


The Journal of Geometric Analysis
Volume 14, Number 2, 2004

The Levi Monge–Ampère Equation:
Smooth Regularity of Strictly Levi Convex

Solutions
By Annamaria Montanari and Francesca Lascialfari

ABSTRACT. We prove smoothness of strictly Levi convex solutions to the Levi equation in several complex
variables. This equation is fully non linear and naturally arises in the study of real hypersurfaces in C

n+1,
for n ≥ 2. For a particular choice of the right-hand side, our equation has the meaning of total Levi
curvature of a real hypersurface C

n+1 and it is the analogous of the equation with prescribed Gauss
curvature for the complex structure. However, it is degenerate elliptic also if restricted to strictly Levi
convex functions. This basic failure does not allow us to use elliptic techniques such in the classical real
and complex Monge–Ampère equations. By taking into account the natural geometry of the problem we
prove that first order intrinsic derivatives of strictly Levi convex solutions satisfy a good equation. The
smoothness of solutions is then achieved by mean of a bootstrap argument in tangent directions to the
hypersurface.

1. Introduction

Let M = {z : ρ(z) = 0} be a real hypersurface in C
n+1 of class C2,α, 0 < α < 1. Let us

denote by D the open set

D := {
z ∈ C

n+1 : ρ(z) < 0
}
.

By following a suggestion implicitly contained in a article by Bedford and Gaveau [1], we define
the total Levi curvature of M at a point z ∈ M as

kM(z) = −|∂ρ|−n−2 det




0 ∂1ρ · · · ∂n+1ρ

∂1ρ ∂11ρ · · · ∂1n+1ρ
...

...
. . .

...

∂n+1ρ ∂n+11ρ · · · ∂n+1n+1ρ


 . (1.1)
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In (1.1), ∂j , ∂j̄ , ∂lj̄ denote the derivatives ∂
∂zj
, ∂
∂z̄j
, ∂2

∂zl∂z̄j
, respectively, ∂ρ = (∂1ρ, . . . , ∂n+1ρ)

and the derivatives are computed at z. The total Levi curvature is independent of the defining
function ρ and can be considered analogous to the Gauss curvature for the classical Monge–
Ampère equation (see [16]). For example, ifM is the sphere of radius R with center at zero, then
we can choose its defining function as ρ = |z1|2 + · · · + |zn+1|2 − R2 and an easy calculation
gets k ≡ R−n.

The aim of this article is to show the following theorem.

Theorem 1.1. If D is a strictly pseudoconvex domain such that

z �−→ kM(z)

is of class C∞, then M is a real submanifold of C
n+1 of class C∞.

We recall that a domain {ρ < 0} is strictly pseudoconvex if the Levi form ρ is positive
definite on the boundary.

This problem is of local nature and leads to the study of the C∞ regularity of classical
solutions to a fully nonlinear PDE of subelliptic type, in a sense that will be clear below.

In order to explain our problem, we introduce some notations of the theory of several complex
variables. Denote by T C

0 the complex tangent hyperplane to M at z ∈ M , and define the Levi
form L(ρ) as the restriction to T C

0 of the Hermitian form related to the complex Hessian matrix
of ρ

HessC ρ =
(

∂2ρ

∂zl∂zp

)n+1

l,p=1
.

The Levi form naturally arises in the study of envelopes of holomorphy in the theory of holomor-
phic functions in C

n+1 (see [13, 17, 19, 23] for details on this matter). It is a standard fact that
the Levi form is the biholomorphic invariant part of the real Hessian of the defining function; one
way to derive it is to seek for a biholomorphic invariant analog of Euclidean convexity (see for
example, [19]). Since L(ρ) is obtained from part of the second fundamental form of M , it is not
unreasonable that it will have some properties similar to curvatures. Bedford and Gaveau were
the first to remark this, and in [1] they bounded in term of the Levi form the domain over which
M can be defined as a non parametric surface.

Since our result is local, we can assume for example ∂zn+1ρ �= 0 in a neighborhood of z ∈ M
and choose U = {hl, l = 1, . . . , n} a complex basis of T C

0

hl = el − ∂zl ρ

∂zn+1ρ
en+1 ,

with (el)l=1,...,n+1 the canonical basis of C
n+1. L(ρ) is a Hermitian form in n variables whose

coefficients are

Alp(ρ) = 〈(
HessC ρ

)
hl, hp

〉
, ∀hl, hp ∈ U .

By our choice of hl ,

Alp(ρ) = ∂lp̄ρ − ρlρn+1

|ρn+1|2 ∂n+1p̄ρ − ρn+1ρp̄

|ρn+1|2 ∂ln+1ρ + ρlρp̄

|ρn+1|2 ∂n+1n+1ρ , (1.2)

where subscripts denote partial derivatives.
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Introduce real coordinates zl = xl + iyl for every l = 1, . . . , n+ 1. Since we have assumed
∂zn+1ρ �= 0 at z ∈ M , it is not restrictive to take ∂yn+1ρ �= 0. With this convention, there is a
neighborhoodU of z such thatM ∩U is the graph of aC2 function −u : � → R, with� an open
bounded subset in R

2n+1. Then we can choose the defining function of M as ρ = 4(u+ yn+1),
M = {yn+1 = −u(x1, y1, . . . , xn, yn, xn+1)}. The coefficients Alp(u) of the Levi form L(u) are
quasilinear partial differential operators. Precisely, the real part and the imaginary part of Alp(u)
are:

Re
(
Alp̄(u)

) =
(
∂xlxpu+ ∂ylypu+ al∂xpxn+1u+ ap∂xlxn+1u

+ bl∂ypxn+1u+ bp∂ylxn+1u+ (
alap + blbp

)
∂2
xn+1

u
)

Im
(
Alp̄(u)

) =
(
∂xlypu− ∂xpyl u− ap∂ylxn+1u+ al∂ypxn+1u

+ bp∂xlxn+1u− bl∂xpxn+1u+ (
bpal − blap

)
∂2
xn+1

u
)

(1.3)

where

al = −∂yl u− ∂xl u ∂xn+1u

1 + (
∂xn+1u

)2 , bl = ∂xl u− ∂yl u ∂xn+1u

1 + (
∂xn+1u

)2 . (1.4)

In particular, for every l = 1, . . . , n, the diagonal coefficient All(u) is a degenerate elliptic
second-order operator, whose characteristic form

ξ = (
ξ1, . . . , ξ2n+1

) −→ (
ξ2l−1 + alξ2n+1

)2 + (
ξ2l + blξ2n+1

)2
,

is non negative definite for every ξ ∈ R
2n+1, but has 2n− 1 eigenvalues identically zero.

Define the Levi Monge–Ampère operator as

LMA(u) = det
(
Alp(u)

)
. (1.5)

Definition 1.2. We say that a function u ∈ C2(�) is Levi convex (strictly Levi convex) at ξ0 if
L(u)(ξ0) ≥ 0 (> 0) and Levi convex (strictly Levi convex) in � if L(u)(ξ) ≥ 0 (> 0) for every
ξ ∈ �.

Our main theorem, first announced in [20], is the following.

Theorem 1.3. If u ∈ C2,α(�) is a strictly Levi convex solution to the Levi Monge–Ampère
equation

LMA(u) = q(·, u,Du) (1.6)

in an open set � ⊂ R
2n+1 and q ∈ C∞(�× R × R

2n+1) is positive, then u ∈ C∞(�).

Here we have denoted by Cm,α the ordinary Hölder space with respect to the Euclidean
metric and by Du the Euclidean gradient of u in R

2n+1.

If in (1.6) we choose

q(·, u,Du) = 2nk(·,−u)
(
1 + |Du|2) n+2

2

1 + (
∂xn+1u

)2 , (1.7)
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then k is the total Levi curvature of M defined in (1.1). Hence, Theorem 1.1 follows from
Theorem 1.3.

Since the Levi Monge–Ampère equation presents formal similarities with the real and com-
plex Monge–Ampère equations, which are elliptic PDE’s if evaluated on strictly convex and
plurisubharmonic functions, respectively (see [16, 2]), we would like to briefly recall how the
smoothness follows from the classical Schauder theory for the real Monge–Ampère equation.
The real Monge–Ampère equation in a domain� ⊂ R

n is of the form det(D2u) = ψ(x, u,Du).
If u ∈ C2,α(�) is a strictly convex solution to this equation, then the linearized operator L (at
u) is elliptic with Cα coefficients, and Du satisfies a linear uniformly elliptic equation of the
form L(Du) = f ∈ Cα(�). By the Schauder theory, Du ∈ C2,α(�). Repeating this one
proves u ∈ C∞(�). In our case it is not possible to argue in the same way, because the Levi
Monge–Ampère operator LMA(u) is not elliptic at any point, also when restricted to the class of
strictly Levi convex functions. Indeed, as we prove in Lemma 2.1, if we call D2u the Euclidean
Hessian matrix of u, then by (1.3) there exists a smooth function F = F(p, r), with p = Du and
r = D2u, such that

LMA(u) = F
(
Du,D2u

)
and

∂F

∂rij

(
Du,D2u

) ≥ 0 .

