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Abstract. We provide a structure theorem for Carnot–Caratéodory balls defined by a family
of Lipschitz continuous vector fields. From this result a proof of Poincaré inequality follows.

Boules définies par champs de vecteurs

non réguliers et l’inégalité de Poincaré.
Résumé. On prouve un théorème de structure pour les boules de Carnot–Caratéodory définies

par des champs de vecteurs lipschitziens. Une inégalité de Poincaré est aussi démontrée.

1 Introduction and main results

Given a family of vector fields X1, . . . , Xm in Rn, a crucial problem when dealing with

the second order operator
∑

X2
j is to give sufficient conditions to ensure the dou-

bling property of the related control balls and the Poincaré inequality. The problem

is quite well understood for smooth vector fields satisfying the Hörmander condi-

tion: in this case the mentioned properties have been proved respectively by Nagel

Stein and Wainger [19] and by Jerison [13]. The techniques in those papers require a

Ck−smoothness of the vector fields, for some k greater than expected. The situation

is different if we consider diagonal vector fields. In this setting a description of the

control balls and Poincaré inequality was proved by Franchi and Lanconelli [7] in a

low regularity situation.

In a recent paper Lanconelli and the second author [15] gave a method for the proof

of the Poincaré inequality for vector fields. Their proof does not need smoothness,

but it requires that the Carnot Charathéodory balls are representable by means of

controllable almost exponential maps, see [15, Theorem 2.1]. Here we prove that the

necessary tools to use this method can be developed, at least in the step 2 case,

∗Both authors were partially supported by the University of Bologna, funds for selected research
topics.
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assuming only a Lipschitz condition on the vector fields and on the commutators

involved in the statement of the rank condition.

An interesting feature of our result is that the balls are very easy to visualize:

they are equivalent to linear images of boxes (see (7)). We also remark that in the

present paper we never use the Campbell Hausdorff formula (a powerful tool whose

use in analysis of vector fields requires regularity). The relevant properties of the

“almost exponential maps” EI defined in (6) are established in Section 2 by direct

computations (see the exact formula in Lemma 2.2). Exploiting the tools of Section 2

for vector fields of higher step, although of considerable technical difficulty, is an open

interesting problem, which would clarify what are the minimal regularity assumptions

to have a structure theorem for control balls and the Poincaré inequality. Here we give

an answer to this problem in the step 2 case.

For reader convenience we recall the notion of control distance (see [5] and [6]).

Given a family X1, . . . , Xm of locally Lipschitz continuous vector fields on Rn, we say

that an absolutely continuous path γ : [0, T ] → Rn is subunit if, for almost all t ∈ [0, T ],

γ̇(t) =
∑m

j=1 aj(t)Xj(γ(t)), with
∑m

j=1 |aj(t)| < 1. Assuming that for every x, y ∈ Rn

there exists at least one subunit path connecting x and y, define the control distance

related to X1, . . . , Xm (or Carnot Charathéodory distance) as d(x, y) = inf{T > 0 :

there is γ : [0, T ] → Rn, subunit path such that γ(0) = x, γ(T ) = y}. In the sequel we

shall denote by B(x, r) the d-ball with center at x and radius r.

We now state our hypotheses on the vector fields Xj =
∑n

k=1 fk
j ∂k, j = 1, . . . ,m.

We assume that fj is locally Lipschitz continuous, that for any x ∈ Rn, j, k = 1, . . . ,m,

the derivatives

(Xjfk −Xkfj)(x) =
d

dt

(
fk(e

tXjx)− fj(e
tXkx)

)∣∣∣
t=0

exist and that the functions Xjfk−Xkfj are continuous for all j, k (here t 7→ etXjx de-

notes the integral curve of Xj starting at x). Denote by [Xj, Xk] = 〈Xjfk−Xkfj,∇〉 :=∑n
i=1 f i

j,k∂i the commutator. We require that

span{Xj(x), [Xj, Xk](x) : j, k = 1, . . . ,m} = Rn, for any x ∈ Rn. (1)

We finally assume that for any compact K ⊂ Rn there is L > 0 such that

|fj,k(x)− fj,k(y)| ≤ Ld(x, y), (2)

for every x, y ∈ K. Note that, by the recent nonsmooth version of Chow’s theorem

proved by Rampazzo and Sussman [20], the topology defined by d is the Euclidean

one. Thus, in view of [11] and [9], the d−Lipschitz continuity (2) of fj,k is equivalent

to the boundedness of the distributional derivatives along the vector fields , i.e.

ess sup
x∈K

|Xifj,k(x)| ≤ L, for all i, j, k = 1, . . . , m. (3)
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For every compact set K put

L =
m∑

j=1

‖∇fj‖L∞(K) +
m∑

i,j,k=1

ess sup
K
|Xifj,k|. (4)

All constants in our structure result will depend on (4).

Given a pair of locally Lipschitz continuous vector fields X and Y define for small

s the map exp∗(s[X,Y ]) as follows

exp∗(s[X,Y ])(x) =

{
e−

√
sY e−

√
sXe

√
sY e

√
sXx if s ≥ 0,

e−
√
|s|Xe−

√
|s|Y e

√
|s|Xe

√
|s|Y x if s ≤ 0.

(5)

Enumerate the vector fields and their first order brackets as

Yj = Xj, j = 1, . . . , m, {Ym+1, . . . , Yq} = {[Xi, Xj], 1 ≤ i < j ≤ m},

define the degree of Yj as its length as a commutator and denote it by d(Yj). Given an

n-tuple I = (i1, . . . , in), ij = 1, . . . , q, we define the “almost exponential map” related

to I as follows

EI(x, h) =
( n∏

k=1

exp∗(hkYik)
)
(x) =

(
exp∗(h1Yi1) ◦ · · · ◦ exp∗(hnYin)

)
(x) (6)

where, if d(Yik) = 1 then exp∗(hkYik)(x) = exp(hkYik)(x), while if d(Yik) = 2 (for

instance Yik = [Xpk
, Xlk ] for some pk, lk ∈ {1, . . . ,m}, pk < lk) then exp∗(hkYik)(x) is

defined in (5). The maps EI have already been studied in the smooth case, see [19],

[14], [22], [18]. Here we define and study their properties in a nonsmooth situation.

