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Abstract

Currently, most approaches to retrieving textual materials
from scientific databases depend on a lexical match between
words in users’ requests and those in or assigned to docu-
ments in a database. Because of the tremendous diversity in
the words people use to describe the same document, lexical
methods are necessarily incomplete and imprecise. Using the
singular value decomposition (SVD), one can take advantage
of the implicit higher-order structure in the association of terms
with documents by determining the SVD of large sparse term
by document matrices. Terms and documents represented
by 200-300 of the largest singular vectors are then matched
against user queries. We call this retrieval method Latent Se-
mantic Indexing (LSI) because the subspace represents impor-
tant associative relationships between terms and documents
that are not evident in individual documents. LSI is a com-
pletely automatic yet intelligent indexing method, widely appli-
cable, and a promising way to improve users’ access to many
kinds of textual materials, or to documents and services for
which textual descriptions are available. A survey of the com-
putational requirements for managing LSI-encoded databases
as well as current and future applications of LSI is presented.

Keywords: indexing, information, latent, matrices, retrieval,
semantic, singular value decomposition, sparse, updating

2



1 Introduction

Typically, information is retrieved by literally matching terms in docu-
ments with those of a query. However, lexical matching methods can
be inaccurate when they are used to match a user’s query. Since
there are usually many ways to express a given concept (synonymy),
the literal terms in a user’s query may not match those of a rele-
vant document. In addition, most words have multiple meanings
(polysemy), so terms in a user’s query will literally match terms in
irrelevant documents. A better approach would allow users to re-
trieve information on the basis of a conceptual topic or meaning of a
document.

Latent Semantic Indexing (LSI) [5] tries to overcome the problems
of lexical matching by using statistically derived conceptual indices in-
stead of individual words for retrieval. LSI assumes that there is some
underlying or latent structure in word usage that is partially obscured
by variability in word choice. A truncated singular value decomposi-
tion (SVD) [15] is used to estimate the structure in word usage across
documents. Retrieval is then performed using the database of singu-
lar values and vectors obtained from the truncated SVD. Performance
data shows that these statistically derived vectors are more robust in-
dicators of meaning than individual terms. A number of software
tools have been developed to perform operations such as parsing
document texts, creating a term by document matrix, computing the
truncated SVD of this matrix, creating the LSI database of singular
values and vectors for retrieval, matching user queries to documents,
and adding new terms or documents to an existing LSI databases
[5, 24]. The bulk of LSI processing time is spent in computing the
truncated SVD of the large sparse term by document matrices.

Section 2 is a review of basic concepts needed to understand LSI.
Section 3 uses a constructive example to illustrate how LSI represents
terms and documents in the same semantic space, how a query is
represented, how additional documents are added (or folded-in), and
how SVD-updating represents additional documents. In Section 4,
an algorithm for SVD-updating is discussed along with a comparison
to the folding-in process with regard to robustness of query matching
and computational complexity. Section 5 surveys promising applica-
tions of LSI along with parameter estimation problems that arise with
its use.
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2 Background

The singular value decomposition is commonly used in the solution of
unconstrained linear least squares problems, matrix rank estimation,
and canonical correlation analysis [2]. Given an m � n matrix A,
where without loss of generality m � n and rank(A) = r, the singular
value decomposition of A, denoted by SVD(A), is defined as

A=U�V T (1)

where UTU=V TV =In and �=diag(�1; � � � ; �n) ; �i > 0 for 1 � i � r;

�j=0 for j � r + 1. The first r columns of the orthogonal matrices
U and V define the orthonormal eigenvectors associated with the r

nonzero eigenvalues of AAT and ATA, respectively. The columns
of U and V are referred to as the left and right singular vectors,
respectively, and the singular values of A are defined as the diago-
nal elements of � which are the nonnegative square roots of the n

eigenvalues of AAT [15].
The following two theorems illustrate how the SVD can reveal

important information about the structure of a matrix.

Theorem 2.1 Let the SVD of A be given by Equation (1) and

�1 � �2 � � � � �r > �r+1=� � � =�n=0

and let R(A) and N(A) denote the range and null space of A,
respectively.
Then,

1. rank property: rank(A) = r, N(A) � spanfvr+1; � � � ; vng, and
R(A)� spanfu1; � � � ; urg, where U=[u1u2 � � � um] and
V =[v1v2 � � � vn] :

2. dyadic decomposition: A=
rX
i=1

ui � �i � v
T
i :

3. norms: kAk2
F=�

2
1 + � � � + �2

r , and kAk2
2=�1:

Proof 2.1 See [15].
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Theorem 2.2 [Eckart and Young] Let the SVD of A be given by
Equation (1) with r = rank(A) � p=min(m;n) and define

Ak=

kX
i=1

ui � �i � v
T
i ; (2)

then
min

rank(B)=k
kA�Bk2

F=kA�Akk
2
F=�

2
k+1 + � � � + �

2
p:

Proof 2.2 See [16].

In other words, Ak, which is constructed from the k-largest singular
triplets of A, is the closest rank-k matrix to A [15]. In fact, Ak is the
best approximation to A for any unitarily invariant norm [22]. Hence,

min
rank(B)=k

kA�Bk2=kA�Akk2=�k+1: (3)

2.1 Latent Semantic Indexing

In order to implement Latent Semantic Indexing [5, 12] a matrix of
terms by documents must be constructed. The elements of the term-
document matrix are the occurrences of each word in a particular
document, i.e.,

A=[aij] ; (4)

where aij denotes the frequency in which term i occurs in document
j. Since every word does not normally appear in each document, the
matrix A is usually sparse. In practice, local and global weightings
are applied [7] to increase/decrease the importance of terms within
or among documents. Specifically, we can write

aij=L(i; j)�G(i) ; (5)

where L(i; j) is the local weighting for term i in document j, and
G(i) is the global weighting for term i. The matrix A is factored into
the product of 3 matrices (Equation (1)) using the singular value de-
composition (SVD). The SVD derives the latent semantic structure
model from the orthogonal matrices U and V containing left and right
singular vectors of A, respectively, and the diagonal matrix, �, of sin-
gular values of A. These matrices reflect a breakdown of the original
relationships into linearly-independent vectors or factor values. The
use of k factors or k-largest singular triplets is equivalent to approxi-
mating the original (and somewhat unreliable) term-document matrix
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by Ak in Equation (2). In some sense, the SVD can be viewed as
a technique for deriving a set of uncorrelated indexing variables or
factors, whereby each term and document is represented by a vector
in k-space using elements of the left or right singular vectors (see
Table 1).