Moreover, in Lemma 2.1 we prove that the minimum eigenvalue of the real matrix
(
∂F
∂rij

)2n+1
i,j=1 is

identically zero. Hence, we are forced to develop a new technique, which takes into account the
CR structure of the hypersurface M .

The analogy of the prescribed mean curvature equation for a real hypersurface in C
n+1 has

been studied in [11], where smooth regularity of classical solutions is proved. In the case n = 1,
the operatorLMA(u) defined in (1.5) coincides with the coefficientA1,1̄(u) of the Levi formL(u)

and Equation (1.6) becomes a quasilinear PDE (see for instance, [27]). Regularity properties of
its solutions have been studied in [4]–[12], [27, 28]. Starting from a previous weak existence
result [27] by Slodkowski and Tomassini, in [7, Corollary 1.1] Citti, Lanconelli, and the first
author proved the existence of a smooth solution to the Dirichlet problem

 A1,1̄(u) = 2k(·,−u)
(

1+|Du|2
) 3

2

1+
(
∂xn+1u

)2 in �

u = g on ∂�

where g ∈ C2,α(∂�), k ∈ C∞(�× R) and k �= 0. Here � is a bounded open set in R
2n+1 with

smooth boundary and which satisfies the hypotheses of [27, Theorem 4].

For the Levi Monge–Ampère equation the technique used in [7] seems to fail, because of
the fully nonlinearity of the equation. Moreover, for the Levi Monge–Ampère equation with the
right-hand side in (1.7), the existence of viscosity solutions is also an open problem. A first result
in this direction is due to Slodkowski and Tomassini, who in [26] generalized the Definition 1.2 to
continuous functions and proved the existence of a viscosity solution u ∈ Lip(�̄) to the Dirichlet
problem



LMA(u) = k(·,−u)(1 + |Du|2) 3n

2 in �

u = g on ∂�

u is Levi convex

(1.8)
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where g ∈ C(∂�), k ∈ C(�×R) and k ≥ 0. Here� is a bounded open set in R
2n+1 with smooth

boundary and which satisfies the hypotheses of [26, Theorem 2.4]. Even if the right-hand side in
the PDE in (1.8) has not the meaning of total Levi curvature, further regularity of its Lipschitz
continuous viscosity solution is another very interesting open problem.

In order to present our technique we introduce here some notations. Let u ∈ C2,α(�) be a
strictly Levi convex solution to (1.6) and define for every l = 1, . . . , n the first order vector fields

Xl = ∂xl + al∂xn+1 , Yl = ∂yl + bl∂xn+1 , (1.9)

whose coefficients al and bl are the smooth functions of the gradient of u given by (1.4).

Since the fixed solution u belongs to C2,α(�), then the coefficients al , bl are C1,α(�) functions.
The first important remark we will prove is Lemma 2.2, where we write the coefficients of the
Levi form Alp̄ in terms of the vector fields in (1.9):

All(u) =
(

1 + (
∂xn+1u

)2)(
X2
l u+ Y 2

l u
)
, (1.10)

Re
(
Alp(u)

) =
(

1 + (
∂xn+1u

)2)
2

(
XlXpu+XpXlu+ YlYpu+ YpYlu

)
,

Im
(
Alp(u)

) =
(

1 + (
∂xn+1u

)2)
2

(
XlYpu+ YpXlu− YlXpu−XpYlu

)
.

(1.11)

For every l = 1, . . . , n we put

Z2l = Yl, Z2l−1 = Xl , (1.12)

Z = (
Z1, Z2, . . . , Z2n

)
, Z2u = (

ZlZpu
)2n
l,p=1 .

For every z = (zm,j ) in the space of 2n× 2n real matrices, we define for l ≤ p

2Hlp̄(z) =
(
z2l−1,2p−1 + z2p−1,2l−1 + z2l,2p + z2p,2l

)
+ i
(
z2l−1,2p + z2p,2l−1 − z2l,2p−1 − z2p−1,2l

)
,

(1.13)

and Hlp̄ = Hpl̄ for l ≥ p. Then

Hlp̄

(
Z2u

) = Alp̄(u)

1 + (
∂xn+1u

)2 ,
and

2Hlp̄

(
Z2u

) = (
Z2l−1Z2p−1u+ Z2p−1Z2l−1u+ Z2lZ2pu+ Z2pZ2lu

)
+ i
(
Z2l−1Z2pu+ Z2pZ2l−1u− Z2lZ2p−1u− Z2p−1Z2lu

)
.

(1.14)

Define

H(Z2u
) = det

(
Hlp̄

(
Z2u

))
. (1.15)

H is a smooth function of the second derivatives of u with respect to the vector field Zj , j =
1, . . . , n, and

LMA(u)(
1 + (∂xn+1u)

2
)n = H(Z2u

)
.
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Moreover, in Lemma 2.3 we prove there exists a smooth positive function K such that

q(·, u,Du)(
1 + (

∂xn+1u
)2)n = K(·, u, Zu, ∂xn+1u) . (1.16)

For example, if q = k(·,−u)2n (1+|Du|2) n+2
2

1+(∂xn+1u)
2 as in (1.7), then

K = k(·,−u)2n
(

1 + |Zu|2
) n+2

2
(

1 + (
∂xn+1u

)2)− n
2
. (1.17)

Hence, we write the fully nonlinear equation in (1.6) as

H(Z2u
) = K

(·, u, Zu, ∂xn+1u
)
. (1.18)

To the best of our knowledge, no regularity result has been published about fully nonlinear
PDE’s of the type (1.18), even in the case of smooth linear vector fields Z. Some authors studied
quasilinear equations associated to smooth vector fields of Hörmander’s type (see [3, 29]). In
particular, in [3] Capogna, Danielli, and Garofalo studied the local behavior of singular solutions
of a class of subelliptic equations of the type

m∑
j=1

X∗
jAj (x, u,Xu) = f (x, u,Xu)

where Aj , f are measurable functions satisfying some grow up conditions with respect to u
and Xu = (X1u, . . . , Xmu), and the linear vector fields X1, . . . , Xm are smooth and satisfy
Hörmander’s finite rank condition (see [18]). However, their result does not seem to be useful in
the present situation.

In Lemma 2.4 we prove that, if u is strictly Levi convex in �, then there exists a positive
constant M such that

2n∑
m,j=1

∂H
∂zmj

(
Z2u

)
ηmηj ≥ M

2n∑
j=1

η2
j , ∀η = (

η1, . . . , η2n
) ∈ R

2n .

Roughly speaking, this means that the equation is elliptic in 2n directions of the tangent space to
the hypersurface, which has real dimension 2n+ 1. In order to generate the missing direction we
compute the commutators of the vector fields and in Lemma 2.5 we prove that[

Z2l−1, Z2l
] = [

Xl, Yl
] = (

X2
l u+ Y 2

l u
)
∂xn+1 , l = 1, . . . , n , (1.19)

and

Z1, . . . , Z2n,
[
Z1, Z2

]
(1.20)

are linearly independent at every point and span R
2n+1.

Moreover, in Lemma 2.4 we write the fully nonlinear equation in (1.18) as

H(Z2u
) = 1

n

2n∑
m,j=1

∂H
∂zmj

(
Z2u

)
ZmZju = K

(·, u, Zu, ∂xn+1u
)
. (1.21)
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For a fixed strictly Levi convex solution u ∈ C2,α of (1.6) the coefficients

hmj = ∂H
∂zmj

(
Z2u

) ∈ Cα ,

and the coefficients

a = (a1, . . . , an), b = (b1, . . . , bn) (1.22)

of Z are C1,α . Hence, in the light of (1.21), we define a linear subelliptic operator

H =
2n∑

m,j=1

hmjZmZj − λ∂xn+1 , (1.23)

where the coefficients λ, hmj are α-Hölder continuous and such that hmj = hjm, for every
m, j = 1, . . . , 2n,

2n∑
m,j=1

hmjηmηj ≥ M

2n∑
j=1

η2
j , ∀η = (

η1, . . . , η2n
) ∈ R

2n (1.24)

for a positive constant M . Here the vector fields Zj are defined as in (1.12) [see also (1.9)] with
coefficients a, b defined in (1.22) of class C1,α and we assume that they are linearly independent
at every point together with their first order brackets.

