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Dipartimento di Matematica, Università di Bologna, Piazza di Porta S. Donato, 5, 40127 Bologna, ITALY.‡

Abstract

We introduce a new class of curvature PDO’s describing relevant properties of real hypersur-

faces of Cn+1. In our setting the pseudoconvexity and the Levi form play the same role as the

convexity and the real Hessian matrix play in the real Euclidean one. Our curvature operators

are second order fully nonlinear PDO’s not elliptic at any point. However, when computed on

generalized s-pseudoconvex functions, we shall show that their characteristic form is nonnega-

tive definite with kernel of dimension one. Moreover, we shall show that the missing ellipticity

direction can be recovered by taking into account the CR structure of the hypersurfaces. These

properties allow us to prove a strong comparison principle, leading to symmetry theorems for

domains with constant curvatures and to identification results for domains with comparable cur-

vatures.
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1 Introduction

In this paper we are concerned with some notions of curvatures associated with pseudoconvexity and

Levi form the way, for instance, the classical Gauss and Mean curvatures are related to the convexity

and to the Hessian matrix.
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The curvature operators we shall deal with lead to a new class of second order fully nonlinear

equations whose characteristic form, when computed on generalized pseudoconvex functions, are non-

negative definite with kernel of dimension one. Then the relevant equations are not elliptic at any

point. However, we shall show that they have the following redeeming feature: the missing ellip-

ticity direction can be recovered by suitable commutation relations. We shall use this property to

prove a strong comparison principle leading to some symmetry theorems for domains with constant

curvatures, and identification results for domains with comparable curvatures.

A class of equations strongly related to the ones studied in this paper were first introduced in [10]

and [7].

Let bD = {z ∈ Cn+1 : f(z) = 0} be a real manifold, boundary of the domain D = {z ∈ Cn+1 :

f(z) < 0}. We assume f is a real value function with continuous second order derivatives and such

that

∂pf := (fz1(p), . . . , fzn+1(p)) 6= 0

at any point p ∈ bD. Hereafter we shall use the notations

fz`
=

∂f

∂z`
, fz̄`

=
∂f

∂z̄`
.

We shall also write f` and f¯̀ instead of fz`
and fz̄`

, respectively. Similar notations will be used for

the second order derivatives. Let us denote by TCp (bD) the complex tangent space to bD at the point

p :

TCp (bD) = {h ∈ Cn+1 : 〈h, ∂̄pf〉 = 0}

with 〈·, ·〉 the usual Hermitian inner product in Cn+1 and ∂̄pf = (fz̄1(p), . . . , fz̄n+1(p)).

Let us denote by Hp(f) the complex Hessian matrix of the function f at p,

Hp(f) :=
(
fj,k̄(p)

)
j,k=1,...,n+1

.

The Hermitian form

ζ 7−→ Lp(f, ζ) := 〈HT
p (f)ζ, ζ〉 =

n+1∑

j,k=1

fj,k̄ζj ζ̄k,

when restricted to TCp (bD), is called the Levi form of the function f at the point p. It is a standard

fact that Lp(f, ·)/TCp (bD) is the biholomorphic invariant part of the real Hessian form of f. One way

to derive it is to look for a biholomorphic invariant analogue of the Euclidean convexity (see e.g. [6],

[9]). The Levi form plays a crucial role in the study of the envelopes of holomorphy, in geometric

theory of several complex variables: for details on this topic we refer the reader to [6], [9], [5], [12],

[11], [10].

We remind that D is called strictly Levi-pseudoconvex if the Levi form of f is strictly positive

definite at any point of bD.
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Let B = {u1, . . . , un} be an orthonormal basis of TCp (bD). We call B-normalized Levi matrix of

bD at a point p ∈ bD the n× n Hermitian matrix

Lp(f, B) =
( 1
|∂pf | 〈H

T
p (f)uj , uk〉

)
j,k=1,...,n

. (1)

Obviously, Lp(f,B) depends on the defining function f and on the basis B of TCp (bD). However,

its eigenvalues only depend on the domain D. More precisely, if f ′ and B′ are respectively another

defining function of D and another orthonormal basis of TCp (bD) then

λ(Lp(f,B)) = λ(Lp(f ′, B′)),

(see the Appendix, Proposition A.1).

We agree to denote λ(A) the set of eigenvalues of a n × n Hermitian matrix A. In what follows,

for brevity of notations, we shall write λp(bD) instead of λ(Lp(f,B)).

Following the paper [3], where classical real Hessian matrices are considered, we give the following

definition.

Definition 1.1. We call generalized symmetric function in Rn an application s : Σ → R, with

Σ ⊆ Rn and such that:

(i) Σ and s are invariant with respect to one-to-one rearrangements of λ1, . . . , λn. Moreover, Σ is

an open cone contained in the half space

{(λ1, . . . , λn) ∈ Rn :
n∑

j=1

λj > 0},

and if λ(A), λ(B) ∈ Σ, then λ(θA + (1− θ)B) ∈ Σ for every θ ∈ [0, 1];

(ii) s is smooth and
∂s

∂λj
(λ) > 0, ∀λ ∈ Σ, ∀j = 1, . . . , n;

(iii) the function A → S(A), defined by

S(A) = s(λ(A)),

is smooth and S(A) → 0 as A → 0.

Given a generalized symmetric function

s : Σ → R, Σ ⊆ Rn (2)

the real value map

p 7−→ s(λp(bD)), p ∈ bD

can be seen as a geometric feature of bD.

3



The domain D will be called s-admissible if

λp(bD) ⊆ Σ ∀p ∈ bD.

We call s-pseudoconvex an s-admissible domain D such that

s(λp(bD)) > 0 ∀p ∈ bD.