We shall prove that the control ball is equivalent to the I-box, defined as

BoxI(x, r) =
{

x +
n∑

k=1

ξkYik(x), ‖ξ‖I ≤ r
}

, ‖ξ‖I = max
j=1,...,n

|ξj|1/d(Yij
). (7)

Our first result is the following.

Theorem 1.1 Given a compact K, for every x ∈ K and r < r0 there is an n-tuple I

such that

B(x, ε2r) ⊂ BoxI(x, ε1r) ⊂
{
EI(x, h) : ‖h‖I ≤ ε0r

} ⊂ B(x,Cε0r) (8)

where EI is the map defined in (6). The constants ε0, ε1, ε2, r0 are positive and depend

on K and on L in (4), while C is an absolute positive constant only depending on the

dimension n.
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In the recent paper [20], Rampazzo and Sussman define the Lie bracket (at the point

x) [X, Y ](x) of a pair of Lipschitz continuous vector fields X and Y as the convex hull

of the set of all vectors v = limxj→x[X,Y ](xj) with xj a point of differentiability of

both X and Y. They prove, under the assumption that Rn is spanned by the set

{Xj(x), j = 1, . . . , m} ∪ {Xk,l(x), 1 ≤ k < l ≤ m}

for any x ∈ Rn and for each choice of the vector Xk,l(x) in the set [Xk, Xl](x), that the

control ball of radius r contains the Euclidean ball D of radius r2. Namely, given a

point x, there is a constant c = cx > 0 such that, for small r > 0, B(x, r) ⊇ D(x, cxr
2).

Our structure theorem improves this inclusion. In particular, if I satisfies (19), the

ball D(x, cxr
2) can be replaced by BoxI(x, r). The latter contains D(x, c0r

2) for some

c0 > 0 which can be chosen uniformly on compact sets (compare Lemma 3.4). To

get this sharp result we have to require that the commutators [Xk, Xl] are Lipschitz

continuous, at least along the “horizontal directions”. This assumption is somewhat

reasonable because it ensures that the set BoxI(x, r) moves continuously with x in the

Hausdorff distance in Rn. Moreover, we mention that extra regularity properties of

the commutator naturally appears in the analysis of the regularity properties of a real

surface in C2 with smooth nonzero Levi curvature (see the work by Citti, Lanconelli

and the first author [1] and the discussion in Section 5).

Theorem 1.1 gives the representation of the Carnot–Caratéodory balls by means

of the maps EI , which are controllable in the sense of [15]. Therefore the doubling

property of the Lebesgue measure and the Poincaré inequality hold.

Theorem 1.2 For any compact set K ⊂ Rn there are c, r0, Q > 0, λ ≥ 1, depending

on K and L in (4), such that

|B(x, 2r)| ≤ 2Q|B(x, r)|, x ∈ K, r < r0, (9)

and ∫

B

|u(y)− uB|dy ≤ cr

∫

λB

|Xu(x)|dx, ∀u ∈ C1(λB) (10)

with B = B(x, r) and λB = B(x, λr). Here uB =
∫

B
− u = 1

|B|
∫

B
u.

It is known that (9) and (10) are the basic tools for a complete study of the

Sobolev embedding for Sobolev Spaces of order 1. See the references by Saloff-Coste

[21], Maheux and Saloff Coste [16], Franchi Lu and Wheeden [8], Garofalo and Nhieu

[10] and HajÃlasz and Koskela [12].

Theorem 1.2 improves our previous results [17], where embeddings for first order

Sobolev Spaces were proved but under the more restrictive condition that the vector

fields are linearly independent at any point. Moreover, all the results in [17] were

obtained for compactly supported functions and no properties of the control distance

were studied.
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Our paper is organized as follows. In section 2 we prove some estimates for the

derivatives of the maps EI . These will enable us to give, in Section 3, the structure

theorem for the control balls. In section 4 we show the doubling property of the

control distance and the Poincaré inequality. Section 5 is devoted to some examples.

In particular we present a situation of Lipschitz continuous vector fields, related to

the prescribed Levi curvature equation, which satisfy conditions (1) and (2).

Notation. We denote by C or c positive constants. If u : Rn → R and v : Rn → Rn

we denote by uv = u ◦ v the composition between u and v. Moreover, if f1, . . . , fp are

diffeomorphism in Rn, we let
∏p

j=1 fj = f1 ◦ · · · ◦ fp. We denote by etXx the solution

of the Cauchy problem d
dt

etXx = X(etXx), etXx
∣∣
t=0

= x. The Jacobian matrix of a

function f : Rn → Rn is denoted by Df . Finally, 〈·, ·〉 indicates the standard inner

product in Rn.

Acknowledgements. It is a pleasure to thank Ermanno Lanconelli for his encour-

agement to our work on this problem. We also thank the referee, who helped us to

improve the exposition of the paper.

2 Derivatives of the map EI

In this section we assume the vector fields of class C∞ and differentiate the map

EI(x, h) defined in (6) with respect to h. We will discuss how to regularize non smooth

vector fields in the next section. Although the vector fields are smooth all the constants

appearing in this section depend on L in (4).

Proposition 2.1 Let I = (i1, . . . , in), Yik = Uk, k = 1, . . . , n. Then, for all j =

1, . . . , n,
∂

∂hj

EI(x, h) = Uj(x) + Rj(x, h),

where, given a compact set K, there is a neighborhood V of the origin in Rn such that

for all h ∈ V and j = 1, . . . , n, the remainder Rj satisfies the estimate

sup
x∈K

|Rj(x, h)| ≤ C‖h‖I . (11)

The proof of Proposition 2.1 relies on the computation of the derivative of the

“approximate commutator” defined in (5). This will be done in Lemma 2.2. We shall

use the following standard formulas:

d

dt
Y (ue−tX)(etXx) = [X,Y ](ue−tX)(etXx) and (12)

Y (ue−tX)(etXx) = Y (u)(x), if [X,Y ] = 0. (13)

The following exact formula holds:
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Lemma 2.2 Given a pair X and Y of smooth vector fields, for small s > 0 the

following formula holds for any smooth function u : Rn → R

d

ds
u(e−

√
sY e−

√
sXe

√
sY e

√
sXx)

=
1

2
[X, Y ]

(
ue−

√
sY

)(
e−

√
sXe

√
sY e

√
sXx

)
+

1

2
[X,Y ]

(
ue−

√
sY e−

√
sX

)(
e
√

sY e
√

sXx
)

+
1

2
√

s

∫ √
s

0

∫ t

0

[X, [X, Y ]]
(
ue−

√
sY e−τX

)(
e(τ−√s)Xe

√
sY e

√
sXx

)
dτdt

+
1

2
√

s

∫ √
s

0

∫ t

0

[[X, Y ], Y ]
(
ue−

√
sY e−

√
sXeτY

)(
e(−τ+

√
s)Y e

√
sXx

)
dτdt.