We explicitly remark that we can not apply to our operator H the regularity theory developed
in [14, 15], and [24], since in those works the smoothness hypothesis on the coefficients of the
vector fields is crucial.

However, a regularity theory for sum of squares of C1,α vector fields has been recently
established by Citti in [4, 5] and by Citti, and the first author in [11, 12].

In particular, by using the techniques developed in [11, Theorem 4.1], one can prove the
following.

Proposition 1.4. Let hij , λ ∈ Cm−1,α
Z,loc (�), a, b ∈ Cm,αZ,loc(�), m ≥ 2 and let v ∈ C2,α

Z,loc(�) be

a solution of equation Hv = f with H as in (1.23) and f ∈ C
m−1,α
Z,loc (�). Then the solution v

belongs to Cm+1,β
Z,loc (�) for every β ∈ (0, α).

Here Cm,αZ denotes the class of functions whose tangent derivatives of orderm are α-Hölder
continuous with respect to a distance naturally associated to the vector fieldsZj (see (3.1) and (3.2)
for precise definitions). Proposition 1.4 requires the following initial regularity of the coefficients:
hij , λ ∈ C

1,α
Z,loc(�), a, b ∈ C

2,α
Z,loc(�). This property does not hold for a fixed u ∈ C2,α(�)

solution of (1.6), while it would hold if u ∈ C3,α
Z,loc(�).

However, in [21] the first author proved interior Schauder-type estimates for solutions of
Hv = f with H as in (1.23).

In Section 3 we apply the a priori estimates in [21] to first order Euclidean difference quotients
of a strictly Levi convex solution u of (1.6), in order to prove that the function Du is C2,β

Z,loc(�).

At this point another problem arises, because it is not possible to apply a classical bootstrap
argument to the solutions of (1.21). Indeed, on the right-hand side of (1.21) it appears a function
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of ∂xn+1u, and by (1.19) ∂xn+1 is a second derivatives in terms of the vector fields. In particular,

if u ∈ Cm,αZ (�) we can only deduce that ∂xn+1u ∈ Cm−2,α
Z,loc (�) and by applying Proposition 1.4

to a solution u ∈ C
m,α
Z (�) of Equation (1.21) we get only u ∈ C

m,β
Z (�) for every β ∈ (0, α).

However, by formally differentiating the fully nonlinear Equation (1.6) with respect to the vector
fields Zj , j = 1, . . . , 2n and with respect to ∂xn+1 , we discover the following.

Proposition 1.5. If u is a smooth solution of (1.6), then the function

v = (
v1, . . . , v2n, v2n+1

) = (
Z1u, . . . , Z2nu, arctan uxn+1

)
(1.25)

is a solution of 
 2n∑
m,j=1

hmjZmZj − λ∂xn+1


 v = f (·, u, v, Zv) , (1.26)

with f = (f1, . . . , f2n, f2n+1) a smooth function of its arguments. Here the coefficients hij , λ
depend on the fixed function u and precisely

hmj = ∂H
∂zmj

(
Z2u

)
,

λ = nK∂xn+1u+ ∂K

∂uxn+1

(
1 + (

∂xn+1u
)2)

, (1.27)

with H(Z2u) and K defined as in (1.15) and (1.16), respectively.

This result is crucial in our regularity proceeding and we prove it in Section 4. Then, we
apply Proposition 1.4 to v in (1.25) and we prove Theorem 1.3 with a non standard bootstrap
argument.

2. Structure of the LMA

Let us fix a strictly Levi convex C2,α(�) solution u to Equation (1.6).

Lemma 2.1. For every n ∈ N denote by rmj = DmDju for all i, j = 1, . . . , 2n + 1, and by
F(Du,D2u) = LMA(u). Then

2n+1∑
m,j=1

∂F

∂rmj

(
Du,D2u

)
ξmξj ≥ 0, ∀ξ = (ξ1, . . . , ξ2n+1) ∈ R

2n+1 ,

and the minimum eigenvalue of the real matrix
(
∂F
∂rmj

(Du,D2u)
)2n+1
m,j=1 is identically zero.

Proof. The proof will be a consequence of the following statement:

Denote by ρlp̄ = ∂l∂p̄ρ, ∂ρ = (ρ1, . . . , ρn+1), ∂̄ρ = (ρ1̄, . . . , ρn+1), ∂∂̄ρ = (ρlp̄)
2n+1
l,p=1 and by

G(∂ρ, ∂̄ρ, ∂∂̄ρ) = det(Alp̄(ρ)). If the Levi form L(ρ) is positive definite, then

∑
h,k̄

∂G

∂ρhk̄

(
∂ρ, ∂̄ρ, ∂∂̄ρ

)
ηhηk̄ ≥ 0, ∀η = (

η1, . . . , ηn+1
) ∈ C

n+1 , (2.1)
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and the minimum eigenvalue of the complex matrix(
∂G

∂ρhk̄

(
∂ρ, ∂̄ρ, ∂∂̄ρ

))n+1

h,k=1

is identically zero.

Indeed, for every l, p = 1, . . . , n+ 1, m, j = 1, . . . , 2n+ 1 and ρ = 4(u− yn+1)

∂ρlp̄

∂rmj
=




1 m = 2l − 1, j = 2p − 1

1 m = 2l, j = 2p

i m = 2l − 1, j = 2p

−i m = 2l, j = 2p − 1

0 otherwise .

Then, if we put ηl = ξ2l−1 + iξ2l for every l = 1, . . . , n by (2.1) we get the thesis.

Let us prove (2.1). By (1.2), for every h, k = 1, . . . , n+ 1 and l, p = 1, . . . , n

∂Alp̄(ρ)

∂ρhk̄
=




1 (h, k) = (l, p) ,

−ρn+1ρp̄

|ρn+1|2 (h, k) = (l, n+ 1) ,

− ρlρn+1
|ρn+1|2 (h, k) = (n+ 1, p) ,

ρlρp

|ρn+1|2 (h, k) = (n+ 1, n+ 1) ,

0 otherwise .

Denote by Clp̄ the cofactor of Alp̄ and by Alp̄ the inverse matrix of Alp̄. Hence, for every
h, k = 1, . . . , n

∂G

∂ρhk̄

(
∂ρ, ∂̄ρ, ∂∂̄ρ

) =
n∑

l,p=1

∂Alp̄(ρ)

∂ρhk̄
Clp̄ = Chk̄

= G
(
∂ρ, ∂̄ρ, ∂∂̄ρ

)
Akh̄ > 0,

∂G

∂ρhn+1

(
∂ρ, ∂̄ρ, ∂∂̄ρ

) =
n∑

l,p=1

∂Alp̄(ρ)

∂ρhn+1
Clp̄ =

n∑
p=1

−ρn+1ρp̄

|ρn+1|2 Chp̄ ,

∂G

∂ρn+1n+1

(
∂ρ, ∂̄ρ, ∂∂̄ρ

) =
n∑

l,p=1

∂Alp̄(ρ)

∂ρn+1n+1
Clp̄ =

n∑
l,p=1

ρlρp̄

|ρn+1|2Clp̄

=
n∑
l=1

−ρlρn+1

|ρn+1|2


 n∑
p=1

−ρn+1ρp̄

|ρn+1|2 Clp̄




=
n∑
l=1

−ρlρn+1

|ρn+1|2
∂G

∂ρln+1

(
∂ρ, ∂̄ρ, ∂∂̄ρ

)
.

In particular, the last column of the complex matrix
(
∂G
∂ρhk̄

)n+1

h,k=1
is a linear combination of the

first n columns and statement (2.1) follows.