Table 1: Interpretation of SVD components within LSI.

Ak = Best rank-k approximation to A

m = Number of terms
U = Term vectors n = Number of documents
� = Singular values k = Number of factors
V = Document vectors r = Rank of A

Figure 1 is a mathematical representation of the singular value
decomposition. U and V are considered the term and document vec-
tors respectively, and � represents the singular values. The shaded
regions in U and V and the diagonal line in � represent Ak from
Equation (2).

It is important for the LSI method that the derived Ak matrix not
reconstruct the original term document matrix A exactly. The trun-
cated SVD, in one sense, captures most of the important underlying
structure in the association of terms and documents, yet at the same
time removes the noise or variability in word usage that plagues word-
based retrieval methods. Intuitively, since the number of dimensions,
k, is much smaller than the number of unique terms, m, minor differ-
ences in terminology will be ignored. Terms which occur in similar
documents, for example, will be near each other in the k-dimensional
factor space even if they never co-occur in the same document. This
means that some documents which do not share any words with a
users query may none the less be near it in k-space. This derived
representation which captures term-term associations is used for re-
trieval.

Consider the words car, automobile, driver, and elephant. The
terms car and automobile are synonyms, driver is a related con-
cept and elephant is unrelated. In most retrieval systems, the query
automobiles is no more likely to retrieve documents about cars than
documents about elephants, if neither used precisely the term auto-
mobile in the documents. It would be preferable if a query about au-
tomobiles also retrieved articles about cars and even articles about
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drivers to a lesser extent. The derived k-dimensional feature space
can represent these useful term interrelationships. Roughly speak-
ing, the words car and automobile will occur with many of the same
words (e.g. motor, model, vehicle, chassis, carmakers, sedan,
engine, etc.), and they will have similar representations in k-space.
The contexts for driver will overlap to a lesser extent, and those for
elephant will be quite dissimilar. The main idea in LSI is to explicitly
model the interrelationships among terms (using the truncated SVD)
and to exploit this to improve retrieval.

Ak

m � n

=
U

Term
Vectors

m � r

k

�

r � r

k

k
�������

V T

Document
Vectors

r � n

k

Figure 1: Mathematical representation of the matrix Ak.

2.2 Queries

For purposes of information retrieval, a user’s query must be repre-
sented as a vector in k-dimensional space and compared to docu-
ments. A query (like a document) is a set of words. For example, the
user query can be represented by

q̂=qTUk�
�1
k ; (6)

where q is simply the vector of words in the users query, multiplied by
the appropriate term weights (see Equation (5)). The sum of these
k-dimensional terms vectors is reflected by the qTUk term in Equation
(6), and the right multiplication by �

�1
k differentially weights the sep-

arate dimensions. Thus, the query vector is located at the weighted
sum of its constituent term vectors. The query vector can then be
compared to all existing document vectors, and the documents ranked
by their similarity (nearness) to the query. One common measure of
similarity is the cosine between the query vector and document vec-
tor. Typically, the z closest documents or all documents exceeding
some cosine threshold are returned to the user [5].

7



2.3 Updating

Suppose an LSI-generated database already exists. That is, a col-
lection of text objects has been parsed, a term-document matrix has
been generated, and the SVD of the term-document matrix has been
computed. If more terms and documents must be added, two alter-
natives for incorporating them currently exist: recomputing the SVD
of a new term-document matrix or folding-in the new terms and
documents.

Four terms are defined below to avoid confusion when discussing
updating. Updating refers to the general process of adding new
terms and/or documents to an existing LSI-generated database. Up-
dating can mean either folding-in or SVD-updating. SVD-updating is
the new method of updating developed in [24]. Folding-in terms or
documents is a much simpler alternative that uses an existing SVD
to represent new information. Recomputing the SVD is not an up-
dating method, but a way of creating an LSI-generated database with
new terms and/or documents from scratch which can be compared
to either updating method.

Recomputing the SVD of a larger term-document matrix requires
more computation time and, for large problems, may be impossible
due to memory constraints. Recomputing the SVD allows the new p

terms and q documents to directly affect the latent semantic structure
by creating a new (m + p)�(n + q) term-document matrix A, com-
puting the SVD of the matrix A, and generating a different Ak matrix.
In contrast, folding-in is based on the existing latent semantic struc-
ture, the current Ak, and hence new terms and documents have no
effect on the representation of the pre-existing terms and documents.
Folding-in requires less time and memory but can have deteriorating
effects on the representation of the new terms and documents.

Folding-in documents is essentially the process described in Sec-
tion 2.2 for query representation. Each new document is represented
as a weighted sum of its component term vectors. Once a new
document vector has been computed it is appended to the set of ex-
isting document vectors or columns of Vk (see Figure 2). Similarly,
new terms can be represented as a weighted sum of the vectors
for documents in which they appear. Once the term vector has been
computed it is appended to the set of existing term vectors or columns
of Uk (see Figure 3).
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p

Ak

m � n

m � (n+p)

=

Uk

m � k

m � k
�k

k � k

k � k
p

V T
k

k � (n+p)

k � n

Figure 2: Mathematical representation of folding-in p documents.

Ak

q

(m+q) � n

m � n =

Uk

(m+q) � k

m � k

q

�k

k � k

k � k
V T
k

k � n

k � n

Figure 3: Mathematical representation of folding-in q terms.

To fold-in a new m � 1 document vector, d, into an existing LSI
model, a projection, d̂, of d onto the span of the current term vectors
(columns of Uk) is computed by

d̂=dTUk�
�1
k : (7)

Similarly, to fold-in a new 1 � n term vector, t, into an existing LSI
model, a projection, t̂, of t onto the span of the current document
vectors (columns of Vk) is determined by

t̂=tVk�
�1
k : (8)
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3 Latent Semantic Indexing Example

In this section, Latent Semantic Indexing (LSI) and the folding-in
process discussed in Section 2.3 are applied to a small database
of medical topics. In Table 2, 18 topics taken from the testbed of
1033 MEDLINE abstracts on biomedicine obtained from the National
Library of Medicine (see MED collection in [5]). All the underlined
words in Table 2 denote keywords which are used as referents to
the medical topics. The parsing rule used for this sample database
required that keywords appear in more than one topic. Of course,
alternative parsing strategies can increase or decrease the number
of indexing keywords (or terms).