Proof. Write

d

ds
u
(
e−

√
sY e−

√
sXe

√
sY e

√
sXx

)

=
d

dt
u
(
e−

√
tY e−

√
sXe

√
sY e

√
sXx

)∣∣
t=s

+
d

dt
u
(
e−

√
sY e−

√
tXe

√
sY e

√
sXx

)∣∣
t=s

+
d

dt
u
(
e−

√
sY e−

√
sXe

√
tY e

√
sXx

)∣∣
t=s

+
d

dt
u
(
e−

√
sY e−

√
sXe

√
sY e

√
tXx

)∣∣
t=s

.

The first term in the previous equality is

d

dt
u
(
e−

√
tY e−

√
sXe

√
sY e

√
sXx

)∣∣
t=s

= − 1

2
√

s
(Y u)

(
e−

√
sY e−

√
sXe

√
sY e

√
sXx

)

= − 1

2
√

s
Y

(
ue−

√
sY

)(
e−

√
sXe

√
sY e

√
sXx

)
:= A1,

where we used (13) in the second equality. Analogously

d

dt
u
(
e−

√
sY e−

√
tXe

√
sY e

√
sXx

)∣∣
t=s

= − 1

2
√

s
X

(
ue−

√
sY

)(
e−

√
sXe

√
sY e

√
sXx

)

= − 1

2
√

s
X

(
ue−

√
sY e−

√
sX

)(
e
√

sY e
√

sXx
)

:= A2,

d

dt
u
(
e−

√
sY e−

√
sXe

√
tY e

√
sXx

)∣∣
t=s

=
1

2
√

s
Y

(
ue−

√
sY e−

√
sX

)(
e
√

sY e
√

sXx
)

:= A3,

d

dt
u
(
e−

√
sY e−

√
sXe

√
sY e

√
tXx

)∣∣
t=s

=
1

2
√

s
X

(
ue−

√
sY e−

√
sXe

√
sY

)(
e
√

sXx
)

:= A4.
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Let y = e−
√

sXe
√

sY e
√

sXx and take (12) into account. Thus

A3 + A1 =
1

2
√

s

{
Y

(
ue−

√
sY e−

√
sX

)(
e
√

sXy
)− Y

(
ue−

√
sY

)
(y)

}

=
1

2
√

s

∫ √
s

0

d

dt
Y

(
ue−

√
sY e−tX

)(
etXy

)
dt

=
1

2
√

s

∫ √
s

0

[X,Y ]
(
ue−

√
sY e−tX

)(
etXy

)
dt

=
1

2
[X, Y ]

(
ue−

√
sY

)
(y) +

1

2
√

s

∫ √
s

0

∫ t

0

[X, [X, Y ]]
(
ue−

√
sY e−τX

)(
eτXy

)
dτdt.

Analogously, letting y′ = e
√

sY e
√

sXx we can write

A4 + A2 =
1

2
√

s
X

(
ue−

√
sY e−

√
sXe

√
sY

)(
e−

√
sY y′

)− 1

2
√

s
X

(
ue−

√
sY e−

√
sX

)(
y′

)

=
1

2
√

s

∫ √
s

0

d

dt
X

(
ue−

√
sY e−

√
sXetY

)(
e−tY y′

)
dt

=
1

2
[X, Y ]

(
ue−

√
sY e−

√
sX

)
(y′)dt

+
1

2
√

s

∫ √
s

0

∫ t

0

[−Y, [X, Y ]]
(
ue−

√
sY e−

√
sXeτY

)(
e−τY y′

)
dτdt.

Now the proof can be easily concluded summing up A1, A2, A3 and A4. ¤

To estimate the terms of the exact formula in Lemma 2.2 we shall use the following

lemma.

Lemma 2.3 Let X1. . . . , Xp and Y be smooth vector fields. Let also u : Rn → R be a

smooth function. Then, if t1, . . . , tp are small numbers and x belong to a compact set

K,
∣∣Y u(et1X1et2X2 · · · etpXpx)− Y u(x)

∣∣ ≤
p∑

j=1

|tj| ‖XjY u‖∞, (14)

where ‖XjY u‖∞ denotes the supremum norm in some neighborhood of K. Let πk(x) =

xk. Then for all k = 1, . . . , n

∣∣Y (πke
t1X1et2X2 · · · etpXp)(x)− Y πk(x)

∣∣ ≤ C

p∑
j=1

|tj|, (15)

where, if x ∈ K and
∑ |tj| is small enough, the constant C depends on the Lipschitz

constants of the Xj’s in some neighborhood of K.

Proof. Both the estimates are standard. In order to control carefully the constants in

their right hand sides, we recapitulate their proofs.
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Estimate (14) is an easy consequence of the fundamental theorem of calculus.

∣∣Y u(et1X1et2X2 · · · etpXpx)− Y u(x)
∣∣

≤ ∣∣Y u(et1X1et2X2 · · · etpXpx)− Y u(et2X2 · · · etpXpx)|+ · · ·+ |Y u(etpXpx)− Y u(x)
∣∣

≤
∫ t1

0

∣∣X1Y u(etX1et2X2 · · · etpXpx)|dt + · · ·+
∫ tp

0

|XpY u(etXpx)
∣∣dt ≤

p∑
j=1

|tj| ‖XjY u‖∞.

