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Abstract We prove a global Inverse Map Theorem for a mapf from the Heisen-
berg group into itself, provided the Pansu differential off is continuous, non sin-
gular and satisfies some growth conditions at infinity. An estimate for the Lips-
chitz constant (with respect to the Carnot–Carathéodory distance inH) of a con-
tinuously Pansu differentiable map is included. This gives a characterization of
(continuously Pansu differentiable) globally biLipscitz deformations ofH in term
of a pointwise estimate of their differential.
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1 Introduction

In recent years there has been some interest in studying those maps between
Carnot groups which alter in a controlled way some geometric quantity: quasi-
conformal maps, biLipschitz maps. See e.g. [10], [13], [6], [3], [5]. Many results
have been proved in the case of the Heisenberg groupH, the simplest nontriv-
ial example of Carnot group. In this setting the theory is quite rich. Moreover,
the Heisenberg group is especially interesting among Carnot group because of its
applications, for instance to analysis in several complex variables.
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In this note, we give a characterization of the biLipschitz maps among the
Pansu continuosly differentiablemaps of the Heisenberg groupH into itself.

To start the discussion, recall that a standard way to ensure that a givenC1 map
f : Rn → Rn is globally biLipschitz in the Euclidean sense is that its differential
D f satisfies the pointwise condition

L−1 ≤ |D f (x)(y)| ≤ L, x,y∈ Rn, (1.1)

In this case, as a consequence of the Inverse map Theorem, the map is a localC1

diffeomorphism. Moreover as a consequence of a global Inverse Map Theorem,
which goes back (at least) to Hadamard [8] and Lévy [11] (see [14, Theorem 1.22]
for a proof), the mapf is a globalC1 diffeomorphism. The mean value theorem
provides the estimate

L−1 ≤ | f (x)− f (y)|
|x−y|

≤ L, ∀x,y∈ Rn.

This note is devoted to the extension of this result to the Heisenberg group. For
simplicity of notation, we only consider thefirst Heisenberg groupH = R3 with
its Lie group operation(P,Q) 7→ P·Q, P,Q∈H. With our choice of coordinates,

(x,y, t) · (x′,y′, t ′) = (x+x′,y+y′, t + t ′+2(x′y−xy′)).

Let d be the Carnot–Carathéodory distance inH and denote byD f (P) : H→H the
Pansu differential, at a pointP∈H, of a mapf : H→H. For a complete overview
of notation and terminology, see§2.

A map f from H into itself isL-biLipschitz,L ≥ 1, if

1
L
≤ d( f (P), f (Q))

d(P,Q)
≤ L

wheneverP andQ are distinct points inH.
We say that a mapf : H→H is Pansu continuously differentiable, brieflyC1

H,
if it is Pansu differentiable at anyP ∈ H, D f (P) is an endomorphism ofH that
commutes with dilations and it is a continuos map ofP. More precisely, it acts on
vectors as multiplication times a 3×3 matrixD f (P),

D f (P) =
(

J f(P) 0
0 det(J f(P))

)
,

for a suitable 2×2 matrixJ f(P) with continuous entries. We mention that a ver-
sion of the Inverse Map Theorem has been proved in this setting by Magnani [12].

Here we prove the following result

Theorem 1.1 Let f : H→H be C1
H function. If there is L≥ 1 such that

L−1|z| ≤ |J f(P)z| ≤ L|z|, ∀z∈ R2,

then f is globally L−biLipschitz.
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Concerning the converse statement, observe that a version of Rademacher the-
orem in Carnot groups has been proved by Pansu [13].

We obtain Theorem 1.1 as a consequence of a global inverse map Theorem
of Hadamard type, see Theorem 3.1. The proof is based on a classical “lifting of
homotopies” argument, which is adapted to our setting in Lemma 3.3.