A defining function f of a domain D will be called s-admissible if D is s-admissible. Finally, the real

number

Sp(bD) := s(λp(bD)) (3)

will be called the s-pseudocurvature of bD at p.

We explicitly remark that the notions of s-pseudoconvexity and of s-pseudocurvature are inde-

pendent of the particular choice of the defining function of D.

Example 1.1 (Total Levi-curvature). Let Σ = {(λ1, . . . , λn) ∈ Rn : λj > 0 ∀j = 1, . . . , n} and

s : Σ → R, s(λ1, . . . , λn) =
n∏

j=1

λj . (4)

It is quite obvious that this function satisfies conditions (i) and (ii). It also satisfies (iii) because

S(A) = det A.

A domain D is strictly Levi-pseudoconvex iff it is s-pseudoconvex, with s given by (4). In this case

the s-pseudocurvature will be simply called total Levi-curvature and will be denoted by K
(n)
p (bD).

This curvature can be seen as the pseudoconvex counterpart of the Gauss curvature for boundaries

of domains in real Euclidean spaces.

The notion of total Levi-curvature was implicitly introduced in the papers [1] and [10]: it was

explicitly written in [7] and [8]. By using the definition given in [1] one realizes that

K(n)
p (bD) := − 1

|∂pf |n+2
det




0 f1̄ . . . fn+1

f1 f1,1̄ . . . f1,n+1

...
...

. . .
...

fn+1 fn+1,1̄ . . . fn+1,n+1.




(5)

With this formula in hands it is easy to compute the total Levi-curvature of the sphere of radius R,

boundary of the ball

DR = {z ∈ Cn+1 : |z|2 < R2}.

We have

K(n)
p (bDR) =

( 1
R

)n

, ∀p ∈ bDR.
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If we consider the cylinder

CR = {(z1, . . . , zn+1) ∈ Cn+1 :
n∑

j=1

|zj |2 < R2}

from (5) we readily get

K(n)
p (bCR) = 0, ∀p ∈ bCR.

We would like to notice the existence of cylinder-like domains whose boundaries have strictly positive

total Levi-curvature.

For example, if we take

C∗R = {(z1, . . . , zn+1) ∈ Cn+1 :
n+1∑

j=1

(zj + z̄j

2

)2

< R2},

we have

K(n)
p (bC∗R) =

( 1
2R

)n

, ∀p ∈ bC∗R.

Example 1.2 (Classical elementary symmetric functions). Let j ∈ {1, . . . , n} and consider

the j-th elementary symmetric function

σ(j)(λ1, . . . , λn) :=
∑

1≤i1<···<ij≤n

λi1 · · ·λij .

For every q ∈ {1, . . . , n} define

Σ(q) = {λ ∈ Rn : σ(j)(λ) > 0,∀ j = 1, . . . , q}

and

s(q) : Σq → R, s(q)(λ) =
σ(q)(λ)
n

q




.

We know that s(q) satisfies conditions (i), (ii) and (iii) (see e.g. [3]).

We may simply call q-pseudoconvex a domain which is s(q)-pseudoconvex. We shall also denote

by K
(q)
p (bD) the s(q)-pseudocurvature of bD at the point p. Obviously, when q = n, K

(q)
p is the

total Levi-curvature of the previous Example 1.1. When q = 1, K
(q)
p might be called the mean Levi

curvature of bD. Indeed

s(1)(λ) =
λ1 + · · ·+ λn

n
.

Just to show an example, we want to compute the K(q)-curvature of the boundary of the ball DR.

Since f(z) = |z|2 −R2 is a defining function for DR, we have

Lp(f, B) =
1
R

In, ∀p ∈ bDR,
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for any orthonormal basis B of the complex tangent space. Then, all the eigenvalues of the normalized

Levi form are equal to 1
R , so that

K(q)
p (bDR) =

( 1
R

)q

, ∀p ∈ bDR. (6)

Classical elementary symmetric functions of the eigenvalues of the Levi form were considered by

Bedford and Gaveau in [1]. Taking into account the definitions given in that paper, we can recognize

that

K(q)
p (bD) = − 1

n

q




1
|∂pf |q+2

∑

1≤i1<···<iq+1≤n+1

∆(i1,··· ,iq+1)(f)

where

∆(i1,··· ,iq+1)(f) = det




0 fī1 . . . fiq+1

fi1 fi1 ,̄i1 . . . f1,iq+1

...
...

. . .
...

fiq+1 fiq+1 ,̄i1 . . . fiq+1,iq+1




.

We want to remark that all the previous definitions can be “localized” in a quite obvious way.

Then, we can extend the notion of s-pseudoconvexity to the graphs of functions defined in an open

subset of R2n+1.

Let Ω be an open subset of R2n+1 and let u ∈ C2(Ω,R). Denote by

Γ(u) := {(ξ, τ) ∈ Ω× R : u(ξ) < τ}

and by

γ(u) := {(ξ, u(ξ)) : ξ ∈ Ω}

the epigraph and the graph of u respectively. With the usual identification of R2n+2 with Cn+1

we shall consider Γ(u) and γ(u) as subsets of Cn+1. We say that u is s-pseudoconvex if Γ(u) is

s-pseudoconvex at any point of γ(u).

As we shall prove in next section, if u is s-pseudoconvex and γ(u) has a prescribed s-pseudo-

curvature, then u satisfies a fully nonlinear equation for which, in Section 4, we shall prove a strong

comparison principle. From this result we straightforwardly obtain the following Theorem 1.1, the

main application we show of our comparison principle.