To prove (15) it suffices to show that

∣∣Y (πke
t1X1v)(x)− Y (πkv)(x)

∣∣ ≤ C1|Y (πkv)(x)||t1|. (16)

with v = et2X2 · · · etpXp . (15) will follow iterating (16). Let Y (πke
tX1v)(x) = ξk(t),

Y =
∑

aj∂j, X1 =
∑

bj∂j. Then (we omit the summation on repeated indices)

ξk(t)− ξk(0) =

∫ t

0

d

ds
Y (πke

sX1v)(x)ds =

∫ t

0

aj(x)
d

ds

∂

∂xj

(πke
sX1v)(x)ds

=

∫ t

0

aj(x)
∂

∂xj

d

ds
(πke

sX1v)(x)ds =

∫ t

0

aj(x)
∂

∂xj

bk(e
sX1v)(x)ds

=

∫ t

0

aj(x)(∂ibk)(e
sX1v)(x)

∂

∂xj

πi(e
sX1v)(x)ds

=

∫ t

0

(∂ibk)(e
sX1v)(x)Y (πie

sX1v)(x)ds =

∫ t

0

(∂ibk)(e
sX1v)(x)ξi(s)ds.

Thus we have |ξ(t) − ξ(0)| ≤ C
∫ t

0
|ξ|, where we used the boundedness of (∂ibk) in a

neighborhood of K. The proof follows from Gronwall inequality. ¤

Proof of Proposition 2.1. In the proof u is any of the πk’s. Let uj = u
∏j−1

k=1 exp∗(hkUk)

and ξ =
∏n

k=j+1 exp∗(hkUk)(x). We have

∂

∂hj

u(EI(x, h)) =
∂

∂hj

uj

(
exp∗(hjUj)ξ

)
.

We distinguish two cases. If d(Uj) = 1, then

∂

∂hj

u(EI(x, h)) = Ujuj(e
hjUjξ) = Uj

(
u

j−1∏

k=1

exp∗(hkUk)
)( n∏

k=j

exp∗(hkUk(x)
)
.

By the inequality (15) we get

∣∣∣ ∂

∂hj

u(EI(x, h))− (Uju)
( n∏

k=j

exp∗(hkUk)x
)∣∣∣ ≤ C

j−1∑

k=1

|hk|1/d(Uk) ≤ C‖h‖I ,
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where the constant C depends on the Lipschitz norm of the original vector fields Xi,

i = 1, . . . , m. The proof can be concluded by estimating (Uju)
( ∏n

k=j exp∗(hkUk)(x)
)−

(Uju)(x) by means of (14).

If instead d(Uj) = 2, say Uj = [Xpj
, Xlj ], then by Lemma 2.2

∂

∂hj

u(EI(x, h))

=
1

2
Uj

(
uje

−
√

hjXlj

)
(ζ) +

1

2
Uj

(
uje

−
√

hjXlj e−
√

hjXpj

)
(ζ ′)

+
1

2
√

hj

∫ √
hj

0

( ∫ t

0

[Xpj
, Uj]

(
uje

−
√

hjXlj e−τXpj

)(
eτXpj ζ

)
dτ

)
dt

+
1

2
√

hj

∫ √
hj

0

( ∫ t

0

[Uj, Xlj ]
(
uje

−
√

hjXlj e−
√

hjXpj eτXlj

)(
e−τXlj ζ ′

)
dτ

)
dt,

(17)

where we let ζ = e−
√

hjXpj e
√

hjXlj e
√

hjXpj ξ and ζ ′ = e
√

hjXlj e
√

hjXpj ξ. We use again

(15) and (14) to estimate

∣∣∣1
2
Uj

(
uje

−
√

hjXlj

)
(ζ) +

1

2
Uj

(
uje

−
√

hjXlj e−
√

hjXpj

)
(ζ ′)− Uj(x)

∣∣∣ ≤ C‖h‖I

where the constant C depends on L in (4).

To conclude the proof of the Proposition, note that both the terms in the last two

lines of in (17) can be estimated by a sum of terms of the form ‖h‖I‖[Xi, [Xj, Xk]]‖∞,

where i, j, k = 1, . . . ,m. All these suprema can be estimated by L, the constant ap-

pearing in (4). ¤

3 I−Boxes and structure of balls

In this section we take Lipschitz continous vector fields satisfying (1) and (2) and we

shall prove Theorem 1.1. We start with the following remark.

Remark 3.1 The last inclusion in the right hand side of (8) can be proved rather

easily. Indeed, since t 7→ exp(tXj)(x) is a subunit path, then d(x, exp(tXj)(x)) ≤ |t|,
for every j = 1, . . . ,m. By the definition of EI in (6), for every n-tuple I = (i1, . . . , in)

we have the inequality

d(x,EI(x, h)) ≤
n∑

k=1

4d(Yik
)−1|hk|1/d(Yik

) ≤ C‖h‖I ,

with an absolute constant C = C(n), and the inclusion {EI(x, h) : ‖h‖I ≤ r} ⊂
B(x,Cr) follows.
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In order to prove the remaining part of the theorem, given an n-tuple I = (i1, . . . , in) ∈
{1, . . . , q}n, we shall denote d(I) =

∑n
j=1 d(Yij) and

λI(x) = det[Yi1(x), . . . , Yin(x)]. (18)

By condition (1) at every point x there is an n-tuple I such that λI(x) 6= 0.

Theorem 1.1 will be an immediate consequence of Remark 3.1 and of the following

theorem.

Theorem 3.2 Given a compact set K, there is a neighborhood V of the origin in Rn

such that the map EI(x, ·) is Lipschitz continuous in V for all I and for any x ∈ K.

Moreover there are r0 > 0, ε0, ε1, ε2 > 0 such that if x ∈ K, r < r0, and I satisfy

|λI(x)|rd(I) >
1

2
max

J∈{1,...,q}n
|λJ(x)|rd(J), (19)

then

(i) 1
2
|λI(x)| ≤

∣∣det ∂EI

∂h
(x, h)

∣∣ ≤ 2|λI(x)| for almost all h ∈ Rn, ‖h‖I ≤ ε0r.

(ii) The map EI(x, ·) is one–to–one on {‖h‖I ≤ ε0r}.

(iii) BoxI(x, ε1r) ⊂ {EI(x, h) : ‖h‖I ≤ ε0r}.

(iv) B(x, ε2r) ⊂ BoxI(x, ε1r).

We start by proving the Lipschitz continuity of EI(x, ·) and some estimates on

derivatives. The following lemma is the nonsmooth version of Lemma 2.1.