Lemma 2.2. The coefficients of the Levi form Alp̄ can be written in terms of the vector fields
in (1.9) as in (1.10), and (1.11).
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Proof. By arguing as in [5],

al = −Ylu, bl = Xlu . (2.2)

By substituting the vector fields (1.9) in the right-hand side of (1.10) and by using (2.2) twice,
we get

X2
l u+ Y 2

l u = (
∂xl + al∂xn+1

) (
∂xl + al∂xn+1

)
u

+ (
∂yl + bl∂xn+1

) (
∂yl + bl∂xn+1

)
u

= All(u)+ (Xlal + Ylbl) ∂xn+1u

= All(u)− (XlYlu− YlXlu) ∂xn+1u

= All(u)− [Xl, Yl] u∂xn+1u

= All(u)− (Xlbl − Ylal)
(
∂xn+1u

)2
= All(u)− (

XlXlu+ YlYlu)(∂xn+1u
)2
,

and by putting the last term in the left-hand side we get (1.10). By arguing in the same way we
now prove (1.11)

XlXpu+XpXlu+ YlYpu+ YpYlu = (
∂xl + al∂xn+1

) (
∂xp + ap∂xn+1

)
u

+ (
∂xp + ap∂xn+1

) (
∂xl + al∂xn+1

)
u+ (

∂yl + bl∂xn+1

) ·
· (∂yp + bp∂xn+1

)
u+ (

∂yp + bp∂xn+1

) (
∂yl + bl∂xn+1

)
u

= 2 Re
(
Alp(u)

)+ (
Xlap +Xpal + Ylbp + Ypbl

)
∂xn+1u

= 2 Re
(
Alp(u)

)− (
XlYpu+XpYlu− YlXpu− YpXlu

)
∂xn+1u

= 2 Re
(
Alp(u)

)− ([
Xl, Yp

]
u+ [

Xp, Yl
]
u
)
∂xn+1u

= 2 Re
(
Alp(u)

)− (
Xlbp − Ypal +Xpbl − Ylap

) (
∂xn+1u

)2
= 2 Re

(
Alp(u)

)− (
XlXpu+ YpYlu+XpXlu+ YlYpu

) (
∂xn+1u

)2
,

XlYpu+ YpXlu− YlXpu−XpYlu = (
∂xl + al∂xn+1

) (
∂yp + bp∂xn+1

)
u

+ (
∂yp + bp∂xn+1

) (
∂xl + al∂xn+1

)
u− (

∂yl + bl∂xn+1

) ·
· (∂xp + ap∂xn+1

)
u− (

∂xp + ap∂xn+1

) (
∂yl − bl∂xn+1

)
u

= 2 Im
(
Alp(u)

)+ (
Xlbp + Ypal − Ylap −Xpbl+

)
∂xn+1u

= 2 Im
(
Alp(u)

)− (−XlXpu+ YpYlu− YlYpu+XpXlu
)
∂xn+1u

= 2 Im
(
Alp(u)

)− ([
Xp,Xl

]
u+ [

Yp, Yl
]
u
)
∂xn+1u

= 2 Im
(
Alp(u)

)− (
Xpal −Xlap + Ypbl − Ylbp

) (
∂xn+1u

)2
= 2 Im

(
Alp(u)

)− (
XlYpu+ YpXlu−XpYlu− YlXpu

) (
∂xn+1u

)2
.

In order to handle the right-hand side in (1.6), we prove the following.
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Lemma 2.3. There exists a smooth positive function K such that (1.16) holds.

Proof. By (2.2) and (1.9)

∂xl u = Xlu− al∂xn+1u = Xlu+ (
∂xn+1u

)
Ylu ,

∂yl u = Ylu− bl∂xn+1u = Ylu− (
∂xn+1u

)
Xlu .

Hence, it is enough to take

K
(·, u, Zu, ∂xn+1u

) = q
(·, u,Xu+ uxn+1Yu, Yu− uxn+1Xu, ∂xn+1u

)
(

1 + (
∂xn+1u

)2)n .

Write Equation (1.6) as in (1.18), and define the vector fields Z as in (1.12) with a =
a(Du), b = b(Du) as in (1.4).

Lemma 2.4. For every n ∈ N

H(Z2u
) = 1

n

2n∑
m,j=1

∂H
∂zmj

(
Z2u

)
ZmZju , (2.3)

and if u is strictly Levi convex (
∂H
∂zmj

(
Z2u

))
m,j

> 0 .

Proof. Denote by Blp̄ the cofactor of the element Hlp̄ of the matrix (Hlp̄)
n
l,p=1. Then, by the

determinant’s derivative formula

∂H
∂zmj

(
Z2u

) =
n∑

l,p=1

∂Hlp̄

∂zmj

(
Z2u

)
Blp̄

(
Z2u

)

and by (1.13) for l ≤ p,

2
∂Hlp̄

∂zmj
=




1 m = 2l − 1, j = 2p − 1

1 m = 2l, j = 2p

i m = 2l − 1, j = 2p

−i m = 2l, j = 2p − 1

0 otherwise .

Hence,

2n∑
m,j=1

∂H
∂zmj

(
Z2u

)
ZmZju =

n∑
l,p=1

1

2

(
Z2l−1Z2p−1u+ Z2p−1Z2l−1u

+ Z2lZ2pu+ Z2pZ2lu+ i
(
Z2l−1Z2pu+ Z2pZ2l−1u

− Z2lZ2p−1u− Z2p−1Z2lu
))
Blp̄

(
Z2u

)
=

n∑
l,p=1

Hlp̄

(
Z2u

)
Blp̄

(
Z2u

) = nH(Z2u
)
.

(2.4)
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Moreover, for every ξ = (ξ1, . . . , ξ2n) ∈ R
2n \ {0} set η = (η1, . . . , ηn) with ηl = ξ2l−1 + iξ2l

for every l = 1, . . . , n. Hence,

2n∑
m,j=1

∂H
∂zmj

(
Z2u

)
ξmξj =

n∑
l,p=1

Blp̄
(
Z2u

)(
ξ2l−1ξ2p−1 + ξ2lξ2p

+ i
(
ξ2l−1ξ2p − ξ2lξ2p−1

))
=

n∑
l,p=1

Blp̄
(
Z2u

)
η̄lηp .

If u is strictly Levi convex then the hermitian form (Hlp̄)
n
l,p=1 is positive definite and, by denoting

(Hlp̄)nl,p=1 its inverse matrix, we get

n∑
l,p=1

Blp̄
(
Z2u

)
η̄lηp = H(Z2u

) n∑
l,p=1

Hlp̄
(
Z2u

)
ηlη̄p .

Hence, the real form
2n∑

m,j=1

∂H
∂zmj

(
Z2u

)
ξmξj > 0

for every ξ ∈ R
2n \ {0}.

Lemma 2.5. If u is strictly Levi convex in � then the vector fields

Z1, . . . , Z2n,
[
Z1, Z2

]
are linearly independent at every point.

Proof. We have[
Z2l−1, Z2l

] = [
Xl, Yl

] = (
Xlbl − Ylal

)
∂xn+1 , l = 1, . . . , n . (2.5)

By (2.2) (
Xlbl − Ylal

) = (
X2
l u+ Y 2

l u
)
.

Since u is strictly Levi convex in �, then

All(u) > 0, l = 1, . . . , n (2.6)

and by (1.10) X2
l u+ Y 2

l u > 0. We can compute the determinant of the (2n+ 1)× (2n+ 1) real
matrix whose columns are the coefficients of the vector fieldsZ1, . . . , Z2n, [Z1, Z2] and by (1.9),
(1.10), (2.6), and (2.5), we get

det




1 0 . . . 0 0 0
0 1 . . . 0 0 0
...

...
. . .

...
...

...

0 0 . . . 1 0 0
0 0 . . . 0 1 0
a1 b1 . . . an bn

(
X2

1u+ Y 2
1 u
)




= (
X2

1u+ Y 2
1 u
) �= 0 .
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3. C2,α
Z regularity of Du

In this section we first introduce some classesCm,αZ of Hölder continuous functions naturally
arising from the geometry of the problem. We then prove that the Euclidean gradient of a strictly
Levi convex solution is inC2,β

Z,loc by also using the a priori estimates proved by the authors in [21].

Let us introduce some notations. For every l = 1, . . . , n let us define the first-order vector
fields Zl as in (1.12) with coefficients a, b ∈ C1,α(�). Moreover, let us assume that the vector
fields Z1, . . . , Z2n, [Z1, Z2] are linearly independent at every point and span R

2n+1.

If the coefficients of the vector fields were smooth, then the linear operator H in (1.23) would
satisfy Hörmander’s condition of hypoellipticity. In our context, the coefficients are onlyC1,α(�).
However, for every ξ, ξ0 ∈ � there exists an absolutely continuous mapping γ : [0, 1] → R

2n+1,
which is a piecewise integral curve of the vector fields Z introduced in (1.12), which connects
ξ0 and ξ . Then there exists a Carnot–Carathéodory distance dZ(ξ, ξ0) naturally associated to the
geometry of the problem (see for example the distance �4 defined in [22, p. 113]). Precisely,
if C(δ) denotes the class of absolutely continuous mappings ϕ : [0, 1] → � which almost
everywhere satisfy ϕ′(t) = ∑2n

j=1 αj (t)Zj (ϕ(t)) with |αj (t)| < δ, define

dZ(ξ0, ξ) = inf
{
δ > 0 : ∃ϕ ∈ C(δ) such that ϕ(0) = ξ0, ϕ(1) = ξ

}
. (3.1)

The fact that dZ is finite follows because the commutators of the vector fields Z span R
2n+1 at

every point. This was first proved by Carathéodory for smooth vector fields; for vector fields with
C1,α coefficients, the proof is contained in [4].