Table 2: Database of medical topics from MEDLINE. Underlined
keywords appear in more than one topic.

Label Medical Topic

M1 study of depressed patients after discharge with regard to age
of onset and culture

M2 culture of pleuropneumonia like organisms found in vaginal
discharge of patients

M3 study showed oestrogen production is depressed by ovarian
irradiation

M4 cortisone rapidly depressed the secondary rise in oestrogen
output of patients

M5 boys tend to react to death anxiety by acting out behavior while
girls tended to become depressed

M6 changes in children’s behavior following hospitalization studied
a week after discharge

M7 surgical technique to close ventricular septal defects
M8 chromosomal abnormalities in blood cultures and bone marrow

from leukaemic patients
M9 study of christmas disease with respect to generation and culture

M10 insulin not responsible for metabolic abnormalities accompanying
a prolonged fast

M11 close relationship between high blood pressure and vascular
disease

M12 mouse kidneys show a decline with respect to age in the ability
to concentrate the urine during a water fast

M13 fast cell generation in the eye lens epithelium of rats
M14 fast rise of cerebral oxygen pressure in rats
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Table 3: The 18 � 14 term-document matrix corresponding to the
medical topics in Table 2.

Terms Documents
M M M M M M M M M M M M M M
1 2 3 4 5 6 7 8 9 10 11 12 13 14

abnormalities 0 0 0 0 0 0 0 1 0 1 0 0 0 0
age 1 0 0 0 0 0 0 0 0 0 0 1 0 0
behavior 0 0 0 0 1 1 0 0 0 0 0 0 0 0
blood 0 0 0 0 0 0 0 1 0 0 1 0 0 0
close 0 0 0 0 0 0 1 0 0 0 1 0 0 0
culture 1 1 0 0 0 0 0 1 1 0 0 0 0 0
depressed 1 0 1 1 1 0 0 0 0 0 0 0 0 0
discharge 1 1 0 0 0 1 0 0 0 0 0 0 0 0
disease 0 0 0 0 0 0 0 0 1 0 1 0 0 0
fast 0 0 0 0 0 0 0 0 0 1 0 1 1 1
generation 0 0 0 0 0 0 0 0 1 0 0 0 1 0
oestrogen 0 0 1 1 0 0 0 0 0 0 0 0 0 0
patients 1 1 0 1 0 0 0 1 0 0 0 0 0 0
pressure 0 0 0 0 0 0 0 0 0 0 1 0 0 1
rats 0 0 0 0 0 0 0 0 0 0 0 0 1 1
respect 0 0 0 0 0 0 0 1 0 0 0 1 0 0
rise 0 0 0 1 0 0 0 0 0 0 0 0 0 1
study 1 0 1 0 0 0 0 0 1 0 0 0 0 0

Corresponding to the text in Table 2 is the 18�14 term-document
matrix shown in Table 3. The elements of this matrix are the fre-
quencies in which a term occurs in a document or medical topic (see
Section 4). For example, in medical topic M2, the second column
of the term-document matrix, culture, discharge, and patients all
occur once. For simplicity, term weighting is not used in this example
matrix. Now compute the truncated SVD (with k=2) of the 18 � 14
matrix in Table 2 to obtain the rank-2 approximation A2 as defined in
Figure 1.

Using the first column of U2 multiplied by the first singular value,
�1, for the x-coordinates and the second column of U2 multiplied by
the second singular value, �2, for the y-coordinates, the terms can
be represented on the Cartesian plane. Similarly, the first column of
V2 scaled by �1 are the x-coordinates and the second column of V2

scaled by �2 are the y-coordinates for the documents (medical topics).
Figure 4 is a two-dimensional plot of the terms and documents for the
18� 14 sample term-document matrix.

Notice the documents and terms pertaining to patient behavior or
hormone production are clustered above the x-axis while terms and
documents related to blood disease or fasting are clustered near
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Figure 4: Two-dimensionalplot of terms and documents for the 18�14
example.

the lower y-axis. Such groupings suggest that subsets of medical
topics such as fM2, M3, M4g and fM10, M11, M12g each contain
topics similar in meaning. Although topics M1 and M2 share the
polysemous terms culture and discharge they are not represented
by nearly identical vectors by LSI. The meaning of those terms in
topics M1 and M2 are clearly different and literal-matching indexing
schemes have difficulty resolving such context changes.

3.1 Queries

Suppose we are interested in the documents that contain information
related to the age of children with blood abnormalities. Recall
that a query vector (q) can be represented as (q̂) via q̂ = qTUk�

�1
k
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(see Equation (6)). Since the words of, children, and with are not
indexed terms (i.e., stop words) in the database, they are omitted
from the query leaving age blood abnormalities. Mathematically,
the Cartesian coordinates of the query are determined by Equation
(6) and the sample query age blood abnormalities is shown as the
vector labeled QUERY in Figure 5. This query vector is then com-
pared (in the Cartesian plane) to all the documents in the database.
All documents whose cosine with the query vector is greater than
0:85 is illustrated in the shaded region of Figure 6.

�
0:1491 �0:1199

�
=

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

T 0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

0:1623 �0:1372
0:2068 �0:0488
0:0597 0:0614
0:1663 �0:1313
0:0258 �0:1246
0:4534 0:0386
0:3579 0:1710
0:2931 0:1426
0:0690 �0:1576
0:0940 �0:6535
0:0599 �0:2378
0:1560 0:0661
0:4948 0:1091
0:0460 �0:3393
0:0369 �0:4196
0:1797 �0:1456
0:1087 �0:2126
0:3814 0:0941

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

�
3:5919 0

0 2:6471

�
�1

Figure 5: Derived coordinates for the query of age blood abnormal-
ities.

A different cosine threshold, of course, could have been used so
that a larger or smaller set of documents would be returned. The
cosine is merely used to rank-order documents and its numerical
value is not always an adequate measure of relevance [24, 30].

3.2 Comparison with Lexical Matching

In this example, LSI has been applied using two factors (i.e., A2

is used to approximate the original 18 � 14 term-document matrix).
Using a cosine threshold of :85, three medical topics related to blood
abnormalities and kidney failure were returned: topics M8, M9,
and M12. If the cosine threshold was reduced to just :75, then titles
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Figure 6: A Two-dimensional plot of terms and documents along with
the query age blood abnormalities.