Lemma 3.3 Fix a compact set K ⊂ Rn. Then there exist a neighborhood V of the

origin in Rn and a constant C > 0 such that, for all I and for any x ∈ K, the map

EI(x, ·) is Lipschitz continuous on V and satisfies for j = 1, . . . , n

∂

∂hj

EI(x, h) = Uj(x) + Rj(x, h), for a.e. h ∈ V , (20)

where

|Rj(x, h)| ≤ C‖h‖I , for any h ∈ V. (21)

Proof. The proof relies on the smooth version of the lemma, proved in the pre-

vious section, and on an approximation argument. Denote by X
(ε)
j = 〈f (ε)

j ,∇〉,
where f

(ε)
j (x) =

∫
Rn ρ(h)fj(x + εh)dh is the usual mollifier. We have [X

(ε)
j , X

ε)
k ] =

〈(Df
(ε)
k )f

(ε)
j − (Df

(ε)
j )f

(ε)
k ,∇〉 and it is easy to realize that

∣∣(Df
(ε)
k )f

(ε)
j − (Df

(ε)
j )f

(ε)
k − (

(Dfk)fj − (Dfj)fk

)(ε)∣∣ ≤ Cε

10



with C depending on the Lipschitz constants of the coefficients of the vector fields.

Hence, for ε small, the vector fields X
(ε)
j satisfy Hörmander condition (1) at every

point. We now use the results of the previous section for the mollified vector fields. In

particular Proposition 2.1 holds for the vector fields X
(ε)
j with constants independent

of ε. Namely, denoting by E
(ε)
I the (smooth) map arising from the X

(ε)
j ’s,

∂

∂hj

E
(ε)
I (x, h) = U

(ε)
j (x) + R

(ε)
j (x, h), (22)

|R(ε)
j (x, h)| ≤ C‖h‖I , h ∈ V, j = 1, . . . , n (23)

where C and V are independent of ε. By the form (6) of EI we immediately recognize

that for any x, I, h, the limit as ε goes to 0 of E
(ε)
I (x, h) exists and we put EI(x, h) :=

limε→0 E
(ε)
I (x, h).

Fix any x ∈ K. The family E
(ε)
I (x, ·) is bounded in W 1,∞(V ), by (22) and (23).

Thus it is bounded in W 1,2(V ). We can choose a sequence εk ↓ 0 such that E
(εk)
I (x, ·) →

EI(x, ·), weakly in W 1,2(V ), i.e. E
(εk)
I (x, ·) → EI(x, ·) and ∂hj

E
(εk)
I (x, ·) → ∂hj

EI(x, ·)
weakly in L2(V ) as k →∞. By taking the L2−weak limit in (22) we get

lim
k→∞

R
(εk)
I (x, ·) = lim

k→∞
∂hj

E
(εk)
I (x, ·)− U

(εk)
j (x) = ∂hj

EI(x, ·)− Uj(x) := R∞
I (x, ·),

where the function R∞
I (x, ·) is defined by the last equality. By standard properties of

weak convergence, the estimate (23) preserves under the limit, i.e. |R∞
j (x, h)| ≤ C‖h‖I

for almost any h ∈ V . The function EI(x, ·) is continuous by (6). Moreover, it turns out

to belong to W 1,∞(V ), because its (distributional) derivative ∂hj
EI(x, ·) is essentially

bounded. Then (see [4, Section 4.2.3]) EI(x, ·) is Lipschitz continuous on V . Thus,

(20) holds and the derivatives in the left hand side actually are pointwise derivatives

calculated at a point of differentiability of EI(x, ·).
Finally, by choosing a suitable representative Rj(x, ·) = R∞

j (x, ·) a.e., we conclude

that (21) holds for any h ∈ V . ¤

To prove Theorem 3.2 we need some more preliminary lemmas.

Lemma 3.4 For all λ ∈ ]0, 1] there is η = η(λ) > 0 such that if x ∈ K, r < r0 and

I ∈ {1, . . . , q}n satisfy (19), then

D(0, ηr2) ⊂
{ n∑

j=1

ξjYij(x) : ‖ξ‖I ≤ λr
}

, (24)

with D(x, r) the Euclidean disc of radius r and center at x.

Proof. Denote for brevity Yij = Uj. Fix λ ∈ ]0, 1]. We first prove that we can find

η > 0 such that

D(0, ηr2) ⊂
{ q∑

i=1

ξiYi(x) : |ξ| ≤ λ2

2q
r2

}
, (25)

11



with |·| the Euclidean norm. To prove (25) it suffices to take a n−tuple P = (p1, . . . , pn)

such that |λP (x)| = maxJ |λJ(x)|. Then

∥∥[
Yp1(x), . . . , Ypn(x)

]−1∥∥ ≤ C

|λP (x)| ≤ C̃, (26)

where the constant C depends on an upper bound on the norm of the Yj’s on the com-

pact K (recall (18)) and the last estimate comes from the fact that infx∈K

∑
J |λJ(x)| >

0 by (1). Thus (25) follows by choosing ξs = 0 if s /∈ {p1, . . . , pn}, by solving the

Cramer system
∑n

j=1Ypj
(x)ξpj

= u and by using estimate (26).

Since the vector fields Yij(x) = Uj(x), j = 1, . . . , n are linearly independent, for

any l = 1, . . . , q we can uniquely write

Yl(x) =
n∑

k=1

alk(x)Uk(x). (27)

Following [19] we use the Cramer rule

alk(x) =
det(U1, . . . , Uk−1, Yl, Uk+1, . . . , Un)(x)

det(U1, . . . , Uk−1, Uk, Uk+1, . . . , Un)(x)
(28)

and, since we know that |λI(x)|rd(I) > 1
2
maxJ |λJ(x)|rd(J) we get

|alk(x)| ≤ 2rd(Uk)−d(Yl). (29)

We are now ready to prove (24). Indeed, for any u ∈ D(0, ηr2), by (25) there is a

choice of ξ such that u =
∑q

l=1 ξlYil(x), with |ξ| ≤ λ2

2q
r2. Then, by (27),

u =

q∑

l=1

ξl

n∑

k=1

alk(x)Uk(x) :=
n∑

k=1

bkUk(x),

where |bk| ≤
q∑

l=1

|ξl| |alk(x)| ≤
q∑

l=1

λ2r2

2q
2rd(Uk)−d(Yl) ≤ λ2rd(Uk), for any r < 1. ¤

Proposition 3.5 For all χ > 0 there is ε0(χ) > 0 such that if (19) holds for x ∈ K,

r < r0 and I, then we can write for almost any h,

∂EI(x, h)

∂hj

= Uj(x) +
n∑

k=1

bj,kUk(x),

where |bj,k| = |bj,k(x, h)| ≤ χrd(Uk)−d(Uj) ∀ h, ‖h‖I < ε0r.