Theorem 1.1. Let D and D′ be s-pseudoconvex domains of Cn+1 with connected boundaries. Suppose

the following conditions are satisfied

a. D′ ⊆ D and bD ∩ bD′ 6= ∅

b. Sp′(bD′) ≤ Sp(bD) for every p ∈ bD and p′ ∈ bD′.
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Then D′ = D.

We shall prove this theorem at the end of Section 5. From Theorem 1.1 we easily get the following

corollaries.

Corollary 1.1. Let D ⊆ Cn+1 a q-pseudoconvex domain with connected boundary, 1 ≤ q ≤ n.

Assume there exists a ball DR(z0) ⊆ D tangent to bD at some point of bD. Then, if

K(q)
p (bD) ≥

( 1
R

)q

, ∀p ∈ bD,

we have D = DR(z0).

Proof. It follows from Theorem 1.1 and identity (6).

Corollary 1.2. Let u : R2n+1 → R be a C2 and q-pseudoconvex function. Denote by K(q)(ξ, u) the

K(q)-curvature of the graph of u at the point (ξ, u(ξ)). Then

inf
ξ∈R2n+1

K(q)(ξ, u) = 0. (7)

Proof. Since u is q-pseudoconvex, it is K(q)(ξ, u) > 0 for every ξ ∈ R2n+1. By contradiction assume

m := inf
ξ∈R2n+1

K(q)(ξ, u) > 0.

There exists a ball D1/m(z0) which is interior tangent to the epigraph of u at some point p0 =

(ξ0, u(ξ0)). Then, by Corollary 1.1, Γ(u) = D1/m(z0). This is absurd because Γ(u), the epigraph of u,

is unbounded.

A stronger result, generalizing a theorem by Bedford and Gaveau [1], can be obtained by directly

using the comparison principle of Theorem 5.1 in Section 5.

Corollary 1.3. Let u : BR → R be a C2 q-pseudoconvex function in the ball of R2n+1

BR := {ξ ∈ R2n+1 : |ξ| < R}.

Then

R ≤ sup
ξ∈BR

( 1
K(q)(ξ, u)

)1/q

. (8)

Proof. Suppose (8) is false. Then, there exists r > 0, r < R, such that

K(q)(ξ, u) >
(1

r

)q

, ∀ξ ∈ Br. (9)

On the other hand, there exists a ball Dr(α) of R2n+2, with radius r and center at α, contained

in Γ(u) and touching γ(u) at a point p0 = (ξ0, u(ξ0)).
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Let us consider the function v : Br(β) → R whose graph γ(v) is the lower hemisphere of bDr(α).

Then, by (9) and (6)

K(q)(ξ, u) > K(q)(ξ, v) ∀ξ ∈ Br(β).

Moreover, u ≤ v in Br(β) and u(ξ0) = v(ξ0). By Theorem 5.1 it follows that u ≡ v in Br(β), a

contradiction because the gradient of u is bounded in Br(β) while that of v is not.

2 Structure of curvature operators

In this section we shall show some noteworthy identities and some crucial properties of curvature

operators. As in the Introduction we denote by D = {z ∈ Cn+1| f(z) < 0 } a domain of Cn+1 whose

defining function f is of class C2 and such that ∂pf 6= 0 when f(p) = 0. Then bD = {z ∈ Cn+1|f(z) =

0}.
Our first aim is to show an explicit basis of TCp (bD), the complex tangent space to bD at the point

p. Since ∂pf 6= 0 we may assume fn+1(p) 6= 0. Define

h` = e` − α`en+1, ` = 1, . . . , n

where (ej)j=1,...,n+1 is the canonical basis of Cn+1, and

α` = α`(p) :=
f`(p)

fn+1(p)
. (10)

Since

〈h`, ∂̄pf〉 =
n+1∑

j=1

〈e` − α`en+1, fj̄(p)ej〉

=f`(p)− α`fn+1(p) = 0,

then V = {h`| ` = 1, . . . , n} is a basis of TCp (bD).

In what follows we identify h` with the first order complex differential operator

Z` = ∂z`
− α`∂zn+1 , ` = 1, . . . , n. (11)

Then, at the point p ∈ bD

Z`(f) = 〈h`, ∂̄pf〉 = 0 (12)

for every ` = 1, . . . , n. We shall also put

α¯̀ = ᾱ`, and Z¯̀ = ∂z̄`
− α¯̀∂z̄n+1 .

For any j, k ∈ {1, . . . , n} let us define

Aj,k̄ = Aj,k̄(p) := 〈HT
p (f)hj , hk〉.
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Then

Aj,k̄ =〈HT
p (f)(ej − αjen+1), (ek − αken+1)〉

=fj,k̄ − αk̄fj,n+1 − αjfn+1,k + αjαk̄fn+1,n+1.

By replacing at the right hand side the very definitions of αj and αk̄, we obtain

Aj,k̄ = − 1
|fn+1|2 det




0 fk̄ fn+1

fj fj,k̄ fj,n+1

fn+1 fn+1,k̄ fn+1,n+1


 . (13)

The eigenvalues of the normalized Levi form can be written in terms of the matrix

A(f) =
(
Aj,k̄(f)

)
j,k=1,...,n

.

Indeed:

Proposition 2.1. The eigenvalues of the normalized Levi form of bD at the point p ∈ bD are the

eigenvalues of the matrix

C(f) :=
1

|∂pf |A(f)H(f) (14)

where

H(f) = In − α · α∗
1 + |α|2

and α · α∗ denotes the product of the matrices α = (α1, . . . , αn)T and α∗ = (ᾱ1, . . . , ᾱn).

Proof. Let us denote by V the (n + 1)× n matrix whose columns are h1, . . . hn :

V = [h1, . . . , hn] , h` = e` + α`en+1.