M7 and M11 (which are somewhat related) are also returned. With
lexical-matching, five medical topics (M1, M8, M10, M11, M12) would
be returned. Clearly, topics M1 and M10 are not relevant and topic
M9 would be missed. LSI, on the otherhand, is able to retrieve the
most relevant topic from Table 2 (i.e., M9) to the original query age of
children with blood abnormalities since christmas disease is the
name associated hemophilia in young children. This ability to retrieve
relevant information based on context or meaning rather than literal
term usage is the main motivation for using LSI.

Table 4 lists the LSI-ranked documents (medical topics) with dif-
ferent numbers of factors (k). The documents returned in Table 4
satisfy a cosine threshold of :40, i.e., returned documents are within
a cosine of :40 of the pseudo-document used to represent the query.
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As alluded to earlier, the cosine best serves as a measure for rank-
orderingonly as Table 4 clearly demonstrates that its value associated
with returned documents can significantly vary with changes in the
number of factors k.

Table 4: Returned documents based on different numbers of LSI
factors.

Number of Factors
k = 2 k = 4 k = 8

M 9 1.00 M 8 0.92 M 8 0.67
M12 0.88 M 9 0.89 M12 0.55
M 8 0.85 M 2 0.64 M10 0.54
M11 0.82 M10 0.48
M10 0.79 M12 0.46
M 7 0.74 M11 0.40
M14 0.72
M13 0.71
M 4 0.67
M 1 0.56
M 2 0.42

3.3 Folding-In

Suppose the fictitious topics listed in Table 5 are to be added to the
original set of medical topics in Table 2. These new topics (M15
and M16) essentially use the terms as the original topics in Table
2 but in a somewhat different sense or context. Topic M15 relates
a rise in oestrogen with the behavior of rats rather than patients.
Topic M16 uses the term pressure in the context of behavior rather
than blood. As with Table 2, all underlined words in Table 5 are
considered significant since they appear in more than one title (across
all 16 topics from Tables 2 and 5). Folding-in (see Section 2.3) is one
approach for updating the original LSI-generated database with the
2 new medical topics. Figure 7 demonstrates how these topics are
folded-into the database based on k=2 LSI factors via Equation (7).
The new medical topics are denoted on the graph by their document
labels (in a different boldface font). Notice that the coordinates of the
original topics stay fixed, and hence the new data has no effect on
the clustering of existing terms or documents.
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Table 5: Additional medical topics for updating.

Label Medical Topic

M15 behavior of rats after detected rise in oestrogen
M16 depressed patients who feel the pressure to fast

3.4 Recomputing the SVD

Ideally, the most robust way to produce the best rank-k approxima-
tion (Ak) to a term-document matrix which has been updated with
new terms and documents is to simply compute the SVD of a re-
constructed term-document matrix, say ~A. Updating methods which
can approximate the SVD of the larger term-document matrix ~A be-
come attractive in the presence of memory or time constraints. As
discussed in [24], the accuracy of SVD-updating approaches can be
easily compared to that obtained when the SVD of ~A is explicitly
computed.

Suppose the topics from Table 5 are combined with those of Table
2 in order to create a new 18�16 term-document matrix ~A. Following
Figure 1, we then construct the rank-2 approximation to ~A given by

~A2=
~U2
~�2

~V T
2 : (9)

Figure 8 is a two-dimensional plot of the 18 terms and 16 documents
(medical topics) using the elements of ~U2 and ~V2 for term and doc-
ument coordinates, respectively. Notice the difference in term and
document positions between Figures 7 and 8. Clearly, the new med-
ical topics from Table 5 have helped redefine the underlying latent
structure when the SVD decomposition of ~A is computed. That is,
one can discuss blood pressure and behavioral pressure in different
contexts. Note that in Figure 8 (unlike Figure 7) the topics (old and
new) related to the use of rats form a well-defined cluster or subset
of documents. Folding-in the two new medical topics based on the
existing rank-2 approximation to A (defined by Table 3) may not accu-
rately reproduce the true LSI representation of the new (or updated)
database. In the case of topic M15, for example, the existing LSI
model did not reflect the association of the term behavior with rats,
and hence the folding-in procedure failed to form the cluster fM13,
M14, M15g of related documents shown in Figure 8.
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Figure 7: Two-dimensional plot of folded-in medical topics M15 and
M16.

In practice, the difference between folding-in and SVD-updating is
likely to depend on the number of new documents and terms relative
to the number in the original SVD of A. Thus, we expect SVD-
updating to be especially valuable for rapidly changing databases.

4 SVD-Updating

The process of SVD-updating discussed in Section 2.3 can also be
illustrated using titles from Tables 2 and 5. The three steps required
to perform a complete SVD-update involve adding new documents,
adding new terms, and correction for changes in term weightings. The
order of these steps, however, need not follow the ordering presented
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Figure 8: Two-dimensional plot of terms and documents using the
SVD decomposition of a reconstructed term-document matrix.

in this section (see [24]).

4.1 Overview

Let D denote the p new document vectors to process. Then D is
an m � p sparse matrix since most terms (as was the case with the
original term-document matrix A) do not occur in each document. D
is appended to the columns of the rank-k approximation of the m� n

matrix A, i.e., from Equation (2), Ak so that the k-largest singular
values and corresponding singular vectors of

B=(Ak j D) (10)
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are computed. This is almost the same process as recomputing the
SVD, only A is replaced by Ak.

Let T denote a collection of q � 1 term vectors for SVD-updating.
Then T is a q � n sparse matrix, since each term rarely occurs in
every document. T is then appended to the rows of Ak so that the
k-largest singular values and corresponding singular vectors of

C=

 
Ak

T

!
(11)

are computed.
The correction step for incorporating changes in term weights (see

Equation (5)) is performed after any terms or documents have been
SVD-updated and the term weightings of the original matrix have
changed. For a change of weightings in j terms, let Yj be an m � j

matrix comprised of rows of zeros or rows of the j-th order identity
matrix, Ij, and let Zj be an n � j matrix whose columns specify the
actual differences between old and new weights for each of the j

terms (see [24] for examples). Computing the SVD of the following
rank-j update to Ak defines the correction step.