Another aspect we discuss here is the estimate of the Lipschitz constant of a
C1

H map, see Theorem 3.2. Although the proof is not deep, it requires some care.
As in the Euclidean case, in Theorem 1.1 we draw a conclusion on global met-

ric properties off from a (uniform) assumption on its infinitesimal behavior. The
motivation for considering this problem came to us from [2], where it is proved
that isometries ofH are stable in the family of biLipschitz maps. This stability
property can be phrased in several ways. For instance, iff : H → H is (1+ ε)-
biLipschitz andε is small, then for any metric ballBR of radiusR there isT, an
isometry ofH, such that, forP in BR,

d( f (P),T(P))≤ ω(ε)R.

Moreover,ω(ε)≤Cε1/211
. It is an open problem to find the sharp asymptotics of

ω asε tends to 0.
Although the definition of biLipschitz map makes perfect sense in all metric

spaces, it is difficult to verify in practice whether a given map has this property.
Theorem 1.1 provides a tool for checking (actually characterize) this property in
the class of differentiable maps.

Finally we observe that there are two other ways to construct Lipschitz maps
of H. The first is through a technique due to Korányi and Reimann [10]. The other,
through the “lifting” of suitable plane maps is due to Capogna and Tang, see [4],
[5]. See also the discussion in [2].

2 Preliminaries

Let H = R3 be the Heisenberg group, with group law

(x,y, t) · (x′,y′, t ′) = (x+x′,y+y′, t + t ′+2(x′y−xy′)), (2.1)

for any (x,y, t),(x′,y′, t ′) ∈ R3. Observe that the inverse element of(x,y, t) with
respect to law (2.1) is(x,y, t)−1 = (−x,−y,−t).

The Carnot Carath́eodory distance inH can be defined as follows. Consider
on H the left invariant vector fieldsX = ∂x + 2y∂t andY = ∂y− 2x∂t . A path
γ : [0,T]→H is said to be behorizontalif γ is absolutely continuous and there are
a,b measurable functions such thatγ̇(s) = a(s)Xγ(s) +b(s)Yγ(s), for a.e.s∈ [0,T].
The lengthof γ is

length(γ) :=
∫ T

0

√
a2(s)+b2(s)dt. (2.2)

Given(z; t),(z′; t ′) ∈ H, thecontrol distance d((z; t),(z′; t ′)) is the infimum of the
length among all horizontal paths connecting(z; t) and (z′; t ′). The distance is
left invariant with respect to the Lie group structure (2.1). Balls are denoted by
B(P, r) = {Q∈H : d(Q,P) < r}.
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A natural dilation structure ofH, which makes the vector fieldsX andY ho-
mogeneous of degree 1 is defined by

δλ (z; t) = (λz;λ
2t), λ > 0, (z; t) ∈H.

All maps of the form
(z; t) 7→ (Az;(detA)t),

whereA∈O(2), are isometries.
A map f : H→H is L−biLipschitz if

L−1 ≤
d
(

f (P), f (Q)
)

d
(
P,Q

) ≤ L, ∀P,Q∈H. (2.3)

The definition of differentiability for a mapf : H → H has been given by
Pansu in the following terms. The differentialD f (P) of a map f : H → H at a
pointP∈H is

D f (P)(Q) := lim
σ→0

δσ−1

{
f (P)−1 · f (P·δσ Q)

}
,

where the limit must be uniform inQ belonging to compact sets ofH ' R3.
Even when specialized to the Euclidean setting, the notion of Pansu differen-
tial is more general than the usual differentiability. This already happens for the
one variable functionf (x) = |x|. Pansu proved that the differential of a Lipschitz
map exists almost everywhere and it is an endomomorphism of the group(H, ·)
which commutes with dilations. Since any such endomorphism must have the
form (u,v,w) 7→ (αu+βv,γu+δv,(αδ−βγ)w), for suitable constantsα,β ,γ,δ ∈

R, it can be identified with the matrixA =
(

α β

γ δ

)
and written as(u,v,w) 7→(

A
(u

v

)
;det(A)w

)
. Given a pointP where the differential off exists and it is a di-

lation preserving group homomorphism, we denote byJ f(P) its associated 2×2
matrix, so that

D f (P)

u
v
w

 =
(

J f(P)
(u

v

)
det(J f)(P)w

)
. (2.4)

The wayJ f is associated tof is the following. f , as a map ofR3 into itself, can
be written f = (ζ ;τ) = (ξ ,η ,τ), whereζ maps intoR2. Then,

J f =
(

Xξ Yξ

Xη Yη

)
.