Then, if U = [u1, . . . , un] is an orthonormal basis of TCp (bD), there exists a n×n matrix N such that

V = U NT .

Since AT (f) = V ∗HT
p (f)V, we have AT (f) = N̄(U∗HT

p (f)U)NT so that

1
|∂pf |A(f) = NLp(f, U)N∗,

where Lp(f, U) is the U−normalized Levi matrix (see (1)). As a consequence, the matrix

Lp(f, U) =
1

|∂pf |N
−1A(f)(N∗)−1 (15)

has the same eigenvalues of the matrix

1
|∂pf |A(f)(NN∗)−1.
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On the other hand, since U is orthogonal, (NN∗)T = N̄U∗U NT = V ∗V. Now, an easy computation

shows that

(V ∗V )T = In + α · α∗

while for Sherman-Morrison formula

(In + α · α∗)−1 = In − 1
1 + |α|2 α · α∗.

This completes the proof.

As a first observation on the Proposition 2.1, we show how the total and the mean Levi-curvatures

can be expressed in terms of the matrix A(f). We have

K(n)
p (bD) =

|fn+1|2
|∂pf |n+2

detA(f) (16)

and

K(1)
p (bD) =

1
|∂pf | trace

((
In − α · α∗

1 + |α|2
)

A(f)
)

. (17)

Now, we want to show some identities involving the Aj,k̄’s and the complex vector fields Zj ’s in (11).

By means of elementary direct computations one recognizes that

Zj(αk) = − 1
f3

n+1

det




0 fk fn+1

fj fj,k fj,n+1

fn+1 fn+1,k fn+1,n+1


 (18)

and

Zj(αk̄) =− 1
|fn+1|2fn+1

det




0 fk̄ fn+1

fj fj,k̄ fj,n+1

fn+1 fn+1,k̄ fn+1,n+1




=
1

fn+1

Aj,k̄.

(19)

As a consequence

Zj(αk) = Zk(αj) (20)

and

Zj̄(αk) = Zj(αk̄) =
1

fn+1
Aj,k̄ =

1
fn+1

Ak,j̄ . (21)

With these identities in hands it is easy to show the following proposition.

Proposition 2.2. For every j, k = 1, . . . , n:

1. [Zj , Zk] = 0,

2. [Zj , Zk̄] = Aj,k(f)T, where T = 1
fn+1

∂zn+1 − 1
fn+1

∂zn+1
.
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Proof. 1. Since

[Zj , Zk] = (Zk(αj)− Zj(αk)) ∂zn+1 ,

from (20) we immediately get [Zj , Zk] = 0.

2. Since

[Zj , Zk̄] = (Zk̄αj) ∂zn+1 − (Zjαk̄)∂zn+1
,

by (19) and (21) we have

[Zj , Zk̄] =
1

fn+1
Aj,k̄∂zn+1 −

1
fn+1

Aj,k̄∂zn+1
= Aj,k̄T.

Proposition 2.3. Let s be a generalized symmetric function. Assume that D is a s-admissible

domain. Then the s-pseudocurvature of bD at p ∈ bD can be written as follows

Sp(bD) =
n∑

j,k=1

aj,k̄Aj,k̄

where aj,k̄ = ak,j̄ smoothly depends on ∂zf, ∂z̄f, ∂z∂z̄f and

n∑

j,k=1

aj,k̄ζj ζ̄k ≥ m|ζ|2 ζ ∈ Cn

for a suitable m = m(p, f) > 0 continuously depending on p and f.

Proof. By the very definition of Sp(bD) we have

Sp(bD) = S(Lp(f,B)) = s(λ1, . . . , λn)

where Lp(f, B) is the B normalized Levi matrix and λ1, . . . , λn are its eigenvalues. Moreover, on the

set of Hermitian admissible matrices C = (c`,k̄)`,k=1,...,n the function C 7−→ S(C) is smooth. We

shall denote by S`,k̄(C) the derivative of S with respect to c`,k̄. Since L = Lp(f, B) is admissible, the

same holds for L + C, for every Hermitian matrix C non-negative definite and small enough. For

such a matrix we have

S(L + C)− S(L) = s(η1, . . . , ηn)− s(λ1, . . . , λn)

where η1, . . . , ηn are the eigenvalues of L + C. since C ≥ 0, then ηj ≥ λj , for any j ∈ {1, . . . , n}.
Moreover, by Definition 1.1-(ii) δ = δ(L) = 1

2 min
{

∂s
∂λj

(λ1, . . . , λn)| j = 1, . . . , n
}

> 0. Then, if C is
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small enough

S(L + C)− S(L) =
∫ 1

0

d

dτ
s(λ + τ(η − λ))dτ

=
n∑

j=1

∫ 1

0

∂s

∂λj
(λ + τ(η − λ))dτ(ηj − λj)

≥δ

n∑

j=1

(ηj − λj) = δ (trace(L + C)− trace(L))

=δtraceC.

Let us now apply this inequality to the matrix

C = tζ · ζ∗, ζ ∈ Cn,

and t > 0 small enough. We obtain

S(L + tζ · ζ∗)− S(L) ≥ δ trace (C) = δt|ζ|2. (22)

On the other hand
d

dt
S(L + tζ · ζ∗)|t=0 =

n∑

`,k=1

S`,k̄(L)ζ`ζ̄k.