W=Ak + YjZ
T
j : (12)

4.2 SVD-Updating Procedures

The mathematical computations required in each phase of the SVD-
updating process are detailed in this section. SVD-updating incor-
porates new term or document information into an existing semantic
model (Ak from Equation (2)) using sparse term-document matrices
(D, T , and YjZ

T
j ) discussed in Section 4.1. SVD-updating exploits

the previous singular values and singular vectors of the original term-
documents matrix A as an alternative to recomputing the SVD of ~A in
Equation (9). In general, the cost of computing the SVD of a sparse
matrix [4] can be generally expressed as

I � cost (GTGx) + trp� cost (Gx) ;

where I is the number of iterations required by a Lanczos-type pro-
cedure [2] to approximate the eigensystem of GTG and trp is the
number of accepted singular triplets (i.e. singular values and corre-
sponding left and right singular vectors). The additional multiplication
by G is required to extract the left singular vector given approximate
singular values and their corresponding right singular vector approxi-
mations from a Lanczos procedure. A brief summary of the required

19



computations for updating an existing rank-k approximation Ak us-
ing standard linear algebra is given below. Table 6 contains a list of
symbols, dimensions, and variables used to define the SVD-updating
phases.

Table 6: Symbols used in SVD-updating phases.

Symbol Dimensions Definition
A m� n Original term-document matrix
Uk m� k Left singular vectors of Ak

�k k � k Singular values of Ak

Vk n� k Right singular vectors of Ak

Zj n� j Adjusted term weights
Yj m� j Permutation matrix
D m� p New document vectors
T q � n New term vectors

Updating Documents

Let B=(Ak j D) from Equation (10) and define SVD (B) = UB�BV
T
B .

Then

UT
k B

 
Vk O

O Ip

!
=(�k j U

T
k D) ;

since Ak=Uk�kV
T
k : If F=(�k j U

T
k D) and SVD(F) = UF�FV

T
F ; then it

follows that

UB=UkUF ; VB=

 
Vk O

O Ip

!
VF ; and �F =�B: (13)

Hence UB and VB are m � k and (n + p)�(k + p) dense matrices,
respectively.

Updating Terms

Let C=

 
Ak

T

!
from Equation (11) and define SVD (C) = UC�CV

T
C .

Then  
UT
k O

O Iq

!
CVk=

 
�k

TVk

!
:
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If H=

 
�k

TVk

!
and SVD(H) = UH�HV

T
H then it follows that

UC=

 
Uk O

O Iq

!
UH ; VC=VkVH ; and �H=�C :

Hence UC and VC are (m + q)�(k + q) and n � k dense matrices,
respectively.

Term Weight Corrections

Let W=Ak + YjZ
T
j , where Yj is m � j and Zj is n � j from Equation

(12), and define SVD (W) = UW�WV
T
W . Then

UT
k WVk=(�k + U

T
k YjZ

T
j Vk) :

If Q=(�k + U
T
k YjZ

T
j Vk) and SVD(Q) = UQ�QV

T
Q , then it follows that

UW =UkUQ and VW =VkVQ:

Since (UQUk)
T WVkVQ=�Q=�W . Hence UW and VW are m � k and

n� k dense matrices, respectively.
Table 7 contains the complexities for folding-in terms and docu-

ments, recomputing the SVD, and the three phases of SVD-updating.
Using the complexities in Table 7 the required number of floating-point
operations (or flops) for each method can be compared for varying
numbers of added documents or terms. As shown in [24] for a con-
densed encyclopedia test case, the computational advantages of one
scheme over another depends the values of the variables listed in Ta-
ble 6. For example, if the sparsity of the D matrix from Equation
(10) reflects that of the original m � n term-document matrix A with
m � n, then folding-in will still require considerably fewer flops than
SVD-updating when adding d new documents provided d � n. The
expense in SVD-updating can be attributed to the O(2k2m + 2k2n)
flops associated with the dense matrix multiplications involving Uk
and Vk in Equation (13).

4.3 Orthogonality

One important distinction between the folding-in (see Section 2.3) and
the SVD-updating processes lies in the guarantee of orthogonality in
the vectors (or axes) used for term and document coordinates. Recall
that an orthogonal matrix Q satisfies QTQ=In, where In is the n-th or-
der identity matrix. Let Dp be the collection of all folded-in documents
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Table 7: Computational complexity of updating methods.

Method Complexity
SVD-updating [I�[4nnz(D)+ 4mk + k � 2m � p]+

documents trp�[2nnz(D)+ 2mk �m]]

+[(2k2
� k)(m + n)]

SVD-updating [I�[4nnz(T)+ 4kn + k � 2n � q]+

terms trp�[2nnz(T)+ 2kn + k � 2n � q]]

+[(2k2
� k)(m + n)]

SVD-updating [I�[4nnz(Zj)+ 4km + 2mj + 2kn + 3k � 2n�
correction step 2j �m]+ trp�[2nnz(Zj)+ 2km + 2kn + k�

j � n]]+[(2k2
� k)(m + n)]

Folding-in documents 2mkp

Folding-in terms 2nkq

Recomputing I�[4nnz(A)�(m + q)�(n + p)]+

the SVD trp� 2nnz(A)�(m + q)

where each column of the p�k matrix is a document vector of the form
d̂ from Equation (7). Similarly, let Tq be the collection of all folded-in
terms such that each column of the q�k matrix is a term vector of the
form t̂ from Equation (8). Then, all term vectors and document vec-

tors associated with folding-in can be represented as Ûk=
�
UT
k j T T

q

�T
and V̂k=

�
V T
k j DT

p

�T
, respectively. The folding-in process corrupts the

orthogonality of Ûk and V̂k by appending non-orthogonal submatrices
Tq and Dp to Uk and Vk, respectively. Computing ÛT

k Ûk and V̂ T
k V̂k, the

loss of orthogonality in Ûk and V̂k can be measured by

kÛT
k Ûk � Ikk2 and kV̂ T

k V̂k � Ikk2:

Folding-in does not maintain the orthogonality of Ûk or V̂k since arbi-
trary vectors of weighted terms or documents are appended to Uk or
Vk, respectively. However, the amount by which the folding-in method
perturbs the orthogonality of Ûk or V̂k does indicate how much distor-
tion has occurred due to the addition of new terms or documents.