(30)

Proof. The estimate in the second line of (30) is equivalent to rd(Uj)|bj,k(x, h)| ≤ χrd(Uk)

for all k, j. For χ < 1 this will be ensured by the stronger estimate rd(Uj)|bj,k(x, h)| ≤
(χr)d(Uk), i.e.

rd(Uj)Rj(x, h) ∈ BoxI(x, χr), (31)
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because, in the notation of Lemma 3.3, Rj(x, h) =
∑n

k=1 bj,kUk(x). We have already

proved (see (21)) that |Rj(x, h)| ≤ C‖h‖I . Thus, assuming ‖h‖I ≤ ε0r, we have

|Rj(x, h)| ≤ Cε0r. Recall now that we also proved in Lemma 3.4 that, if (19) holds,

BoxI(x, χr) ⊃ D(0, η(χ)r2). Thus we conclude that (31) is ensured by the choice

Cε0 ≤ η(χ). ¤

Proof of Theorem 3.2. In the following proof the n−tuple I satisfying (19) is fixed.

We write Yij = Uj and d(Uj) = dj, j = 1, . . . , n.

Proof of (i). By Proposition 3.5 we have for a.e. h, det ∂EI(x,h)
∂hj

= λI(x) det(δj,k + bj,k)

(here δj,k denotes the Kronecker symbol). The proof of (i) can be easily concluded.

Indeed, since δj,k is a diagonal matrix, we have det(δj,k + bj,k) = det(δj,k + bj,kr
dj−dk) ∈

(1/2, 2) , if we choose the constant χ smaller than a suitable dimensional constant

χ0(n).

Proof of (ii). Fix χ > 0 such that (i) holds. The map EI(x, ·) is Lipschitz continuous

and, by Rademacher theorem, for any h′ there is a subset Σ(h′) of the (n − 1)–

sphere Sn−1 ⊂ Rn, such that the surface measure of Sn−1 \ Σ(h′) is zero and such

that for any v ∈ Σ(h′) the map h 7→ EI(x, h) is differentiable at any point of the set

{h′ + tv ∈ Rn : t ≥ 0} ∩ {h ∈ Rn : ‖h‖I < ε0r} except a subset of 1−dimensional

measure zero. Thus for any h such that h−h′
|h−h′| ∈ Σ(h′) we can use the gradient formula

to calculate d
dt

EI(x, h′ + t(h− h′)) and the fundamental theorem of calculus to get

EI(x, h)− EI(x, h′) =

∫ 1

0

n∑
j=1

∂EI

∂hj

(x, h′ + t(h− h′)) (hj − h′j)dt

=
n∑

j=1

(
Uj(x) +

n∑

k=1

∫ 1

0

bj,k(x, h′ + t(h− h′))dtUk(x)
)

(hj − h′j)

= U(x) (In + BT ) (h− h′),
(32)

where In is the identity matrix, U = [U1, . . . , Un] and B is the n × n matrix whose

entries βj,k =
∫ 1

0
bj,k(x, h′ + t(h− h′))dt satisfy |βj,k| ≤ χrdk−dj . Since

det(U(x)(I + BT )) =λ(x) det(δj,k + βk,j) = λ(x) det(δj,k + βk,jr
dk−dj)

with λ(x) 6= 0, and we have chosen χ such that det(δj,k +βk,jr
dk−dj) ∈ (1/2, 2) then the

matrix U(x) (I + BT ) is invertible. Ultimately, we have for any fixed h′, ‖h′‖I ≤ ε0r,

for almost any h, ‖h‖I ≤ ε0r, the following estimate

|h′−h| ≤ ‖(I +BT )−1‖ ‖U(x)−1‖ |EI(x, h)−EI(x, h′)| ≤ C|EI(x, h)−EI(x, h′)|, (33)

where the constant C does not depend on h and h′. Thus, by continuity, (33) holds

for all h, h′, with ‖h‖I , ‖h′‖I ≤ ε0r. Therefore the map h 7→ EI(x, h) is injective.
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Proof of (iii). We shall show that if ε1 is small enough, for every ξ ∈ Rn, ‖ξ‖I ≤ ε1r

the equation

x + U(x)ξ = EI(x, h) (34)

has a solution h ∈ QI(ε0r) := {h ∈ Rn : ‖h‖I ≤ ε0r}. Here ε0 is the constant fixed in

the proof of (i) and (ii).

To prove (34) we shall use the homotopic invariance of the topological degree. Let

Fλ(h) = λU(x)−1
(
EI(x, h)− x

)
+ (1− λ)h

Recall that the map h → EI(x, h) is continuous. Thus Fλ is a continuous map in

(λ, h) ∈ [0, 1] × QI(ε0r). Moreover F0(h) = h and F1(h) = U(x)−1(EI(x, h) − x).

Equation (34) is equivalent to F1(x, h) = ξ. The topological degree deg(F0; QI(ε0r); ξ)

of the map F0(h) = h is clearly 1 as soon as ε1 < ε0. In order to use here the invariance

of the degree (see, e.g. [3]) we have to check that for a suitable choice of ε1 we have

ξ /∈ Fλ(∂QI(ε0r)), for all λ ∈ [0, 1]. (35)

If (35) holds, then we can assert that deg(F1; QI(ε0r); ξ) = 1. Thus there is h ∈
QI(ε0r) such that (34) holds.

In order to prove (35) note that the latter is implied by the strict inequality

∥∥λU(x)−1
(
EI(x, h)− x

)
+ (1− λ)h

∥∥
I

> ‖ξ‖I , ∀h ∈ ∂QI(ε0r). (36)

To show (36) we prove that there is an absolute constant C0 such that

∥∥λU(x)−1
(
EI(x, h)− x

)
+ (1− λ)h

∥∥
I
≥ C0ε

2
0r, ∀h ∈ ∂QI(ε0r). (37)

Then the choice of any positive ε1 such that ε1 < C0ε
2
0 gives (iii).