Then, from the inequality (22) we get
n∑

`,k=1

S`,k̄(L)ζ`ζ̄k ≥ δ|ζ|2, ∀ζ ∈ Cn. (23)

In what follows we shall denote by ∇S the matrix (S`,k̄)`,k=1,...,n. Since L is admissible, the same

holds for any tL, 0 < t ≤ 1. Then

S(L) =
∫ 1

0

d

dt
S(tL)dt =

∫ 1

0

trace(∇S(tL) · L)dt

=(by(15))
∫ 1

0

trace

(
∇S(tL)

1
|∂pf |N

−1A(f)(N∗)−1

)
dt

=
∫ 1

0

trace

(
(N∗)−1∇S(tL)N−1

|∂pf | A(f)
)

dt.

If we denote by (aj,k̄)j,k=1,...,n the matrix
∫ 1

0

(N∗)−1∇S(tL)N−1

|∂pf | dt

we obtain

S(L) =
n∑

j,k=1

aj,k̄Aj,k̄.

On the other hand, by (23)
n∑

j,k=1

aj,k̄ζj ζ̄k =
∫ 1

0

〈∇S(tL)N−1ζ, N−1ζ〉 1
|∂pf |dt

≥ 1
|∂pf | |N

−1ζ|2
∫ 1

0

δ(tL)dt ≥ m|ζ|2
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where

m := inf
|ζ|=1

(
1

|∂pf | |N
−1ζ|2

∫ 1

0

δ(tL)dt

)

is strictly positive and continuously depending on p and on f.

3 Curvature operators for cartesian surfaces

Let Ω be an open subset of R2n+1 and let u ∈ C2(Ω,R). The aim of this section is to analyze the

structure of the curvature operators when applied to the graph of u

γ(u) := {(ξ, u(ξ)) : ξ ∈ Ω}.

We look at γ(u) as (a subset of) the boundary of the domain

Γ(u) = {(ξ, τ) ∈ Ω× R : u < τ}.

Let us take as defining function of Γ(u)

f(ξ, τ) = u(ξ)− τ. (24)

We agree to identify R2n+1 × R with Cn+1 and to denote by ξ = (x1, y1, . . . , xn, yn, t) the point of

R2n+1. To be consistent, the point of Cn+1 will be denoted by z = (z1, . . . , zn+1), with zj = xj + iyj ,

j = 1, . . . , n, zn+1 = t + iτ.

Reminding the definition given in the Introduction, we say that u is s-admissible if f is s-

admissible. The function u is said s-pseudoconvex at a point ξ ∈ Ω if Γ(u) is s-pseudoconvex at the

point (ξ, u(ξ)) ∈ γ(u). When u is s-pseudoconvex at any point we simply say that u is s-pseudonvex.

Let ξ ∈ Ω and p = (ξ, u(ξ)) ∈ γ(u). With f given as in (24), by (12) we have 0 = Z`(u) − Z`(τ)

hence

Z`(u) =
i

2
α` (25)

where

α` =
f`

fn+1
=

∂x`
u− i∂y`

∂tu + i
. (26)

We remark that for function v independent of τ

Z`(v) = (∂z`
− 1

2
α`∂t)(v),

so that Z`(v) = W`(v) where W` is the complex vector field

W` = ∂z`
− 1

2
α`∂t. (27)

We shall denote

W¯̀ = ∂z̄`
− 1

2
α¯̀∂t.

13



With this notation we can write (25) as follows

W`(u) =
i

2
α`. (28)

From Proposition 2.2 and (19) and (20) we easily obtain the following proposition, in which we also

use the notation

Bj,k̄(u) = Aj,k̄(u− τ). (29)

Proposition 3.1. At any point of Ω we have

(i) 1
2 (WjWk̄ + Wk̄Wj)(u) = Bj,k̄(u)

1+u2
t

(ii) [Wj ,Wk̄] = −4i
Bj,k̄(u)

1+u2
t

∂t

Proof. (i) Identities (19) and (20) imply

Wk̄Wj(u) =
i

2
Wk̄(αj) = (since αj does not depend on τ)

=
i

2
Zk̄(αj) = (by (20))

i

2
Aj,k̄(f)
fn+1

= i
Aj,k̄(u− τ)

(∂t − i∂τ )(u− τ)
= i

Bj,k̄(u)
∂tu + i

.

Hence

WjWk̄(u) = Wj̄Wk(u) = −i
Bk,j̄(u)
∂tu− i

= −i
Bj,k̄(u)
∂tu− i

.

Then

(WjWk̄ + Wk̄Wj)(u) = iBj,k̄(u)
(

1
∂tu + i

− 1
∂tu− i

)
= 2

Bj,k̄(u)
1 + u2

t

(ii) We first notice that

[Wj ,Wk̄] = −(Wj(αk̄)−Wk̄(αj))∂t.

Then, since

Wj(αk̄) = 2iWjWk̄(u), Wk̄(αj) = −2iWk̄Wj(u),

the assertion follows from (i).

This proposition implies the following crucial corollary.

Corollary 3.1. Let u : Ω → R be an s-admissible function. Then

dim SpanC {Wj , [Wj ,Wk̄] : j, k = 1, . . . , n} = n + 1 (30)

at any point of Ω.
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Proof. Let ξ ∈ Ω be fixed and p = (ξ, u(ξ)). Denote by λ1, · · · , λn the eigenvalues of the normalized

Levi-form of γ(u) at the point p. Then λ1 + · · · + λn > 0. As a consequence, by Proposition 2.1

the matrix (Bj,k̄)j,k=1,...,n is not vanishing. Hence B`,m̄ 6= 0 for a suitable pair (`,m) so that , by

Proposition 3.1-(ii),

W1, . . . , Wn, [W`,Wm̄]

are linearly independent in Cn+1.

Remark 3.1. For (30) to hold at ξ ∈ Ω we obviously only need the existence of a pair (`,m) such

that B`,m̄ 6= 0 at ξ.