We now define the class of Hölder continuous functions in terms of dZ: for 0 < α < 1

CαZ(�) =
{
v : � → R s.t. there exists a constant c > 0 :
|v(ξ)− v(ξ0)| ≤ c dαZ(ξ, ξ0) for all ξ, ξ0 ∈ �

}
and

C
1,α
Z (�) = {

v ∈ CαZ(�) : ∃Zjv ∈ CαZ(�) ∀ j = 1, . . . , 2n
}
.

If the coefficients a, b ∈ Cm−1,α
Z (�), m ≥ 2, we define

C
m,α
Z (�) =

{
v ∈ Cm−1,α

Z (�) : Zjv ∈ Cm−1,α
Z (�) ∀ j = 1, . . . , 2n

}
. (3.2)

Obviously (see [11]),
Cm,α(�) ⊂ C

m,α
Z (�) ⊂ Cm/2,α/2(�) .

For every m ≥ 0 we also define spaces of locally Hölder continuous functions:

C
m,α
Z,loc(�) = {

v : � → R : v ∈ Cm,αZ

(
�′) ∀�′ ⊂⊂ �

}
.

If v ∈ CαZ(�) we define

[v]Zα;� = sup
ξ,ζ∈�

|v(ξ)− v(ζ )|
dαZ(ξ, ζ )

.

Denote by
ZI = Zi1Zi2 · · ·Zim ,

where

I = (
i1, . . . , im

)
(3.3)
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is a multi-index of length |I | = m. If v ∈ C
m,α
Z (�), with m = 0, 1, 2, . . . , and 0 < α < 1 we

define the seminorm
[v]Zm,α;� = sup

|I |=m
[
ZIv

]Z
α;� ,

and the norms

|v|Zm;� =
m∑
j=0

(
sup
|I |=j

sup
�

∣∣ZIv∣∣
)
,

|v|Zm,α;� = |v|Zm;� + [v]Zm,α;� .

The following a priori estimates have been proved in [21] for the linear operator in (1.23).

Proposition 3.1. Let hij , λ ∈ CαZ(�), a, b ∈ C
1,α
Z (�) and v ∈ C

2,α
Z (�) be a solution of

equationHv = f ∈ CαZ(�) withH as in (1.23). For every�′ ⊂⊂ � with dZ(�′, ∂�) ≥ δ > 0,
there is a positive constant c such that for every β ∈ (0, α)

δ|Zv|Z0;�′ + δ2
∣∣Z2v

∣∣Z
0;�′ + δ2+β[Z2v

]Z
β;�′ ≤ c

(
sup
�

|v| + |f |Z0,α;�
)

(3.4)

where c depends only on the constant M in (1.24), on |hij |Z0,α;�, |λ|Z0,α;�, |a|Z1,α;�, |b|Z1,α;� as
well as on n, α, δ,�.

For all B and B ′ in � such that B ′ ⊂ B ⊂⊂ � we define h0 = dZ(B
′, ∂B) > 0, and for

every h ∈ R such that 0 < |h|1/2 < h0 we define

wh(ξ) = �
j
hu = u(ξ + hej )− u(ξ)

h

with ej the unit coordinate vector in R
2n+1 in the j direction, j = 1, . . . , 2n+ 1.

Lemma 3.2. The function wh is a solution of

Huwh = Fh

with

Hu =
2n∑

m,j=1

amjZmZj − χ ∂2n+1

for suitable Hölder-continuous coefficients amj , χ .

Proof. By applying the difference quotient �jh to both sides of Equation (1.18) we get

�
j
hK(ξ, u(ξ), Zu(ξ), ∂2n+1u(ξ)) = H(Z2u

)
(ξ + hej )− H(Z2u

)
(ξ)

h

= 1

h

∫ 1

0

d

dθ

(
H(θ(Z2u

)
(ξ + hej )+ (1 − θ)

(
Z2u

)
(ξ)
))
dθ

=
2n∑

m,k=1

∫ 1

0

∂H
∂zmk

(
θ
(
Z2u

)
(ξ + hej )+ (1 − θ)

(
Z2u

)
(ξ)
)
dθ

· 1

h

(
(ZmZku)(ξ + hej )− (ZmZku)(ξ)

)
=

n∑
l,p=1

∫ 1

0
Blp̄

(
θ
(
Z2u

)
(ξ + hej )+ (1 − θ)

(
Z2u

)
(ξ)
)
dθ�

j
hHlp̄(ξ) .
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The expression of �jhHlp̄(ξ) is very complicated because of the fully non linearity of the coeffi-
cients Hlp̄. By (1.10) and (1.3)

�
j
hHlp̄(ξ) = �

j
h

((
1 + u2

2n+1

)−2
Alp̄(u)

)
(ξ)

= �
j
h

((
1 + u2

2n+1

)−1
(
∂xlxpu+ ∂ylypu+ al∂xpxn+1u+ ap∂xlxn+1u

+ bl∂ypxn+1u+ bp∂ylxn+1u+ (
alap + blbp

)
∂2
xn+1

u
)

+ i
(
∂xlypu− ∂xpyl u− ap∂ylxn+1u+ al∂ypxn+1u

+ bp∂xlxn+1u− bl∂xpxn+1u+ (
bpal − blap

)
∂2
xn+1

u
))
(ξ)

= �
j
h

(
1 + u2

2n+1

)−1
(ξ)
((
∂xlxpu+ ∂ylypu+ al∂xpxn+1u

+ ap∂xlxn+1u+ bl∂ypxn+1u+ bp∂ylxn+1u+ (
alap + blbp

)
∂2
xn+1

u
)

+ i
(
∂xlypu− ∂xpyl u− ap∂ylxn+1u+ al∂ypxn+1u

+ bp∂xlxn+1u− bl∂xpxn+1u+ (
bpal − blap

)
∂2
xn+1

u
))
(ξ + hej )

+ (
1 + u2

2n+1

)−1
(ξ)
((
�
j
hal(ξ)

(
∂xpxn+1u

)(
ξ + hej

)
+�

j
hap(ξ)

(
∂xlxn+1u

)(
ξ + hej

)+�
j
hbl(ξ)

(
∂ypxn+1u

)(
ξ + hej

)
+�

j
hbp(ξ)

(
∂ylxn+1u

)(
ξ + hej

)
+�

j
h

(
alap + blbp

)
(ξ)
(
∂2
xn+1

u
)
(ξ + hej )

)
+ i
(
−�

j
hap(ξ)

(
∂ylxn+1u

)(
ξ + hej

)+�
j
hal(ξ)

(
∂ypxn+1u

)(
ξ + hej

)
+�

j
hbp(ξ)

(
∂xlxn+1u

)(
ξ + hej

)−�
j
hbl(ξ)

(
∂xpxn+1u

)(
ξ + hej

)
+�

j
h

(
bpal − blap

)
(ξ)
(
∂2
xn+1

u
)(
ξ + hej

))
+ (

1 + u2
2n+1

)−1
(ξ)
((
∂xlxpwh + ∂ylypwh + al(∇u)∂xpxn+1wh

+ ap(∇u)∂xlxn+1wh + bl(∇u)∂ypxn+1wh + bp(∇u)∂ylxn+1wh

+ (
alap + blbp

)
(∇u)∂2

xn+1
wh

)
+ i
(
∂xlypwh − ∂xpylwh

− ap(∇u)∂ylxn+1wh + al(∇u)∂ypxn+1wh + bp(∇u)∂xlxn+1wh

− bl(∇u)∂xpxn+1wh + (
bpal − blap

)
(∇u)∂2

xn+1
wh

))
(ξ) .

The last four lines in the previous equality are

Alp̄(wh)(
1 + u2

2n+1

) (ξ) = 1

2

(
1 + u2

2n+1

)−1
(ξ)
(
XlXp +XpXl + YlYp + YlYp

− (
Xlap +Xpal + Ylbp + Ypbl

)
∂xn+1 + i

(
XlYp + YpXl

−XpYl − YlXp − (
Xlbp + Ypal −Xpbl − Ylap

)
∂xn+1

))
wh(ξ) .