Recall also the following fact. Letγ : [0,T] → H be aL−Lipschitz path, i.e.
d(γ(s),γ(s′))≤ L|s−s′| for anys,s′ ∈ [0,T]. Then,γ is trivially locally Lipschitz
continuous fromR to R3 with the Euclidean metric. Then its tangent vectorγ̇

exists a.e. By [13, Proposition 4.1], the ODEγ̇ = aX(γ) + bY(γ) holds almost
everywhere for suitable functionsa, b and

lim
ε→0

δε−1

(
γ(s)−1 · γ(s+ ε)

)
= (a(s),b(s),0)
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for almost everys. If we define the metric length ofγ as

lengthd(γ) := sup
n−1

∑
j=0

d
(
γ(sj),γ(sj+1)

)
< ∞,

then [1, Theorem 4.4.1] gives

lengthd(γ) =
∫ T

0

√
a2 +b2. (2.5)

This means that the length defined in (2.2) agrees with lengthd.

3 A global Inverse Map Theorem

Theorem 1.1 will be proved as a consequence of the following Hadamard-type
Theorem (Theorem 3.1) and of an estimate of the Lipschitz constant of a function
f ∈C1

H in term of sup|J f | (Theorem 3.2).

Theorem 3.1 Let f be a C1
H map. Assume that J f is nonsingular at any point and,

for a suitable constant C0, the estimatesupH |(J f)−1| ≤C0 holds. Then f: H→H
is a global C1

H diffeomorphism.

In the statement of the theorem,|A| = max
v2
1+v2

2=1
|Av| denotes the norm of a 2× 2

matrixA.

Theorem 3.2 Let f ∈C1
H, with supH |J f |= L < ∞. Then

d( f (P), f (Q))≤ Ld(P,Q), P,Q∈H.

First we recall a version of the Inverse Function Theorem proved by Magnani
[12]

Theorem 3.3 Let f : H → H be aC1
H map. Assume detJ f(P) 6= 0 at anyP∈ H.

Then, for anyP∈ H, there areU andV neighborhoods ofP and f (P) such that
f : U →V is a homeomorphism,f−1 : V →U is a continuously differentiable map
in Pansu sense and formula

D f (P)D f−1( f (P)) = I , P∈U,

holds.

The following Lemma 3.1 will give the proof of Theorem 3.2.

Lemma 3.1 Let f ∈C1
H. Let γ : [0,T] → H be a C1 path in the Euclidean sense.

Assume also thatγ is Lipschitz continuous with respect to d. Letsup
s∈[0,T]

|J f(γ(s))|=

L. Then, for any[α,β ]⊂ [0,T],

length( f ◦ γ)|[α,β ] ≤ L length(γ[α,β ]). (3.1)

As a consequence, f◦ γ is a Lipschitz path with Lipschitz constant L.
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Proof Let γ : [0,T]→H. Write γ̇(s) = a(s)X(γ(s))+b(s)Y(γ(s)) at anys. By [13,
Proposition 4.1]γ is differentiable in Pansu sense betweenR andH and, for any
s∈ [0,T],

Dγ(s)(u) =

ua(s)
ub(s)

0

 , u∈ R.

