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Abstract We prove a global Inverse Map Theorem for a nfaffpom the Heisen-
berg group into itself, provided the Pansu differentiafaé continuous, non sin-
gular and satisfies some growth conditions at infinity. An estimate for the Lips-
chitz constant (with respect to the Carnot—Catatiory distance ifil) of a con-
tinuously Pansu differentiable map is included. This gives a characterization of
(continuously Pansu differentiable) globally biLipscitz deformation&ldh term

of a pointwise estimate of their differential.
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1 Introduction

In recent years there has been some interest in studying those maps between
Carnot groups which alter in a controlled way some geometric quantity: quasi-
conformal maps, biLipschitz maps. See e.qg. [10], [13], [6], [3], [5]. Many results
have been proved in the case of the Heisenberg gibuihe simplest nontriv-

ial example of Carnot group. In this setting the theory is quite rich. Moreover,
the Heisenberg group is especially interesting among Carnot group because of its
applications, for instance to analysis in several complex variables.
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In this note, we give a characterization of the biLipschitz maps among the
Pansu continuosly differentiablaaps of the Heisenberg groiipinto itself.

To start the discussion, recall that a standard way to ensure that a3jiveap
f : R" — R" is globally biLipschitz in the Euclidean sense is that its differential
Df satisfies the pointwise condition

L' <|Df(X)(y)| <L, XY€ER, (1.1)

In this case, as a consequence of the Inverse map Theorem, the map isG# local
diffeomorphism. Moreover as a consequence of a global Inverse Map Theorem,
which goes back (at least) to Hadamard [8] aiesy.[11] (see [14, Theorem 1.22]

for a proof), the magf is a globalC! diffeomorphism. The mean value theorem
provides the estimate

L1 = FY) <L VxyecRM
IX—Y]

This note is devoted to the extension of this result to the Heisenberg group. For
simplicity of notation, we only consider tHest Heisenberg groupl = RS with
its Lie group operatiofiP, Q) — P-Q, P,Q € H. With our choice of coordinates,

(%y,t) - (X, Y, ') = (x+ X, y+ Y, t+t' +2(X'y —xy)).

Letd be the Carnot—Cara#odory distance ifil and denote b f (P) : H — H the
Pansu differential, at a poifte H, of a mapf : H — H. For a complete overview
of notation and terminology, s&@.

A map f from H into itself isL-biLipschitz,L > 1, if

L d0PLIQ)

dPQ
whenevelP andQ are distinct points irf.

We say that a maf : H — H is Pansu continuously differentiableriefly C,
if it is Pansu differentiable at any € H, Df(P) is an endomorphism dfl that
commutes with dilations and it is a continuos magroMore precisely, it acts on
vectors as multiplication times ax33 matrixD f (P),

P 0
Df(P)‘( 5 )de(Jf(P))>’

for a suitable 2x 2 matrixJ f(P) with continuous entries. We mention that a ver-
sion of the Inverse Map Theorem has been proved in this setting by Magnani [12].
Here we prove the following result

Theorem 1.1 Let f: H — H be G; function. If there is L> 1 such that
L2 <3f(P)Z <Ljzl, VzeR?

then f is globally L-biLipschitz.
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Concerning the converse statement, observe that a version of Rademacher the-
orem in Carnot groups has been proved by Pansu [13].

We obtain Theorem 1.1 as a consequence of a global inverse map Theorem
of Hadamard type, see Theorem 3.1. The proof is based on a classical “lifting of
homotopies” argument, which is adapted to our setting in Lemma 3.3.

Another aspect we discuss here is the estimate of the Lipschitz constant of a
Cﬂﬁl map, see Theorem 3.2. Although the proof is not deep, it requires some care.

As in the Euclidean case, in Theorem 1.1 we draw a conclusion on global met-
ric properties off from a (uniform) assumption on its infinitesimal behavior. The
motivation for considering this problem came to us from [2], where it is proved
that isometries ol are stable in the family of biLipschitz maps. This stability
property can be phrased in several ways. For instande; Hl — H is (1+ ¢)-
biLipschitz ande is small, then for any metric baBgr of radiusR there isT, an
isometry ofH, such that, foP in Bg,

d(f(P), T(P)) <@(e)R

Moreover,o(g) < ce?/2" ltisan open problem to find the sharp asymptotics of
o ase tends to 0.