Let us now consider a function

K : Ω× R× R2n+1 −→ R.

We say that u has the assigned s-Levi curvature K in Ω if

Sp(γ(u)) = K(ξ, u, Du), p = (ξ, u(ξ))

for every ξ ∈ Ω. Here we have denoted by Du the Euclidean gradient of u in R2n+1. By Proposition

2.3 and Proposition 3.1 we immediately obtain

Proposition 3.2. Let u ∈ C2(Ω,R) be an s-admissible function. If u has the assigned s-Levi curva-

ture K in Ω, then it satisfies the equation

Lu = K(ξ, u, Du), ξ ∈ Ω

where L denotes a second order fully nonlinear operator of the following type

L = Lu :=
n∑

j,k=1

bj,k̄

WjWk̄ + Wk̄Wj

2
(31)

and bj,k̄ = bk,j̄ = bj,k̄(Du, D2u) smoothly depends on Du and on the real Hessian matrix D2u.

Moreover, for every compact set K ⊆ Ω there exists m > 0 such that
n∑

j,k=1

aj,k̄(Du(ξ), D2u(ξ))ζj ζ̄k ≥ m|ζ|2, ∀ζ ∈ Cn

and for every ξ ∈ K.

Proof. By Proposition 2.3 we have
n∑

j,k=1

aj,k̄Bj,k̄ = K(ξ, u, Du), in Ω.

Then, by Proposition 3.1-(i), we get the assertions with

bj,k̄ =
aj,k̄

1 + u2
t

.
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In next section we shall prove our main comparison theorem. For this we need to write our

curvature operators in real form. Let us put

Xj = 2Re (Wj), Yj = −2 Im (Wj), j = 1, . . . , n

and

aj = −Re (αj), bj = Im (αj).

Then, since Wj = ∂zj − αj

2 ∂t, we have

Xj = ∂xj
+ aj∂t, Yj = ∂yj

+ bj∂t, j = 1, . . . , n. (32)

With the notations just introduced we can write (25) as follows

(Xj − iYj)(u) = iαj = −bj − iaj

so that

Xj(u) = −bj , Yj(u) = aj .

It is easy to see that these relations, together with the structure (32) of Xj and Yj characterize aj

and bj as follows

aj =
uyj − uxj ut

1 + u2
t

, bj =
−uxj − uyj ut

1 + u2
t

.

One can also show that these identities are consistent with (26). We now consider the matrix B :=

(Bj,k̄)j,k=1,...,n in (29), and denote

B1 = Re (B), B2 = Im (B).

Finally, we define the matrix C = (cj,k) as the following 2n× 2n block matrix

C =
1
4


 B1 B2

−B2 B1


 . (33)

Then, if we rename the vector fields Xj and Yj as follows

Xj = Vj , Yj = Vn+j , j = 1, . . . , n,

the curvature operator in (31) takes the form

L = Lu =
2n∑

j,k=1

cj,k(ξ)VjVk, cj,k(ξ) = cj,k(Du(ξ), D2u(ξ)). (34)

Moreover, by Proposition 3.2, for every compact set K ⊆ Ω

2n∑

j,k=1

cj,k(ξ)ηjηk ≥ m

4

2n∑

j=1

η2
j , ∀η ∈ R2n (35)
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and for every ξ ∈ K. Then, the operator L = Lu is “elliptic” only along 2n linearly independent

directions. Thus, L is not elliptic at any point. However, the missing ellipticity direction can be

recovered by commutation. Indeed, given the structure of the vector fields Vj ’s, the commutator

[Vj , Vk] takes the following form

[Vj , Vk] = vj,k∂t

where vj,k is a suitable function in Ω. By Corollary 3.1, for every point ξ ∈ Ω there exists a pair (j, k)

such that vj,k(ξ) 6= 0. Therefore

dim (SpanR{Vj , [Vj , Vk] : j, k = 1, . . . , 2n}) = 2n + 1 (36)

at any point of Ω.

This property will be crucial in the proof of our strong maximum and comparison principles.

4 Strong Maximum principle for subelliptic operators

In this section we assume Ω ⊆ R2n+1 an open set and X1, . . . , X2n linear C1 vector fields in Ω such

that

dim (Span {Xj(ξ), [Xi, Xj ](ξ), i, j = 1, . . . , 2n}) = 2n + 1 (37)

for every ξ ∈ Ω. We consider the following partial differential operator

M =
2n∑

i,j=1

βi,j(ξ)XiXj + 〈β,D〉+ c, (38)

where βi,j , β = (β1, . . . , β2n) and c are real continuous functions in Ω. We also assume that for every

compact set K ⊂ Ω there exists m = m(K) > 0 such that

2n∑

i,j=1

βi,j(ξ)ηiηj ≥ m|ξ|2,∀ξ ∈ K, ∀η ∈ R2n, (39)

where m > 0 is a suitable constant. In (38) D and 〈·, ·〉 denote, respectively, the gradient operator

and the inner product in R2n+1.

Our aim in this section is to prove the following strong maximum principle for M.

Theorem 4.1. Let Ω0 ⊆ Ω be open and connected. Suppose w ∈ C2(Ω0,R) and such that



Mw ≥ 0 in Ω0

w ≤ 0 in Ω0

Then w < 0 in Ω0 or w ≡ 0 in Ω0.

For the proof of this theorem we need some lemmas. The first one shows a weak maximum

principle for M on small open sets.
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Lemma 4.1. For every ξ0 ∈ Ω there exists an open set U0 such that U0 ⊂⊂ Ω, ξ0 ∈ U0, with the

following property: if w ∈ C2(U) satisfies




Mw ≥ 0 inU0

lim supξ→ζ w(ξ) ≤ 0 ∀ ζ ∈ ∂U0

then w ≤ 0 in U0.