Next, by the chain rule for Pansu differentials

D( f ◦ γ)(s) = D f (γ(s))Dγ(s)

=
(

J f(γ(s)) 0
0 det

(
J f(γ(s))

) )a(s)
b(s)

0

 =
(

a′(s)
b′(s)

)
,

(3.2)

where we let (
a′(s)
b′(s)

)
= J f(γ(s))

(
a(s)
b(s)

)
(3.3)

By definition of Pansu differential, it is not difficult to check that (3.2) implies
that the pathf ◦ γ = f (γ) is a solution of the ODE

d
ds

( f ◦ γ)(s) = a′(s)X(( f ◦ γ)(s))+b′(s)Y(( f ◦ γ)(s)), 0≤ s≤ T.

Sincea′ and b′ are continuous functions,f (γ) is a C1 path and equation (3.3)
ensures estimate (3.1) in any subinterval[α,β ]⊂ [0,T]. The lemma is proved.ut

Lemma 3.1 provides immediately a proof of Theorem 3.2.

Proof (Proof of Theorem 3.2)TakeP,Q∈H. Letγ : [0,d(P,Q)]→H be a geodesic
such thatγ(0) = P, γ(d(P,Q)) = Q. Then, lengthf (γ) ≤ Ld(P,Q). Therefore
d( f (P), f (Q))≤ Ld(P,Q). ut

Next we show that Lemma 3.1 holds for any Lipschitz pathγ.

Lemma 3.2 Let f ∈C1
H. Denote L= supH |J f |. Assume L< ∞. Letγ : [0,T]→R

be a Lipschitz path. Then, for any[α,β ]⊂ [0,T],

length(( f ◦ γ)|[α,β ])≤ L length(γ|[α,β ]). (3.4)

In particular f(γ) is Lipschitz andLip f (γ)≤ L Lip(γ).

It can be checked that in the right–hand side of (3.4)L can be changed with
maxs∈[α,β ] |J f(γ(s))|. A deeper result concerning quasiconformal images of recti-
fiable curves is in [13], Proposition 7.7.

Proof Takeγ : [0,T]→H, Lipschitz. Take[α,β ]⊂ [0,T]. In order to estimate the
length of f ◦ γ, consider a partitionα = s0 < s1 < · · · < sn = β . By definition of
length,

length(γ|[α,β ]) > ∑
j

d(γ(sj),γ(sj+1)). (3.5)
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Let γ j : [0,d(γ(sj),γ(sj+1))] → H be a unit speed geodesic connectingγ(sj) and
γ(sj+1). Thend(γ(sj),γ(sj+1))= length(γ j). Observe that geodesics in the Heisen-
berg group are smooth paths. Then, Lemma 3.1 gives length( f (γ j))≥ Llength(γ j).
Moreover, length( f (γ j)) ≥ d( f (γ(sj+1)), f (γ(sj))). Then

∑
j

d( f (γ(sj+1)), f (γ(sj)))≤∑
j

length( f (γ j))

≤ L∑
j

length(γ j)

= L∑
j

d(γ(sj),γ(sj+1))

≤ L length(γ|[α,β ]).

Since this holds for any partition{sj}, we conclude that

length( f (γ)|[α,β ])≤ Llength(γ|[α,β ]),

as desired. ut

Theorem 3.1 will be proved with the help of the following lemma.

Lemma 3.3 (Lifting of horizontal homotopies) Let f ∈C1
H. Assume that J f is

nonsingular at any point and, for a suitable constant C0, the estimate
supH |(J f)−1| ≤C0 holds. Let q: [0,1]× [0,1]→H such that

(a) (λ , t) 7→ q(λ , t) is continuous;
(b) there is L0 > 0 such that t7→ q(λ , t) is Lipschitz continuous of Lipschitz con-

stant≤ L0 for anyλ ∈ [0,1];
(c) there are endpoints P0,P1 ∈H such that q(λ ,0) = P0 and q(λ ,1) = P1 for any

λ ∈ [0,1].

Assume also that f(A) = P0 for some A∈ H. Then there is p= p(λ , t) satisfying
(a) and(b) and such that f(p(λ , t)) = q(λ , t) on [0,1]× [0,1].

