
- 8. Un test diagnostico T per una certa malattia ha specificità = 84% e sensibilità = 70%. Sapendo che la malattia ha prevalenza = 4%, calcolare la probabilità che un soggetto positivo al test sia malato.

1. Semplificare la seguente espressione (scrivendo tutti i passaggi): $(x + \sqrt{2})^2 + 1$

$$\frac{(x+\sqrt{2})^2+1}{x+\sqrt{2}}(x^2-2).$$

2. Calcolare le derivate di:

a)
$$y = \frac{1}{\log(2x)}$$
 b) $y = \frac{\sin(2x+1)}{x}$.

- 3. Data la funzione: $f(x) = \log(\sqrt{x} \sqrt{2})$,
 - determinare il dominio di f;
 - trovare i limiti agli estremi ed eventuali asintoti;
 - determinare crescenza e decrescenza e punti di massimo e minimo (se esistono);
 - disegnare il grafico di f;
 - scrivere l'equazione della tangente al grafico nel punto di ascissa x=3.
- 4. Disegnare (senza eseguire lo studio di funzione) il grafico di: $f(x) = |\sin(x \pi/2)|$ per $x \ge 0$.
- 5. Calcolare l'area della regione del piano limitata dal grafico della funzione $f(x) = \sqrt{x+4}$ e dagli assi $x \in y$.
- 6. Data la funzione sinusoidale $y = A + B\sin(Cx + D)$, determinare i valori di A, B, C, D in modo tale che il periodo sia 12/5, il valore massimo della funzione sia $y = \pi$, ottenuto per x = 1, e il valore minimo sia y = -1.
- 7. In una popolazione una certa caratteristica A si presenta con probabilità pari al 15%.
 - a) Quale è la probabilità che, scelti a caso 3 individui nella popolazione, esattamente 2 di questi non abbiano la proprietà A?
 - b) Quale è la probabilità che, scelti a caso 3 individui nella popolazione, $almeno\ 2$ abbiano $A\ ?$
 - c) Supponiamo ora di scegliere 500 individui nella popolazione. Quale è la probabilità che almeno 79 abbiano la proprietà A?
- 8. Un test diagnostico T per una certa malattia ha specificità = 95% e sensibilità = 90%. Sapendo che la malattia ha prevalenza = 6%, calcolare la probabilità che un soggetto positivo al test sia malato.

- 1. Semplificare la seguente espressione (scrivendo tutti i passaggi): $\log_{10}(200^{(x^2+1)})$.
- 2. Calcolare le derivate di:

a)
$$e^{\sqrt{x}}$$
 b) $x^{-4/3}$.

- 3. Data la funzione: $f(x) = \frac{x^2 + x + 1}{x 1}$,
 - determinare il dominio di f;
 - trovare i limiti agli estremi ed eventuali asintoti;
 - determinare crescenza e decrescenza e punti di massimo e minimo (se esistono);
 - determinare concavità e convessità e punti di flesso (se esistono);
 - disegnare il grafico di f;
- 4. Disegnare (senza eseguire lo studio di funzione) il grafico di: $f(x) = \frac{1}{x-1} + 1.$
- 5. Calcolare l'area della regione del piano limitata dal grafico della funzione $f(x) = \frac{1}{x-1} + 1$ e dalle rette x = 0, x = 1/2.
- 6. Data la funzione sinusoidale $y = A + B \sin(Cx + D)$, determinare i valori di A, B, C, D in modo tale che il periodo sia 2, il valore massimo della funzione sia 100, ottenuto per $x = \pi/2$, e il valore minimo sia y = 10.
- 7. Nella produzione giornaliera di un certo tipo di pillole vitaminiche, il contenuto di principio attivo è distribuito normalmente con media $\mu=200$ mg e deviazione standard $\sigma=12$ mg.
 - a) Quale è la probabilità che il contenuto di principio attivo di una pillola sia maggiore o uguale a 220mg?
 - b) Quale è la probabilità che il contenuto di principio attivo di una pillola sia compreso tra 180 e 220mg?
 - c) Consideriamo un lotto di 500 pillole nella produzione giornaliera. Quale è la probabilità che almeno 24 di queste contengano un quantitativo di principio attivo maggiore o uguale a 220mg?
- 8. Un test diagnostico T per una certa malattia ha specificità = 91% e sensibilità = 67%. Sapendo che la malattia ha prevalenza = 7%, calcolare la probabilità che un soggetto negativo al test sia sano.

1. Semplificare la seguente espressione (scrivendo tutti i passaggi):

$$\frac{\log \sqrt[3]{e^{-x}}}{x}.$$

2. Stabilire quale tra le due grandezze seguenti è più piccola (usare la notazione scientifica):

$$0,01 \times 10^{5} \text{ mg},$$

$$0.016 \times 10^2$$
 g.

3. Calcolare le derivate di:

a)
$$y = \frac{\log(x-1)}{x-1}$$
, b) $y = \cos\left(\frac{x}{x-1}\right)$.

- 4. Studiare il grafico della funzione $f(x) = \frac{x-2}{x^2+1}$.
- 5. a) Calcolare l'area della regione del piano compresa tra l'asse delle x, l'asse delle y e il grafico della funzione $y=x^3-1$.
 - b) Calcolare: $\int \sqrt{2x-1} \, dx$.
- 6. In una popolazione sono presenti due malattie, che indichiamo con A e B. La probabilità che un soggetto sia affetto dalla malattia A è pari allo 0,2%. La probabilità che sia affetto da entrambe le malattie è dello 0,07%, mentre la probabilità che non sia affetto da nessuna delle due è il 97%.
 - a) Quale è la probabilità (condizionata) che un soggetto sia affetto dalla malattia B sapendo che è affetto dalla A ?
 - b) Quale è la probabilità che un soggetto sia affetto da una sola delle due malattie ?
 - c) Quale è la probabilità che un soggetto sia affetto da almeno una delle due malattie ?

(Suggerimento: costruire per prima cosa il grafo ad albero.)

7. In una popolazione, l'età è distribuita normalmente con media 21, 4 anni e deviazione standard 2, 3 anni. Quale percentuale di individui possiamo aspettarci che abbia età maggiore di 22 anni ?