Now by continuity it is enough to check (37) for any h ∈ ∂QI(ε0r) with h
|h| ∈ Σ(0)

(recall that Σ(0) has full measure in Sn−1). For any of those h’s, equation (32) with

h′ = 0 holds and gives EI(x, h) = x+U(x) (In +BT (x, h))h. Therefore, (37) is ensured

by

‖λ(In + BT (x, h))h + (1− λ)h‖I ≥ C0ε
2
0r, ∀h ∈ ∂QI(ε0r)

⇔ ‖(In + λBT (x, h))h‖I

r
≥ C0ε

2
0, ∀h ∈ ∂QI(ε0r)

⇔ max
k=1,...,n

∣∣((In + λBT (x, h))h
)

k
r−dk

∣∣1/dk ≥ C0ε
2
0, ∀h ∈ ∂QI(ε0r)

(38)

In order to prove the last inequality, take h such that ‖h‖I = ε0r. This means that

for some l we have |hl|1/dl = ε0r. Then write

((In + λBT )h)kr
−dk =

n∑
j=1

(In + λBT )k,jr
dj−dk

(
hjr

−dj
)

=
n∑

j=1

(δk,j + λβj,kr
dj−dk)(hjr

−dj),

14



where βj,k were introduced after (32). Introduce the matrix M defined by Mk,j =

(δk,j + λβj,kr
dj−dk) and denote v =

∑n
j=1 hjr

−djej. Thus the inequality in the last line

of (38) may be written as

‖Mv‖I ≥ C0ε
2
0.

By the same argument of the proof of (i), we may assert that the matrix M satisfies

|Mv| ≥ C|v| for all v ∈ Rn (here |·| denotes the Euclidean norm), for every h ∈ QI(ε0r),

λ ∈ [0, 1]. Note also that both v and Mv belong to a fixed compact set (ε0 has been

fixed in (ii)). Thus there are positive constants C2, C1, C0 such that

‖Mv‖I ≥ C1|Mv| ≥ C2|v| ≥ C0‖v‖2
I = C0

(
max

j

|hj|1/dj

r

)2

≥ C0

( |hl|1/dl

r

)2

= C0ε
2
0.

The proof of (iii) is concluded.

Proof of (iv). Now ε1 has been fixed. We will prove that there is ε2 > 0 such that for

any y ∈ B(x, ε2r), there is ξ such that ‖ξ‖I ≤ ε1r and

y = x +
n∑

k=1

ξkYik(x). (39)

Write y = γ(1), where γ̇(t) =
∑n

j=1 bj(t)Xj(γ(t)) and |b(t)| ≤ ε2r for a.e t. Thus

y = x +

∫ 1

0

γ̇(t) = x +
m∑

j=1

∫ 1

0

bj(t)Xj(γ(t))dt

= x +
m∑

j=1

∫ 1

0

bj(t)dtXj(x) +
m∑

j=1

∫ 1

0

bj(t)
(
Xj(γ(t))−Xj(x)

)
dt

:= x +
m∑

j=1

βjXj(x) + G(γ),

where we let
∫ 1

0
bj(t)dt = βj. Note that |βj| ≤ ε2r. The remainder G(γ) satisfies

|G(γ)| ≤ Cε2r
2. Indeed |Xj(γ(t)) − Xj(x)| ≤ L|γ(t) − x| ≤ CLd(γ(t), x) ≤ CLε2r

(here L is the Lipschitz constant of the vector fields). Thus, using (27) we conclude

y = x +
m∑

j=1

βj

n∑

k=1

ajk(x)Uk(x) + G(γ) = x +
n∑

k=1

( m∑
j=1

βjajk(x)
)
Uk(x) + G(γ).

By (29)
∣∣(

m∑
j=1

βjajk(x)
)∣∣ ≤ Cε2r

d(Uk). (40)

Thus the proof will be concluded as soon as we are able to solve

n∑

k=1

( m∑
j=1

βjajk(x)
)
Uk(x) + G(γ) =

n∑

k=1

ξkUk(x)
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with ‖ξ‖I ≤ ε1r. This can be easily done, if ε2 is small enough, by taking into account

estimate (40) and Lemma 3.4. ¤

4 Doubling property and Poincaré inequality

In this section we prove Theorem 1.2.

Proof of Theorem 1.2. The doubling property (9) will follow from the equivalence

c−1Λ(x, r) ≤ |B(x, r)| ≤ cΛ(x, r), where Λ(x, r) =
∑

I |λI(x)|rd(I). Fix x and r and

choose I such that (19) holds. By (8) |B(x, ε2r)| ≤ |BoxI(x, ε1r)| = |λI(x)|(ε1r)
d(I) ≤

cΛ(x, ε2r).

The estimate from below can be proved by (8) with a similar argument (recall that

|λI(x)|rd(I) ≥ cΛ(x, r) if (19) holds).

We now prove the Poincaré inequality. Fix a ball B(x0, ε2r). For any x and

I satisfying (19) for the prescribed r, by Proposition 3.2, the map h 7→ EI(x, h)

is one–to–one on QI(ε0r) = {‖h‖I ≤ ε0r} with ε0 > ε1 and its Jacobian satisfies
1
2
|λI(x)| ≤ | det ∂EI

∂h
(x, h)| ≤ 2|λI(x)|, for almost all h, ‖h‖I ≤ ε0r. Moreover, (8) gives

BoxI(x, ε1r) ⊂ {EI(x, h) : ‖h‖I ≤ ε0r}. In the language of [15], these facts mean that,

letting

ΩI =
{

x ∈ B(x0, ε2r) : |λI(x)|rd(I) >
1

2
max

J
|λJ(x)|rd(J)

}
,

the map EI : ΩI ×QI(ε0r) is an almost exponential map. Moreover, we can choose I

such that |ΩI | ≥ 1
N
|B(x0, ε2r)| where N is the total number of n-tuples.

The controllability in [15] requires that there exists γ : ΩI ×QI(ε0r)× [0, cr] such

that :

(C1) For any (x, h) ∈ ΩI × {‖h‖I ≤ ε0r}, t 7→ γ(x, h, t) is a subunit path connecting

x and EI(x, h), i.e. γ(x, h, 0) = x, γ(x, h, T (x, h)) = EI(x, h) for a suitable

T (x, h) ≤ cr.