Proof. By hypothesis (39), there exists µ ∈ R2n+1 such that

2n∑

j,k=1

βj,k(ξ0)〈Xj(ξ0), µ〉〈Xk(ξ0), µ〉 > 0.

Then, if we define

v(ξ) = M − exp(χ〈µ, ξ〉)

an elementary computation shows that we can choose constants χ,M > 0 and a neighborhood U0 of

ξ0 such that

Mv < 0, inf
U0

v > 0.

It is well known that the existence of such a barrier function implies the weak maximum principle for

M in U0.

The second lemma we need is a kind of Hopf Lemma. Let w : Ω0 −→ R be the function in

Theorem 4.1. Suppose there exists a point ξ0 ∈ Ω0 such that w(ξ0) = 0. Theorem 4.1 requires to

prove that the relatively closed set

F = {ξ ∈ Ω0 : w(ξ) = 0}

actually is equal to Ω0. We argue by contradiction and suppose F 6= Ω0. Then, since Ω0 is connected,

∂F ∩Ω0 6= ∅. A unitary vector ν ∈ R2n+1 will be called an outer normal to F at a point ξ ∈ ∂F ∩Ω

if there exists r > 0 such that the Euclidean ball Br(ξ + rν) centered at ξ + rν and with radius r,

satisfies

Br(ξ + rν) ⊆ Ω0 \ F. (40)

We shall denote by F ∗ the set

F ∗ = {ξ ∈ ∂F ∩ Ω0 : there exists ν outer normal to F at ξ}

Since ∂F ∩ Ω0 6= ∅, it is easy to obtain that F ∗ 6= ∅.

Lemma 4.2. At any point ξ ∈ F ∗ and for every outer normal ν to F at ξ, we have

〈Xj(ξ), ν〉 = 0, ∀j = 1, . . . , 2n. (41)
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Proof. The proof is based on the previous lemma and on quite standard arguments. We directly refer

to [2, Proposition 3.1].

Let us denote by exp(tXj)(ξ) the solution ϕ with maximal domain of the Cauchy problem




ϕ̇ = Xj(ϕ)

ϕ(0) = ξ, ξ ∈ Ω

By the previous lemma and [2, Theorem 2.1], if ξ ∈ F then

exp(tXj)(ξ) ∈ F (42)

for every t in a neighborhood of t = 0 and for every j ∈ {1, . . . , 2n}.
Let i, j ∈ {1, . . . , 2n} and 0 ≤ t ≤ δ, with δ > 0 small enough. Define

Φ(t) = exp(−
√

tXj)
(
exp(−

√
tXi)

(
exp(

√
tXj)

(
exp(

√
tXi)(ξ)

)))
.

It is well known that Φ is differentiable in [0, δ] and

Φ̇(0) = [Xi, Xj ](ξ). (43)

On the other hand, by (42) Φ(t) ∈ F so that by (40),

|Φ(t)− (ξ + rν)|2 ≥ r2 = |Φ(0)− (ξ + rν)|2.

As a consequence
d

dt
|Φ(t)− (ξ + rν)|

∣∣∣
t=0

≥ 0,

i.e. 2r〈Φ̇(0), ν〉 ≥ 0. Using (43) we get 〈[Xi, Xj ](ξ), ν〉 ≥ 0, and exchanging i and j, 〈[Xj , Xi](ξ), ν〉 ≥
0. Then 〈[Xi, Xj ](ξ), ν〉 = 0.

We are now ready to conclude the proof of our strong maximum principle.

Proof of Theorem 4.1. By contraction suppose w 6= 0 and w = 0 somewhere. Then ∅ 6= F 6= Ω0. It

follows that F ∗ 6= ∅. For what we have just proved

〈Xj(ξ), ν〉 = 0, 〈[Xi, Xj ](ξ), ν〉 = 0

for every ξ ∈ F ∗ and ν outer normal to F at ξ, ∀i, j = 1, . . . , 2n. From the rank condition (37), this

implies ν = 0, a contradiction because |ν| = 1.

5 Strong comparison principle for s-pseudoconvex functions

In this section we prove our main comparison Principle and we shall use the same notations of Section

3.
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Theorem 5.1. Let Ω ⊂ R2n+1 be open and connected. Let u, v ∈ C2(Ω) be real s-pseudoconvex

functions. If u ≤ v in Ω and

Lu−K(ξ, u,Du) ≥ Lv −K(ξ, v,Dv)

in Ω for some smooth function K : Ω× R× R2n+1 −→ R, then u ≡ v or u < v in Ω.

Proof. For brevity of notation we denote by L(u) and L(v) the normalized Levi matrix of u and

v, given by replacing in (14) the defining function f with u − τ and v − τ, respectively. Since u

and v are s-admissible functions, by condition (i) in Definition 1.1 we have that the eigenvalues of

θL(u) + (1− θ)L(v) belong to Σ for all 0 ≤ θ ≤ 1.