Then, by building again the operator, the thesis follows with

amk = (
1 + u2

2n+1

) ∫ 1

0

∂H
∂zmk

(
θ
(
Z2u

)
(ξ + hej )+ (1 − θ)

(
Z2u

)
(ξ)
)
dθ ,

2χ =
n∑

l,p=1

∫ 1

0
Blp̄

(
θ
(
Z2u

)
(ξ + hej )+ (1 − θ)

(
Z2u

)
(ξ)
)
dθ · (1 + u2

2n+1

)−1

·
((
Xlap +Xpal + Ylbp + Ypbl

)+ i
(
Xlbp + Ypal −Xpbl − Ylap

))
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Fh(ξ) = �
j
hK(ξ, u(ξ), Zu(ξ), ∂2n+1u(ξ))

−
n∑

l,p=1

∫ 1

0
Blp̄

(
θ
(
Z2u

)(
ξ + hej

)+ (1 − θ)
(
Z2u

)
(ξ)
)
dθ

·
(
�
j
h

(
1 + u2

2n+1

)−1
(ξ)

((
∂xlxpu+ ∂ylypu+ al∂xpxn+1u

+ ap∂xlxn+1u+ bl∂ypxn+1u+ bp∂ylxn+1u+ (
alap + blbp

)
∂2
xn+1

u

)

+ i
(
∂xlypu− ∂xpyl u− ap∂ylxn+1u+ al∂ypxn+1u

+ bp∂xlxn+1u− bl∂xpxn+1u+ (
bpal − blap

)
∂2
xn+1

u
))(

ξ + hej
)

+ (
1 + u2

2n+1

)−1
(ξ)
((
�
j
hal(ξ)

(
∂xpxn+1u

)(
ξ + hej

)
+�

j
hap(ξ)

(
∂xlxn+1u

)(
ξ + hej

)+�
j
hbl(ξ)

(
∂ypxn+1u

)(
ξ + hej

)
+�

j
hbp(ξ)

(
∂ylxn+1u

)(
ξ + hej

)
+�

j
h

(
alap + blbp

)
(ξ)
(
∂2
xn+1

u
)(
ξ + hej

))

+ i
(
−�

j
hap(ξ)

(
∂ylxn+1u

)(
ξ + hej

)+�
j
hal(ξ)

(
∂ypxn+1u

)(
ξ + hej

)
+�

j
hbp(ξ)

(
∂xlxn+1u

)(
ξ + hej

)−�
j
hbl(ξ)

(
∂xpxn+1u

)(
ξ + hej

)
+�

j
h

(
bpal − blap

)
(ξ)
(
∂2
xn+1

u
)(
ξ + hej

)))
.

For a strictly Levi convex u, Lemma 2.4 ensures the existence of a positive constantM such
that

2n∑
i,j=1

aij ηiηj ≥ M

2n∑
i=1

η2
i , ∀η = (

η1, . . . , η2n
) ∈ R

2n .

Moreover, |Fh|0,α;B ′ , |aij |0,α;B are bounded by a positive constant independent of h. Hence,
we can apply Proposition 3.1 to wh, and we may assert that for all B ′′ ⊂⊂ B ′ there exists a
subsequence of ZiZlwh which uniformly converges in CβZ(B

′′) to ZiZlDju for every β < α, for
all i, l = 1, . . . , 2n, and j = 1, . . . , 2n+ 1. In particular we get the following.

Proposition 3.3. If u ∈ C2,α(�) is a strictly Levi convex solution to (1.6), then Du ∈
C

2,β
Z,loc(�) for every β ∈ (0, α).

4. Smooth regularity

In this section we formally differentiate the nonlinear Equation (1.6), which we write as
in (1.18). Then, by mean of a bootstrap argument, we prove Theorem 1.3.

Let H as in (1.23), with

hij = ∂H
∂zij

(
Z2u

)
,
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λ as in (1.27) and K defined as in (1.16).

Proof of Proposition 1.5. In this proof we denote by ∂2n+1 = ∂xn+1 and by v = (v1, . . . ,
v2n+1) the function in (1.25). Let us differentiate Equation (1.18) with respect to Zm. By the
determinant’s derivative formula and by using the notations of (2.4)

Zm
(
K
(
ξ, u, Zu, ∂2n+1u

)) = Zm
(H(Z2u

)) =
n∑

l,p=1

ZmHlp̄

(
Z2u

)
Blp̄

(
Z2u

)
. (4.1)

Let us compute separately ZqZjZmu. Define

ω2j = bj , ω2j−1 = aj , ∀ j = 1, . . . , n ,

Z∗
j =

{
−Zj+1 if j is odd ,

Zj−1 if j is even ,

and ω∗
j = −Zju. Then, by taking into account (2.2), we get ωj = Z∗

j u and

ZmZqZju+ (
∂2n+1u

)
Z∗
mZqZju = ZqZjvm + [Zm,Zq ](Zju)

+ Zq([Zm,Zj ]u)+ (
∂2n+1u

)
Z∗
mZqZju

= ZqZjvm + (
Zmωq − Zqωm

)
∂2n+1(Zju)

+ Zq
((
Zmωj − Zjωm

)
∂2n+1u

)+ (
∂2n+1u

)
Z∗
mZqZju

= ZqZjvm + (
ZmZ

∗
qu− ZqZ

∗
mu
)
∂2n+1(Zju)

+ Zq
((
ZmZ

∗
j u− ZjZ

∗
mu
)
∂2n+1u

)+ (
∂2n+1u

)
Z∗
mZqZju

= ZqZjvm + (
ZmZ

∗
qu− ZqZ

∗
mu
)
∂2n+1(Zju)+ (

ZmZ
∗
j u

− ZjZ
∗
mu
)
Zq∂2n+1u+ (

ZqZmZ
∗
j u+ Z∗

mZqZju− ZqZjZ
∗
mu
)
∂2n+1u

= ZqZjvm

(
1 + (

∂2n+1u
)2)+ gm,q,j (v, Zv)+

(
ZqZmZ

∗
j u

+ (
ZqZ

∗
mZ

∗
j u+ g∗

m,q,j (v, Zv)
)(
∂2n+1u

))
∂2n+1u

= ZqZjvm

(
1 + (

∂2n+1u
)2)+ gm,q,j (v, Zv)+

(
ZmZqZ

∗
j u

+ [
Zq,Zm

]
Z∗
j u+ (

Z∗
mZqZ

∗
j u+ [

Zq,Z
∗
m

]
Z∗
j u

+ g∗
m,q,j (v, Zv)

)(
∂2n+1u

))
∂2n+1u

= ZqZjvm

(
1 + (

∂2n+1u
)2)+ gm,q,j (v, Zv)

+
(
ZmZqZ

∗
j u+ (

ZqZ
∗
mu− ZmZ

∗
qu
)
∂2n+1Z

∗
j u

+
(
Z∗
mZqZ

∗
j u+ (− ZqZmu− Z∗

mZ
∗
qu
)
∂2n+1Z

∗
j u

+ g∗
m,q,j (v, Zv)

)(
∂2n+1u

))
∂2n+1u ,

with

gm,q,j (v, Zv) = (
ZmZ

∗
qu− ZqZ

∗
mu
)
∂2n+1(Zju)+ (

ZmZ
∗
j u− ZjZ

∗
mu
)
Zq∂2n+1u ,

and

g∗
m,q,j (v, Zv) = (

Z∗
mZ

∗
qu+ ZqZmu

)
∂2n+1

(
Zju

)+ (
Z∗
mZ

∗
j u+ ZjZmu

)
Zq∂2n+1u .
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Hence, for every m = 1, . . . , 2n

ZqZjvm =
(

1 + (
∂2n+1u

)2)−1((
Zm + (

∂2n+1u
)
Z∗
m

)
ZqZju

− (
∂2n+1u

)(
Zm + (

∂2n+1u
)
Z∗
m

)
ZqZ

∗
j u+ ϕm,q,j (v, Zv)

)
,

with vm = Zmu for every m = 1, . . . , 2n,

ϕm,q,j (v, Zv) = −gm,q,j (v, Zv)−
((
ZqZ

∗
mu− ZmZ

∗
qu
)
∂2n+1Z

∗
j u+

((− ZqZmu

− Z∗
mZ

∗
qu
)
∂2n+1Z

∗
j u+ g∗

m,q,j (v, Zv)
)(
∂2n+1u

))
∂2n+1u .