The trade-off in computational complexity and loss of orthogonal-
ity in the coordinate axes for updating databases using LSI poses
interesting future research. Though the SVD-updating process is
considerably more expensive [24] than folding-in, the true lower-rank
approximation to the true term-document matrix A defined by Figure
1 is maintained. Significant insights in the future could be gained
by monitoring the loss of orthogonality associated with folding-in and
correlating it to the number of relevant documents returned within
particular cosine thresholds (see Section 3.1).
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4.4 SVD-Updating Example

To illustrate SVD-updating, suppose the fictitious titles in Table 5 are
to be added to the original set of titles in Table 2. In this example,
only documents are added and weights are not adjusted, hence only
the SVD of the matrix B in Equation (10) is computed.

Initially, a 18� 2 term-document matrix, D, corresponding to the
fictitious titles in Table 5 is generated and then appended to A2 to
form a 18� 2 matrix B of the form given by Equation (10). Following
Figure 1, the best rank-2 approximation (B2) to B is given by

B2=Û2�̂2V̂
T

2 ;

where the columns of Û2 and V̂2 are the left and right singular vectors,
respectively, corresponding to the two largest singular values of B.

Figure 9 is a two-dimensional plot of the 12 terms and 16 doc-
uments (book titles) using the elements of Û2 and V̂2 for term and
document coordinates, respectively. Notice the similar clustering of
terms and book titles in Figures 9 and 8 (recomputing the SVD) and
the difference in document and term clustering with Figure 7 (folding-
in).
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Figure 9: Two-dimensional plot of terms and documents using the
SVD-updating process.
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4.5 SVD-Updating Animation

A three-dimensional animation of the
terms and documents from the updating
example of Section 4.4 can be used to
show the placement of the original 18
terms and 14 documents, the two doc-
uments folded-in to the rank-3 LSI model,
and the movement of the terms and docu-
ments when SVD-updating is applied. In

the video, the blue axis represents the x-axis, the green axis repre-
sents the y-axis, and the red axis represents the z-axis. Coordinates
for these axes, of course, are derived from the 3-largest singular
triplets of the appropriate matrix B in Equation (10). In addition, the
white spheres represent the terms, the red spheres represent the
documents (or medical topics), and the green spheres represent the
documents (M15 and M16) being added to the term-document space.

Folding-in and SVD-updating are illustrated by first showing the
terms and documents before topics M15 and M16 are added. Then,
the new topics, represented by green spheres labeled M15 and M16,
are folded-in to the term-document space. After a slight pause, all
terms and documents are shown moving to the positions they would
assume if SVD-updating is used to add the topics M15 and M16 to
the term-document space. Notice that SVD-updating appropriately
moves the medical topic M16 to the centroid of the term vectors
corresponding to depressed, patients, pressure, and fast.

5 Applications of Latent Semantic Indexing

In this section, several applications of LSI are discussed ranging
from information retrieval and filtering to models of human memory.
Some open computational and statistical-based issues related to the
practical use of LSI for such applications are also mentioned.

5.1 Information Retrieval

Latent Semantic Indexing was initially developed for information re-
trieval applications. In these application, a fixed database is indexed
and users pose a series of retrieval queries. The effectiveness of re-
trieval systems is often evaluated using "test collections" developed
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by the information retrieval community. These collections consist of
a set of documents, a set of user queries, and relevance judgements
(i.e., for each query every document in the collection has been judged
as relevant or not to the query)1. This allows one to evaluate the ef-
fectiveness of different systems in retrieving relevant documents and
at the same time not returning irrelevant documents. Two measures,
precision and recall, are used to summarize retrieval performance.
Recall is the proportion of all relevant documents in the collection
that are retrieved by the system; and precision is the proportion of
relevant documents in the set returned to the user. Average preci-
sion across several levels of recall can then be used as a summary
measure of performance.

Results were obtained for LSI and compared against published or
computed results for other retrieval techniques, notably the standard
keyword vector method in SMART [25]. For several information sci-
ence test collections, the average precision using LSI ranged from
comparable to 30% better than that obtained using standard keyword
vector methods. See [5, 13, 7] for details of these evaluations. The
LSI method performs best relative to standard vector methods when
the queries and relevant documents do not share many words, and
at high levels of recall.

Term Weighting

One of the common and usually effective methods for improving re-
trieval performance in vector methods is to transform the raw fre-
quency of occurrence of a term in a document (i.e. the value of a
cell in the term by document matrix) by some function (see Equa-
tion 5). Such transformations normally have two components. Each
term is assigned a global weight, indicating its overall importance
in the collection as an indexing term. The same global weighting is
applied to an entire row (term) of the term-document matrix. It is also
possible to transform the term’s frequency in the document; such a
transformation is called a local weighting, and is applied to each cell
in the matrix.

1Exhaustive relevance judgements (when all documents are judged for every
query) are ideal for system evaluation. In large document collections, however,
exhaustive judgements become prohibitively costly. For large collections a pooling
method is used. Relevance judgements are made on the pooled set of the top-
ranked documents returned by several different retrieval systems for the same set
of queries. Most of the top-ranked documents for new systems will hopefully be
contained in the pool set and thus have relevance judgements associated with
them.
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The performance for several weighting schemes have been com-
pared in [7]. A transformed matrix is automatically computed, the
truncated SVD shown in Figure 1 is computed, and performance is
evaluated. A log transformationof the local cell entries combined with
a global entropy weight for terms is the most effective term-weighting
scheme. Averaged over five test collections, log� entropy weighting
was 40% more effective than raw term weighting.

Relevance Feedback

The idea behind relevance feedback is quite simple. Users are very
unlikely to be able to specify their information needs adequately, es-
pecially on the first try. In interactive retrieval situations, it is possible
to take advantage of user feedback about relevant and non-relevant
documents [26]. Systems can use information about which docu-
ments are relevant in many ways. Typically the weight given to terms
occurring in relevant documents is increased and the weight of terms
occurring in non-relevant documents is decreased. Most of the tests
using LSI have involved a method in which the initial query is replaced
with the vector sum of the documents the users has selected as rel-
evant. The use of negative information has not yet been exploited in
LSI; for example, by moving the query away from documents which
the user has indicated are irrelevant. Replacing the users’ query with
the first relevant document improves performance by an average of
33% and replacing it with the average of the first three relevant doc-
uments improves performance by an average of 67% (see [7] for de-
tails). Relevance feedback provides sizeable and consistent retrieval
advantages. One way of thinking about the success of these meth-
ods is that many words (those from relevant documents) augment the
initial query which is usually quite impoverished. LSI does some of
this kind of query expansion or enhancement even without relevance
information, but can be augmented with relevance information.