Proof The proof follows a rather standard argument, see e.g. [14]. We briefly show
how to adapt it to our setting. By continuity there isε > 0 such thatq(λ , t) is close
to P0 for all λ ∈ [0,1] andt ∈ [0,ε]. Then the mapp(λ , t) can be easily defined by
the local Inverse Map Theorem asp(λ , t) = f−1(q(λ , t)), wheref−1 is an inverse
of f nearA, f−1(P0) = A. Put

ā = sup
{

a > 0 :∃ p : [0,1]× [0,a[→H continuous and such that

f (p(λ , t)) = q(λ , t) ∀(λ , t) ∈ [0,1]× [0,a[
}

.

Assume by contradiction that ¯a < 1. Observe that the patht 7→ p(λ , t) is a Lips-
chitz path, by Lemma 3.2 applied to some local inverse off . Indeed, takes< τ <
ā. Then, for anyλ ∈ [0,1],

d
(
p(λ ,s), p(λ ,τ)

)
≤ length

(
p(λ , ·)

∣∣
[s,τ]

)
≤C0length

(
q(λ , ·)

∣∣
[s,τ]

)
≤C0L0|s− τ|,
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Sinces 7→ p(λ ,s) is uniformlyC0L0 Lipschitz continuous, asλ ∈ [0,1], the map
p(λ , t) extends continuosly on the closed rectangle[0,1] × [0, ā]. Equation
f (p(λ ,s)) = q(λ ,s) holds there. Therefore, by the local Inverse Map Theorem
we can extend up to[0,1]× [0, ā+ ε], for some small positiveε. Thus we reached
a contradiction and we conclude that it must be ¯a = 1. ut

We are now in a position to prove Theorem 3.1.

Proof (Proof of Theorem 3.1)
Step 1. f is onto. Indeed, assumef (0) = 0. Let Q∈H. We look forP∈H such

that f (P) = Q. Take a geodesicγ : [0,1] → H, γ(0) = 0, γ(1) = Q. Putq(λ ,s) =
γ(s), λ ∈ [0,1]. Then lift the mapq. There isp such thatf (p(λ ,s)) = q(λ ,s) on
[0,1]2. Then, lettingP = p(0,1), Step 1 is proved.

Step 2. f is one-to-one. Assumef (P) = f (0) = 0 for someP 6= 0. Then let
η(1,s), s∈ [0,1] be a geodesic between 0 andP. Define then

γ(λ ,s) = δλ

(
f (η(1,s))

)
, (λ ,s) ∈ [0,1]× [0,1].

Thenγ(λ ,s) is a horizontal homotopy and by Lemma 3.3 there isη(λ ,s) such
that

f (η(λ ,s)) = γ(λ ,s), (λ ,s) ∈ [0,1]× [0,1].

Then

f (η(λ ,1)) = γ(λ ,1) = δλ f (η(1,1)) = δλ f (P) = δλ (0) = 0,

for anyλ ∈ [0,1]. Thus, sincef is a local homeomorphism, the mapλ 7→ η(λ ,1)
is constant on[0,1], i.e.

η(λ ,1) = η(1,1) = P, for anyλ ∈ [0,1]. (3.6)

Analogouslyη(λ ,0) = η(1,0) = 0 for anyλ ∈ [0,1].
Observe that for any smallλ the paths 7→ η(λ ,s), s∈ [0,1], is uniquely deter-

mined by the Inverse Function Theorem, i.e.

η(λ ,s) = g(γ(λ ,s)),

whereg denoets the local inverse off near 0,g(0) = 0. Thus, for smallλ ,

η(λ ,1) = g(γ(λ ,1)) = g(δλ f (η(1,1))) = g(δλ f (P)) = g(0) = 0,

by the definition ofγ. We have found thatη(λ ,1) = 0 for all smallλ . But this is
incompatible with (3.6). ut
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