Let us put w = u − v. We shall show that Mw ≥ 0 in Ω, where M is an operator of the type

(38). First of all we have,

Lu− Lv =Luu− Lvv = S(L(u))− S(L(v))

=
∫ 1

0

d

dθ

(
S(θL(u) + (1− θ)L(v))

)
dθ

=
∫ 1

0

trace (∇S(θL(u) + (1− θ)L(v)) · (L(u)− L(v))) dθ

= trace (J · (L(u)− L(v)))

(44)

where

J :=
∫ 1

0

∇S(θL(u) + (1− θ)L(v))dθ

is a positive definite matrix by (23). Now, by taking into account (15) we have

trace (J · (L(u)− L(v))) = trace
(
J̃ · (B(u)−B(v))

)
+ 〈β, Dw〉,

where β is a continuous function and

J̃ =
2√

1 + |Du|2
(
N−1(u− τ) · J · (N∗)−1(u− τ)

)

is a positive Hermitian matrix with continuous coefficients. Moreover, by (29) and Proposition 3.1-(i),

we have

B(u)−B(v) =
1
2

(
(1 + u2

t )(WjWk̄ + Wk̄Wj)u− (1 + v2
t )(WjWk̄ + Wk̄Wj)v

)n

j,k=1

=
1 + u2

t

2
((WjWk̄ + Wk̄Wj)u− (WjWk̄ + Wk̄Wj)v)n

j,k=1

+ first order derivatives of w

In order to write this last term as a second order operator acting on w, we introduce the notation

Wj [u](w) = (∂zj − i
2αj(u)∂t)(w). Accordingly, Wj(u) = Wj [u](u).

A direct computation shows that

(W`Wp̄ + Wp̄W`) (u)− (W`Wp̄ + Wp̄W`) (v) = (W`[u]Wp̄[u] + Wp̄[u]W`[u]) (w)

+ first order derivatives of w.
(45)
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Thus, by defining Vj [u] = 1
2Re (Wj [u]) and Vn+j [u] = − 1

2 Im (Wj [u]), we can rewrite (44) as follows:

Luu− Lvv =
2n∑

j,k=1

cj,kVj [u]Vk[u](w) + first order derivatives of w. (46)

where C = (cj,k) is the positive non symmetric block matrix

C =
1
4


 Re J̃ ImJ̃

−Im J̃ Re J̃


 .

Obviously

K(ξ, u, Du)−K(ξ, v,Dv) = first order derivatives of w + c1w. (47)

Then, with an obvious meaning of M by (46) and (47)we have

Lu−K(ξ, u,Du)− Lv + K(ξ, v, Dv) = Mw.

Thus, Mw ≥ 0 in Ω and w ≤ 0 in Ω. The thesis follows from Theorem 4.1.

Our Theorem 5.1 contains the strong comparison principle proved by Citti in [4] for a quasilinear

equation, whose principal part is related to the the trace of the Levi form in the case n = 1.

We close this section by giving the

Proof of Theorem 1.1. For any fixed p ∈ bD ∩ bD′ we shall prove the existence of an open set U ⊆
Cn+1, with p ∈ U , such that bD ∩U = bD′ ∩U. Then, from the connectedness of bD and bD′, it will

follow bD = bD′. This, together with the inclusion D′ ⊆ D, will give D = D′.

Let p ∈ bD ∩ bD′. Without loss of generality and by using the notations of Section 3, we may

assume p = (ξ0, τ0) with ξ0 ∈ R2n+1 and τ0 ∈ R, and the existence of an open set Ω ⊆ R2n+1 and of

a connected open set U ⊆ Cn+1 = R2n+1 × R satisfying:

(i) p ∈ U and ξ0 ∈ Ω,

(ii) there exist u, v ∈ C2(Ω,R) such that

D ∩ U = Γ(u) ∩ U, bD ∩ U = γ(u) ∩ U

D′ ∩ U = Γ(v) ∩ U, bD′ ∩ U = γ(v) ∩ U.

Then, since D′ ⊆ D and p ∈ bD ∩ bD′ ∩U, we have u ≤ v in Ω and u(ξ0) = v(ξ0). Moreover, u and v

are s-pseudoconvex and, by hypothesis b,

Lu ≥ Lv, in Ω.

Then, by Theorem 5.1 u ≡ v in Ω. Hence bD′ ∩ U = bD ∩ U, and the proof is complete.
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Appendix

In this Appendix, by using the notations of the Introduction, we prove the following proposition.

Proposition A.1. Let f and f ′ be defining functions of a domain D. Let p ∈ bD and let

B = {u1, . . . , un}, B′ = {v1, . . . , vn}

be orthonormal basis of TCp (bD). Then λ(Lp(f, B)) = λ(Lp(f ′, B′)).

Proof. Denote by U the (n + 1)× n matrix

U = [u1, . . . , un],

and by A(U) the matrix (〈HT
p (f)uj , uk〉)j,k=1,...,n. We have

AT (U) = U∗HT
p (f)U.

Let V = [v1, . . . , vn] be the matrix related to another orthonormal basis B′ of TCp (bD). Now, let

R be an n× n orthonormal matrix such that V = UR. Then

AT (V ) = R∗U∗HT
p (f)UR = R∗AT (U)R,

so that A(V ) and A(U) have the same eigenvalues.

Since f and f ′ are defining functions of D, we have f ′ = σf, where σ is C1 and strictly positive

in a neighborhood of p, see [9, Chapter II, Lemma 2.5]. It follows that

f ′̄j,k(p) = σ(p)fj̄,k(p) + σj̄(p)fk(p) + σk(p)fj̄(p).

Therefore, for every ζ ∈ TCp (bD),

〈HT
p (f ′)ζ, ζ〉 = σ(p)〈HT

p (f)ζ, ζ〉+ 2Re(〈ζ, ∂̄pf〉〈∂̄pσ, ζ〉)
= σ(p)〈HT

p (f)ζ, ζ〉.

On the other hand

∂pf
′ = σ(p)∂pf.

Then
1

|∂pf ′| 〈H
T
p (f ′)ζ, ζ〉 =

1
|∂pf | 〈H

T
p (f)ζ, ζ〉

for every ζ ∈ TCp (bD). This completes the proof.
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