5.2 Choosing the Number of Factors

Choosing the number of dimensions (k) for Ak shown in Figure 1 is
an interesting problem. While a reduction in k can remove much of
the noise, keeping too few dimensions or factors may loose important
information. As discussed in [5] using a test database of medical
abstracts, LSI performance2 can improve considerably after 10 or 20

2Performance is average precision over recall levels of 0:25, 0:50 and 0:75.
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dimensions, peaks between 70 and 100 dimensions, and then begins
to diminish slowly. This pattern of performance (initial large increase
and slow decrease to word-based performance) is observed with
other datasets as well. Eventually performance must approach the
level of performance attained by standard vector methods, since with
k=n factors Ak will exactly reconstruct the original term by document
matrix A in Equation (4). That LSI works well with a relatively small
(compared to the number of unique terms) number of dimensions or
factors k shows that these dimensions are, in fact, capturing a major
portion of the meaningful structure.

5.3 Information Filtering

Information filtering is a problem that is closely related to information
retrieval [1]. In information filtering applications, a user has a rel-
atively stable long-term interest or profile, and new documents are
constantly received and matched against this standing interest. Se-
lective dissemination of information, information routing, and person-
alized information delivery are also used to refer to the matching of an
ongoing stream of new information to relatively stable user interests.

Applying LSI to information filtering applications is straightforward.
An initial sample of documents is analyzed using standard LSI/SVD
tools. A users’ interest is represented as one (or more) vectors in
this reduced-dimension LSI space. Each new document is matched
against the vector and if it is similar enough to the interest vector it is
recommended to the user. Learning methods like relevance feedback
can be used to improve the representation of interest vectors over
time.

Foltz [11] compared LSI and keyword vector methods for filtering
Netnews articles, and found 12%–23% advantages for LSI. Dumais
and Foltz in [12] compared several different methods for representing
users interests for filtering technical memoranda. The most effective
method used vectors derived from known relevant documents (like
relevance feedback) combined with LSI matching.

TREC

Recently, LSI has been used for both information filtering and infor-
mation retrieval in TREC (Text REtrieval Conference), a large-scale
retrieval conference conference sponsored by NIST [8, 9]. The TREC
collection contains more than 1;000;000 documents (representing
more that 3 gigabytes of ASCII text), 200 queries, and relevance
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judgements pooled from the return sets of more than 30 systems. The
content of the collections varies widely ranging from news sources
(AP News Wire, Wall Street Journal, San Jose Mercury News), to
journal abstracts (Ziff Davis, DOE abstracts), to the full text of the
Federal Register and U.S. Patents. The queries are very long and
detailed descriptions, averaging more that 50 words in length. While
these queries may be representative of information requests in fil-
tering applications, they are quite unlike the short requests seen in
previous IR collections or in interactive retrieval applications (where
the average query is only one or two words long). The fact that the
TREC queries are quite rich means that smaller advantages would
be expected for LSI or any other methods that attempt to enhance
users queries.

The big challenge in this collection was to extend the LSI tools to
handle collections of this size. The results were quite encouraging. At
the time of the TREC conferences it was not reasonable to compute
Ak from Figure 1 for the complete collection. Instead, a sample3

of about 70;000 documents and 90;000 terms was used. Such
term by document matrices (A) are quite sparse, containing only
:001–:002% non-zero entries. Computing A200, i.e. the 200-largest
singular values and corresponding singular vectors, by a single-vector
Lanczos algorithm [4] required about 18 hours of CPU time on a SUN
SPARCstation 10 workstation. Documents not in the original LSI
analysis were folded-in as previously described in Section 3.3. That
is, the vector for a document is located at the weighted vector sum of
its constituent term vectors.

Although it is very difficult to compare across systems in any
detail because of large pre-processing, representation and matching
differences, LSI performance was quite good [9]. For filtering tasks,
using information about known relevant documents to create a vector
for each query was beneficial. The retrieval advantage of 31% was
somewhat smaller than that observed for other filtering tests and is
attributable to the good initial queries in TREC. For retrieval tasks,
LSI showed 16% improvement when compared with the keyword
vector methods. Again the detailed original queries account for the
somewhat smaller advantages than previously observed.

The computation of Ak for the large sparse TREC matrices A was
accomplished without difficulty (numerical or convergence problems)
using sophisticated implementations of the Lanczos algorithm from
SVDPACKC [4]. However, the computational and memory require-

3Different samples for information retrieval and filtering and for TREC-1 and
TREC-2 – see [8, 9] for details.
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ments posed by the TREC collection greatly motivated the develop-
ment of the SVD-updating procedures discussed in Section 4.

5.4 Novel Applications

Because LSI is a completely automatic method, it is widely appli-
cable to new collections of texts (including to different languages,
as described below). The fact that both terms and documents are
represented in the same reduced-dimension space adds another di-
mension of flexibility to the LSI retrieval model. Queries can be either
terms (as in most information retrieval applications), documents or
combinations of the two (as in relevance feedback). Queries can
even be represented as multiple points of interest [18]. Similarly, the
objects returned to the user are typically documents, but there is no
reason that similar terms could not be returned. Returning nearby
terms is useful for some applications like online thesauri (that are
automatically constructed by LSI), or for suggesting index terms for
documents for publications which require them.

Although term-document matrices have been used for simplicity,
the LSI method can be applied to any descriptor-object matrix. We
typically use only single terms to describe documents, but phrases
or n-grams could also be included as rows in the matrix. Similarly,
an entire document is usually the text object of interest, but smaller,
more topically coherent units of text (e.g., paragraphs, sections) could
be represented as well. For example, LSI has been incorporated
as a fuzzy search option in NETLIB [6] for retrieving algorithms,
code descriptions, and short articles from the NA-Digest electronic
newsletter.

Regardless of how the original descriptor-object matrix is derived,
a reduced-dimensionapproximationcan be computed. The important
idea in LSI is to go beyond the original descriptors to more reliable
statistically derived indexing dimensions. The wide applicability of the
LSI analysis is further illustrated by describing several applications in
more detail.