(C2) For any (h, t) ∈ QI(ε0r) × [0, cr], x 7→ γ(x, h, t) is a one-to-one map having

continuous first derivatives and Jacobian determinant uniformly bounded away

from zero, i.e. infΩI×QI(ε0r)×[0,cr]

∣∣det ∂γ
∂x

∣∣ ≥ c > 0.

The points x and EI(x, h) can be joined by a piecewise integral curve of the Xj’s.

Hence the map γ can be defined as follows. Denote by xj =
∏n

i=j+1 exp∗(hiUi)x. Let

hj ≥ 0. If d(Uj) = 1, then let γj(t) = etUjxj for 0 ≤ t ≤ hj. If instead d(Uj) = 2, say
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Uj = [Xpj
, Xlj ], then let

γj(t) =





etXpj xj 0 ≤ t ≤ √
hj,

e(t−
√

hj)Xlj e
√

hjXpj xj

√
hj ≤ t ≤ 2

√
hj,

e−(t−2
√

hj)Xpj e
√

hjXlj e
√

hjXpj xj 2
√

hj ≤ t ≤ 3
√

hj,

e−(t−3
√

hj)Xlj e−
√

hjXpj e
√

hjXlj e
√

hjXpj xj 3
√

hj ≤ t ≤ 4
√

hj.

If hj < 0 the construction is analogous.

By taking the path γ = γn + · · · + γ1 we see that condition (C1) is satisfied with

a T (x, h) ≤ cr, where c is an absolute constant. Concerning condition (C2), although

we can not expect that the map x 7→ γ(x, h, t) is C1, it is known that it is a Lipschitz

continuous change of variables and det ∂γ
∂x

(x, h, t) = 1+ϕ(x, h, t), with |ϕ(x, h, t)| ≤ cr

a.e. on ΩI×QI(ε0r)× [0, cr] (this is a quite standard fact in ODE’s, see the discussions

in [9, pp. 99–101] and [11, Lemma 2.2]). This property is actually sufficient in the

proof of the Poincaré inequality in [15, p. 332, ll. 6–9], where condition (C2) is used

to make a change of variable in a Lebesgue integral.

We conclude that all the hypotheses of [15, Theorem 2.1] are satisfied and the

Poincaré inequality (10) holds on the ball B(x, ε2r). ¤

5 Some examples

In this section we show some applications of Theorem 1.2.

Example 5.1 (Levi vector fields) Here we precise the Example in [15, Section 5].

Given a real valued function u ∈ C2(Ω), Ω ⊆ R3, define the first order operators in R3

X1 = ∂x1 + a1(∇u)∂x3 , X2 = ∂x2 + a2(∇u)∂x3 , (41)

where, for any p = (p1, p2, p3) ∈ R3 , a1(p) = p2−p1p3

1+p2
3

, a2(p) = −p1−p2p3

1+p2
3

. In particular

x 7→ a1(∇u)(x) and x 7→ a2(∇u)(x) are C1 functions. However, this regularity as-

sumption does not seem to be enough to get the Poincaré inequality (10). Here we

add to that condition the following: assume that u is a solution of the prescribed Levi

curvature equation

X2
1u + X2

2u + q(x, u,∇u) = 0, q(x, u, p) = k(x, u)
(1 + |p|2)3/2

(1 + p2
3)

2
, (42)

and assume that the Levi curvature k is Lipschitz continuous and different from zero at

any point. This assumption provides both the rank condition and the “horizontal Lip-

schitz continuity” of the commutator, which are required in our main theorem. Indeed,
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in [2] it has been proved that if u is a solution of (42) then a1(∇u) = X2u, a2(∇u) =

−X1u and

[X1, X2] = q(x, u,∇u)∂x3 . (43)

Since k is different from zero at any point, then condition (1) is satisfied. We now

show that Xj(q(·, u,∇u)) is bounded for j = 1, 2. An easy calculation shows

Xj(q(x, u,∇u)) = Xj(k(x, u))
(1 + |∇u|2)3/2

(1 + u2
x3

)2

+ k(x, u)
(1 + |∇u|2)1/2

(1 + u2
x3

)2

(
3

2∑
i=1

uxi
Xjuxi

−
(
1 + 4

u2
x1

+ u2
x2

1 + u2
x3

)
ux3Xjux3

)
.

Remark that, for i = 1, . . . , 3, X1uxi
= [X1, ∂xi

]u + ∂xi
X1u = −∂xi

(a1(∇u))ux3 −
∂xi

(a2(∇u)), and analogously X2uxi
= −∂xi

(a2(∇u))ux3 + ∂xi
(a1(∇u)). Therefore

‖X1∇u‖∞ + ‖X2∇u‖∞ ≤ (1 + ‖∇u‖∞)(‖∇(a1(∇u))‖∞ + ‖∇(a2(∇u))‖∞). (44)

By (43) and (44) ‖X1(q(·, u,∇u))‖∞ + ‖X2(q(·, u,∇u))‖∞ is bounded by a positive

constant which only depends on ‖u‖∞ + ‖∇u‖∞ + ‖∇(a1(∇u))‖∞ + ‖∇(a2(∇u))‖∞ +

‖∇(k(·, u))‖∞. Thus, q satisfies (2). Hence, the vector fields in (41) satisfy the hy-

potheses of Theorem 1.2, which is the main tool in the Moser iteration technique for

the study of regularity of solutions. In particular, we believe that this tool will enable

us to improve Theorem 1.1 in [1], where, in order to prove C2,α estimates of a viscosity

solution, it was required the smoothness of k.

We end this section by exhibiting another example of Lipschitz continuous vector

fields for which Poincaré inequality (10) holds.

Example 5.2 Take in R3 the two vector fields

X1 = ∂x1 − x2ϕ(x1, x3)∂x3 , X2 = ∂x2

with ϕ a Lipschitz continuous function such that |ϕ| ≥ c > 0. At every point there

exists [X1, X2] = ϕ(x1, x3)∂x3 and it is Lipschitz continuous. Hence, both conditions

(1) and (2) are satisfied.
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Duke Math. J. 53 (1986), 503–523.

[14] Lanconelli, E. Stime subellittiche e metriche Riemanniane singolari, Seminario di Analisi
Matematica, Universita’ di Bologna (A.A. 1982-83).

[15] Lanconelli, E. and Morbidelli, D., On the Poincaré inequality for vector fields, Ark.
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