Analogously,

Z∗
j Z

∗
qvm =

(
1 + (

∂2n+1u
)2)−1((

Zm + (
∂2n+1u

)
Z∗
m

)
Z∗
j Z

∗
qu

+ (
∂2n+1u

)(
Zm + (

∂2n+1u
)
Z∗
m

)
Z∗
j Zqu+ f ∗

m,q,j (v, Zv)
)
,

where f ∗
m,q,j (v, Zv) does not depend on the third derivatives of u. Hence, by (1.13)

2Hlp̄

(
Z2vm

) =
(
Z2l−1Z2p−1 + Z∗

2p−1Z
∗
2l−1 + Z2lZ2p + Z∗

2pZ
∗
2l

+ i
(
Z2l−1Z2p + Z∗

2pZ
∗
2l−1 − Z2lZ2p−1 − Z∗

2p−1Z
∗
2l

))
vm

=
(

1 + (
∂2n+1u

)2)−1(
2
(
Zm + (

∂2n+1u
)
Z∗
m

)Hlp̄(u)

+ (
∂2n+1u

)(
Zm + (

∂2n+1u
)
Z∗
m

)([
Z∗

2l−1, Z2p−1
]
u+ [

Z∗
2l , Z2p

]
u

+ i
([
Z∗

2l−1, Z2p
]
u− [

Z∗
2l , Z2p−1

]
u
))+ ϕlp̄(v, Zv)

)
=
(

1 + (
∂2n+1u

)2)−1(
2
(
Zm + (

∂2n+1u
)
Z∗
m

)Hlp̄(u)

+ (
∂2n+1u

)2(
Zm + (

∂2n+1u
)
Z∗
m

)(
Z∗

2l−1ω2p−1 − Z2p−1ω
∗
2l−1

+ Z∗
2lω2p − Z2pω

∗
2l + i

(
Z∗

2l−1ω2p − Z2pω
∗
2l−1

− Z∗
2lω2p−1 + Z2p−1ω

∗
2l

))
+ ϕlp̄(v, Zv)

)
=
(

1 + (
∂2n+1u

)2)−1(
2
(
Zm + (

∂2n+1u
)
Z∗
m

)Hlp̄(u)

+ (
∂2n+1u

)2(
Zm + (

∂2n+1u
)
Z∗
m

)(
Z∗

2l−1Z
∗
2p−1u+ Z2p−1Z2l−1u

+ Z∗
2lZ

∗
2pu+ Z2pZ2lu+ i

(
Z∗

2l−1Z
∗
2pu+ Z2pZ2l−1u

− Z∗
2lZ

∗
2p−1u− Z2p−1Z2lu

))
+ ϕlp̄(v, Zv)

)
= 2

(
Zm + (

∂2n+1u
)
Z∗
m

)Hlp̄(u)+
(

1 + (
∂2n+1u

)2)−1
ϕlp̄(v, Zv) .

By using the previous equality in (4.1) we get

n∑
l,p=1

Hlp̄

(
Z2vm

)
Blp̄

(
Z2u

) = (
Zm + (

∂2n+1u
)
Z∗
m

)
K
(
ξ, u, Zu, ∂2n+1u

)
+ ϕ(v, Zv) .
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Let us now consider the derivative ∂2n+1. We have:

∂2n+1ZqZju = ZqZj∂2n+1u+ [
∂2n+1, Zq

]
Zju+ Zq

[
∂2n+1, Zj

]
u

= ZqZj∂2n+1u+ ∂2n+1ωq∂2n+1Zju+ Zq
(
∂2n+1ωj∂2n+1u

)
= ZqZj∂2n+1u+ ∂2n+1Z

∗
qu∂2n+1Zju+ Zq∂2n+1u∂2n+1Z

∗
j u

+ Zq
(
∂2n+1Z

∗
j u
)
∂2n+1u

= ZqZj∂2n+1u+ ∂2n+1
(
ZqZ

∗
j u
)
∂2n+1u+ ϕ(u)

where

ϕ(u) = ∂2n+1Z
∗
qu∂2n+1Zju+ Zq∂2n+1u∂2n+1Z

∗
j u+ [

Zq, ∂2n+1
]
Z∗
j u∂2n+1u .

In the same way we get:

∂2n+1
(
Z∗
j Z

∗
qu
) = Z∗

j Z
∗
q∂2n+1u− ∂2n+1

(
Z∗
j Zqu

)
∂2n+1u+ ϕ∗(u)

where

ϕ∗(u) = −∂2n+1Zju∂2n+1Z
∗
qu− Z∗

j ∂2n+1u∂2n+1Zqu− [
Z∗
j , ∂2n+1

]
Zqu∂2n+1u .

Then

∂2n+1
(
ZqZju+ Z∗

j Z
∗
qu
) = ZqZj∂2n+1u+ Z∗

j Z
∗
q∂2n+1u+ ∂2n+1

([
Zq,Z

∗
j

]
u
)

· ∂2n+1u+ ϕ(u)+ ϕ∗(u)

= (
ZqZj + Z∗

j Z
∗
q

)
∂2n+1u− ∂2n+1

((
ZqZju+ Z∗

j Z
∗
qu
)
∂2n+1u

)
· ∂2n+1u+ ϕ(u)+ ϕ∗(u)

=
(

1 + (
∂2n+1u

)2)−1((
ZqZj + Z∗

j Z
∗
q

)
∂2n+1u

−
((
ZqZju+ Z∗

j Z
∗
qu
)
∂2

2n+1u
)
∂2n+1u+ ϕ(u)+ ϕ∗(u)

)
.

Now recall that we put v2n+1 = arctan(∂2n+1u); then

Zjv2n+1 = Zj∂2n+1u

1 + (
∂2n+1u

)2
and

ZqZjv2n+1 = ZqZj∂2n+1u

1 + (
∂2n+1u

)2 − 2
∂2n+1uZj∂2n+1uZq∂2n+1u(

1 + (
∂2n+1u

)2)2
.

Since

Zj∂2n+1u = ∂2n+1Zju+ [
Zj , ∂2n+1

]
u

= ∂2n+1Zju− ∂2n+1ωj∂2n+1u

= ∂2n+1Zju− ∂2n+1u∂2n+1Z
∗
j u ,

Z∗
j ∂2n+1u = ∂2n+1Z

∗
j u+ ∂2n+1u∂2n+1Z

∗
j u ,

(4.2)
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then

∂2n+1Zju = Zj∂2n+1u+ ∂2n+1uZ
∗
j ∂2n+1u

1 + (
∂2n+1u

)2 ,

∂2n+1Z
∗
j u = Z∗

j ∂2n+1u− ∂2n+1uZj∂2n+1u

1 + (
∂2n+1u

)2 ,

(4.3)

and by using (4.2) and (4.3) we get

ϕ(u)+ ϕ∗(u) = ∂2n+1Z
∗
qu∂2n+1Zju+ Zq∂2n+1u∂2n+1Z

∗
j u

+ [
Zq, ∂2n+1

]
Z∗
j u∂2n+1u− ∂2n+1Zju∂2n+1Z

∗
qu

− Z∗
j ∂2n+1u∂2n+1Zqu− [

Z∗
j , ∂2n+1

]
Zqu∂2n+1u

= Zq∂2n+1u∂2n+1Z
∗
j u− ∂2n+1ωq∂2n+1Z

∗
j u∂2n+1u

− Z∗
j ∂2n+1u∂2n+1Zqu+ ∂2n+1ω

∗
j ∂2n+1Z

∗
qu∂2n+1u

= (
Zq∂2n+1u− ∂2n+1u∂2n+1Z

∗
qu
)
∂2n+1Z

∗
j u

− (
Z∗
j ∂2n+1u+ ∂2n+1u∂2n+1Zju

)
∂2n+1Zqu

= −2∂2n+1u
(
∂2n+1Z

∗
qu∂2n+1Z

∗
j u+ ∂2n+1Zju∂2n+1Zqu

)
= −2∂2n+1u

Z∗
q∂2n+1uZ

∗
j ∂2n+1u+ Zj∂2n+1uZq∂2n+1u

1 + (
∂2n+1u

)2 .

Hence, (
ZqZj + Z∗

j Z
∗
q

)
v2n+1 − ∂2n+1

(
ZqZju+ Z∗

j Z
∗
qu
)
∂2n+1v2n+1

= ∂2n+1
(
ZqZju+ Z∗

j Z
∗
qu
)

and

Hlp̄

(
Z2v2n+1

)− ∂2n+1u
(Hlp̄

(
Z2u

))
∂2n+1v2n+1 = ∂2n+1

(Hlp̄

(
Z2u

))
.

So we get

n∑
l,p=1

(
Hlp̄

(
Z2v2n+1

)− ∂2n+1u
(Hlp̄

(
Z2u

))
∂2n+1v2n+1

)
Blp̄

(
Z2u

)

= ∂2n+1


 n∑
l,p=1

Hlp̄

(
Z2u

)
Blp̄

(
Z2u

)
= ∂2n+1

(
K
(·, u, Zu, ∂2n+1u

))
.