Cross-Language Retrieval

It is important to note that the LSI analysis makes no use of En-
glish syntax or semantics. Words are identified by looking for white
spaces and punctuation in ASCII text. Further, no stemming is used
to collapse words with the same morphology. If words with the same
stem are used in similar documents they will have similar vectors in
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the truncated SVD defined in Figure 1; otherwise, they will not. (For
example, in analyzing an encyclopedia as done in [3], doctor is quite
near doctors but not as similar to doctoral.) This means that LSI
is applicable to any language. In addition, it can be used for cross-
language retrieval – documents are in several languages and user
queries (again in several languages) can match documents in any
language. What is required for cross-language applications is a com-
mon space in which words from many languages are represented.

Landauer and Littman in [21] described one method for creating
such an LSI space. The original term-document matrix is formed
using a collection of abstracts that have versions in more than one
language (French and English, in their experiments). Each abstract
is treated as the combination of its French-English versions. The
truncated SVD is computed for this term by combined-abstract ma-
trix A. The resulting space consists of combined-language abstracts,
English words and French words. English words and French words
which occur in similar combined abstracts will be near each other in
the reduced-dimension LSI space. After this analysis, monolingual
abstracts can be folded-in (see Section 3.3) – a French abstract will
simply be located at the vector sum of its constituent words which
are already in the LSI space. Queries in either French or English
can be matched to French or English abstracts. There is no difficult
translation involved in retrieval from the multilingual LSI space. Exper-
iments showed that the completely automatic multilingual space was
more effective than single-language spaces. The retrieval of French
documents in response to English queries (and vice versa) was as
effective as first translating the queries into French and searching a
French-only database. The method has shown almost as good re-
sults for retrieving English abstracts and Japanese Kanji ideographs,
and for multilingual translations (English and Greek) of the Bible [30].

Modeling Human Memory

Landauer and Dumais [20] have recently used LSI spaces to model
some of the associative relationships observed in human memory.
They were interested in term-term similarities. LSI is often described
intuitively as a method for finding synonyms – words which occur in
similar patterns of documents will be near each other in the LSI space
even if they never co-occur in a single document (e.g., doctor, physi-
cian both occur with many of the same words like nurse, hospital,
patient, treatment, etc.). Landauer and Dumais tested how well an
LSI space would mimic the knowledge needed to pass a synonym
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test. They used the synonym test from ETS’s Test Of English as a
Foreign Language (TOEFL). The test consists of 80 multiple choice
test items each with a stem word (e.g., levied) and four alternatives
(e.g., imposed, believer, requested, correlated), one of which is
the synonym. An LSI analysis was performed on an encyclopedia
represented by a 61;000 word by 30;473 article matrix A. For the
synonym test they simply computed the similarity of the stem word to
each alternative and picked the closest one as the synonym (for the
above example imposed was chosen – :70 imposed, :09 believed,
:05 requested, �:03 correlated). Using this method LSI scored 64%
correct, compared with 33% correct for word-overlap methods, and
64% correct for the average student taking the test. This is surpris-
ingly good performance given that synonymy relationships are no dif-
ferent than other associative relationships (e.g., algebra is quite near
words like algebraic, topology, theorem, Cayley and quadratic,
although none are synonyms).

Matching People Instead of Documents

In a couple of applications, LSI has been used to return the best
matching people instead of documents. In these applications, people
were represented by articles they had written. In one application [13],
known as the Bellcore Advisor, a system was developed to find local
experts relevant to users’ queries. A query was matched to the near-
est documents and project descriptions and the authors organization
was returned as the most relevant internal group. In another applica-
tion [10], LSI was used to automate the assignment of reviewers to
submitted conference papers. Several hundred reviewers were de-
scribed by means of texts they had written, and this formed the basis
of the LSI analysis. Hundreds of submitted papers were represented
by their abstracts, and matched to the closest reviewers. These LSI
similarities along with additional constraints to insure that each paper
was reviewed p times and that each reviewer received no more than
r papers to review were used to assign papers to reviewers for a ma-
jor human-computer interaction conference. Subsequent analyses
suggested that these completely automatic assignments (which took
less than 1 hour) were as good as those of human experts.

Noisy Input

Because LSI does not depend on literal keyword matching, it is espe-
cially useful when the text input is noisy, as in OCR (Optical Character
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Recognition), open input, or spelling errors. If there are scanning er-
rors and a word (Dumais) is misspelled (as Duniais), many of the
other words in the document will be spelled correctly. If these correctly
spelled context words also occur in documents which contained a cor-
rectly spelled version of Dumais, then Dumais will probably be near
Duniais in the k-dimensional space determined by Ak (see Equation
2 or Figure 1).

Nielsen et al. in [23] used LSI to index a small collection of ab-
stracts input by a commercially available pen machine in its standard
recognizer mode. Even though the error rates were 8:8% at the word
level, information retrieval performance using LSI was not disrupted
(compared with the same uncorrupted texts). Kukich [19] used LSI
for a related problem, spelling correction. In this application, the rows
were unigrams and bigrams and the columns were correctly spelled
words. An input word (correctly or incorrectly spelled) was broken
down into its bigrams and trigrams, the query vector was located at
the weighted vector sum of these elements, and the nearest word in
LSI space was returned as the suggested correct spelling.

5.5 Summary of LSI Applications

Word matching results in surprisingly poor retrieval. LSI can improve
retrieval substantially by replacing individual words with a smaller
number of more robust statistically derived indexing concepts. LSI
is completely automatic and widely applicable, including to different
languages. Furthermore, since both terms and documents are rep-
resented in the same space, both queries and returned items can
be either words or documents. This flexibility has led to a growing
number of novel applications.

5.6 Open Computational/Statistical Issues

There are a number of computational/statistical improvements that
would make LSI even more useful, especially for large collections:

� computing the truncated SVD of extremely large sparse matri-
ces (i.e., much larger than the usual 100,000 by 60,000 term by
document matrix processed on RISC workstations with under
500 megabytes of RAM),

� performSVD-updating (see Section 4) in real-time for databases
that change frequently, and
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� efficiently comparing queries to documents (i.e., finding near
neighbors in high-dimension spaces).

5.7 Related Work

A number of other researchers are using related linear algebra meth-
ods for information retrieval and classification work. Schutze [27] and
Gallant [14] have used SVD and related dimension reduction ideas
for word sense disambiguation and information retrieval work. Hull
[17] and Yang and Chute [29] have used LSI/SVD as the first step in
conjunction with statistical classification (e.g. discriminant analysis).
Using the LSI-derived dimensions effectively reduces the number
of predictor variables for classification. Wu et al. in [28] also used
LSI/SVD to reduce the training set dimension for a neural network
protein classification system used in human genome research.
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