By (2.3) we get:

f2n+1(ξ, u, v, Zv) =
2n∑

i,j=1

∂H
∂zij

(
Z2u

)
ZiZj

(
v2n+1

)−
(
nK∂2n+1u

+ ∂K

∂u2n+1

(
1 + (

∂2n+1u
)2))

∂2n+1v2n+1
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that is 
 2n∑
i,j=1

∂H
∂zij

(
Z2u

)
ZiZj − λ∂2n+1


 v2n+1 = f2n+1(ξ, u, v, Zv) .

Proof of Theorem 1.3. Let us define H in terms of u as in (1.23), with

hij = ∂H
∂zij

(
Z2u

)
,

λ = nK∂xn+1u+ ∂K

∂uxn+1

(
1 + (

∂xn+1u
)2)

,

and K defined as in (1.16). As an immediate consequence of Proposition 3.3 the coefficients
a, b, λ ∈ C2,β

Z,loc(�), while ∂H
∂zij
(Z2u) ∈ C1,β

Z,loc(�). Moreover, by Proposition 1.5 the function

v = (
v1, . . . , v2n, v2n+1

) = (
Z1u, . . . , Z2nu, arctan uxn+1

)
is a C2,β

Z,loc(�) solution to Hv = f (·, u, v, Zv) with f = (f1, . . . , f2n+1) a smooth function of

its arguments. Since the right-hand side in (1.26) is of class C1,β
Z,loc(�), we apply Proposition 1.4

with m = 2 to get v ∈ C3,γ
Z,loc(�) for every γ ∈ (0, β).

Then we conclude the proof by induction. Let us assume that the function v defined in (1.25)
belongs to Cm,αZ,loc(�) and prove that v ∈ C

m+1,β
Z,loc (�) for every β ∈ (0, α). Indeed, a, b, λ ∈

C
m,α
Z,loc(�),

∂H
∂zij

∈ Cm−1,α
Z,loc (�) and v is a solution to (1.26) with right-hand side of classCm−1,α

Z,loc (�).

Hence, by Proposition 1.4, v ∈ Cm+1,β
Z,loc (�) for every β ∈ (0, α) and Theorem 1.3 is proved.

Acknowledgements and comments

We would like to thank the anonymous referee for asking us to clarify the connection between
Theorem 1.1 and the sharp boundary regularity of the solution of the Fefferman problem. We
recall that, given a strictly pseudoconvex set D, the Fefferman problem


(−1)n+1 det

(
ϕ ϕk̄

ϕj ϕj k̄

)
= 1 inD ,

ϕ = 0 on ∂D

has a unique solution ϕ ∈ Cn+2−ε(D), which is not smooth up to the boundary. Obviously,
if ϕ is the solution of the Fefferman problem, then we can take −ϕ as a defining function for
∂D. However, this is not in contrast with Theorem 1.1, which states that if kM is smooth, then
M = ∂D is locally the graph of a smooth function.

It is a pleasure to thank Sorin Dragomir for carefully reading this article and for some useful
suggestions about the final statement of Theorem 1.1.

References

[1] Bedford, E. and Gaveau, B. Hypersurfaces with bounded Levi form, Indiana Univ. J., 27(5), 867–873, (1978).



324 Annamaria Montanari and Francesca Lascialfari

[2] Caffarelli, L., Kohn, J.J., Niremberg, L., and Spruck, J. The Dirichlet problem for non-linear second-order elliptic
equations II: Complex Monge–Ampère and uniformly elliptic equations, Comm. Pure Appl. Math., 38, 209–252,
(1985).

[3] Capogna, L., Danielli, D., and Garofalo, N. Capacitary estimates and the local behavior of solutions of nonlinear
subelliptic equations, Am. J. Math., 118(6), 1153–1196, (1996).

[4] Citti, G. C∞ regularity of solutions of a quasilinear equation related to the Levi operator, Ann. Scuola Norm. Sup.
di Pisa Cl. Sci., 4, vol. XXIII, 483–529, (1996).

[5] Citti, G.C∞ regularity of solutions of the Levi equation, Ann. Inst. H. Poincaré, Anal. non Linéaire, 15(4), 517–534,
(1998).

[6] Citti, G., Lanconelli, E., and Montanari, A. On the smoothness of viscosity solutions of the prescribed Levi-curvature
equation, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 10, 61–68, (1999).

[7] Citti, G., Lanconelli, E., and Montanari, A. Smoothness of Lipschitz continuous graphs with non vanishing Levi
curvature, Acta Math., 188, 87–128, (2002).

[8] Citti, G. and Montanari, A. Strong solutions for the Levi curvature equation, Adv. Diff. Equ., 5(1-3), 323–342,
(2000).

[9] Citti, G. and Montanari, A. Regularity properties of Levi flat graphs, C.R. Acad. Sci. Paris, 329(1), 1049–1054,
(1999).

[10] Citti, G. and Montanari, A. Analytic estimates for solutions of the Levi equation, J. Diff. Equ., 173, 356–389,
(2001).

[11] Citti, G. and Montanari, A. C∞ regularity of solutions of an equation of Levi’s type in R
2n+1, Ann. Mat. Pura

Appl., 180, 27–58, (2001).

[12] Citti, G. and Montanari, A. Regularity properties of solutions of a class of elliptic-parabolic nonlinear Levi type
equations, Trans. Am. Math. Soc., 354, 2819–2848, (2002).

[13] D’Angelo, J.P. Several Complex Variables and the Geometry of Real Hypersurfaces, Studies in Advanced Mathe-
matics, CRC Press, Boca Raton, FL, (1993).

[14] Folland, G.B. Subelliptic estimates and functions spaces on nilpotent Lie groups, Ark. Mat., 13, 161–207, (1975).

[15] Folland, G.B. and Stein, E.M. Estimates for the ∂̄b complex and analysis on the Heisenberg group, Comm. Pure
Appl. Math., 20, 429–522, (1974).

[16] Gilgarg, D. and Trudinger, N.S. Elliptic Partial Differential Equations of Second-Order, Grundlehrer der Math.
Wiss., vol. 224, Springer-Verlag, New York, (1977).

[17] Hörmander, L. An Introduction to Complex Analysis in Several Variables, Von Nostrand, Princeton, NJ, (1966).

[18] Hörmander, L. Hypoelliptic second-order differential equations, Acta Math., 119, 147–171, (1967).

[19] Krantz, S. Function Theory of Several Complex Variables, John Wiley & Sons, New York, (1982).

[20] Lascialfari, F. and Montanari, A. Smooth regularity for solutions of the Levi Monge–Ampère equation, to appear
on Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 12, 115–123, (2001).

[21] Montanari, A. Hölder a priori estimates for second-order tangential operators on CR manifolds, Ann. Scuola Norm.
Sup. Pisa Cl. Sci. (5), vol. II, 345–378, (2003).

[22] Nagel, A., Stein, E.M., and Wainger, S. Balls and metrics defined by vector fields I: basic properties, Acta Math.,
155, 103–147, (1985).

[23] Range, R.M. Holomorphic Functions and Integral Representation Formulas in Several Complex Variables,
Springer-Verlag, New York, (1986).

[24] Rothschild, L.P. and Stein, E.M. Hypoelliptic differential operators on nilpotent groups, Acta Math., 137, 247–320,
(1977).

[25] Sánchez-Calle, A. Fundamental solutions and geometry of the sum of squares of vector fields, Invent. Math., 78,
143–160, (1984).

[26] Slodkowski, Z. and Tomassini, G. The Levi equation in higher dimension and relationships to the envelope of
holomorphy, Am. J. Math., 116, 479–499, (1994).

[27] Slodkowski, Z. and Tomassini, G. Weak solutions for the Levi equation and envelope of holomorphy, J. Funct.
Anal., 101(4), 392–407, (1991).

[28] Tomassini, G. Geometric Properties of Solutions of the Levi equation, Ann. Mat. Pura Appl. (4), 152, 331–344,
(1988).

[29] Xu, C.J. Regularity for quasilinear second-order subelliptic equations, Comm. Pure Appl. Math., 45, 77–96, (1992).



The Levi Monge–Ampère Equation: Smooth Regularity of Strictly Levi Convex Solutions 325

Received March 26, 2002
Revision received November 18, 2003

Dipartimento di Matematica, Università di Bologna Piazza Porta San Donato 5, 40126 Bologna, Italy
e-mail: montanar@dm.unibo.it

Dipartimento di Matematica, Università di Bologna Piazza Porta San Donato 5, 40126 Bologna, Italy
e-mail: lascia@dm.unibo.it

Communicated by Jeffery McNeal