Although the definition of biLipschitz map makes perfect sense in all metric
spaces, it is difficult to verify in practice whether a given map has this property.
Theorem 1.1 provides a tool for checking (actually characterize) this property in
the class of differentiable maps.

Finally we observe that there are two other ways to construct Lipschitz maps
of H. The firstis through a technique due to Kayi and Reimann [10]. The other,
through the “lifting” of suitable plane maps is due to Capogna and Tang, see [4],
[5]. See also the discussion in [2].

2 Preliminaries
Let H = R® be the Heisenberg group, with group law
(Y1) - (X,Y V) = (x+ X,y +Y ., t+t' +2(Xy - xy)), (2.1)

for any (x,y,t), (X,Y,t') € R3. Observe that the inverse element(gfy,t) with
respect to law (2.1) ix,y,t) 1 = (—x, -y, —t).

The Carnot Cara#todory distance ifil can be defined as follows. Consider
on H the left invariant vector fieldX = dy+ 2yd andY = dy — 2xd;. A path
v:[0,T] — His said to be b&orizontalif y is absolutely continuous and there are
a,b measurable functions such thas) = a(s) X, +b(s)Yy), for a.e.s€ [0, T].

Thelengthof yis
T
lengt ::/ 2(s) + b2(3)dlt. 2.2
ength(y) := [ /a%(s) +b%(s) (2.2)

Given(zt),(Z;t') € H, thecontrol distance €(zt), (Z;t")) is the infimum of the
length among all horizontal paths connectifmyt) and (Z;t’). The distance is

left invariant with respect to the Lie group structure (2.1). Balls are denoted by
B(Rr)={QeH:d(Q,P) <r}.
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A natural dilation structure dff, which makes the vector fieldé andY ho-
mogeneous of degree 1 is defined by

8.(zt) = (AzA%), A >0, (zt) e H.

All maps of the form
(zt) — (AZ (detA)t),

whereA € O(2), are isometries.
Amapf:H — His L—biLipschitz if

L1 d(f(P).F(Q)
d(P.Q)

The definition of differentiability for a magd : H — H has been given by
Pansu in the following terms. The differentialf (P) of a mapf :H — H at a
pointP € H is

<L, VPQeH. (2.3)

DF(P)(Q):= lim 552 {f(P) ™ F(P-3,Q)},

where the limit must be uniform i belonging to compact sets & ~ R3.

Even when specialized to the Euclidean setting, the notion of Pansu differen-
tial is more general than the usual differentiability. This already happens for the
one variable functiorf (x) = |x|. Pansu proved that the differential of a Lipschitz
map exists almost everywhere and it is an endomomorphism of the ¢gihup
which commutes with dilations. Since any such endomorphism must have the
form (u,v,w) — (au+ Bv, yu+8v, (d — By)w), for suitable constants, 3, vy, 6 €

R, it can be identified with the matriA = (z g) and written as(u,v,w) —

(A(;);detA)w) . Given a pointP where the differential of exists and it is a di-
lation preserving group homomorphism, we denotel b§P) its associated & 2

matrix, so that
u JHP)(Y)
Df(P - v o). 2.4
()(V‘() (dei(Jf)(P)w) (2.4)

The wayJ f is associated td is the following. f, as a map oR? into itself, can
be writtenf = (&; 1) = (£,7n, 1), where{ maps intaR?. Then,

_(XEY¢E
- (43
Recall also the following fact. Leg: [0, T] — H be aL—Lipschitz path, i.e.
d(y(s),y(s)) <L|s—¢<] for anys,s € [0,T]. Then,y s trivially locally Lipschitz
continuous fromR to R with the Euclidean metric. Then its tangent vecjor

exists a.e. By [13, Proposition 4.1], the OBQE= aX(y) + bY(y) holds almost
everywhere for suitable functiorss b and

lim 8.1 (7(s) - v(s+&)) = (a(9),b(9),0)
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for almost eveng. If we define the metric length gfas

n-1
lengy(7) := sup d(¥(s;).7(sj+)) <
J:
then [1, Theorem 4.4.1] gives

lengthy(y) = /O iz 2.5)

This means that the length defined in (2.2) agrees with lgngth

3 A global Inverse Map Theorem

Theorem 1.1 will be proved as a consequence of the following Hadamard-type
Theorem (Theorem 3.1) and of an estimate of the Lipschitz constant of a function
f € C} in term of sugJ f| (Theorem 3.2).

Theorem 3.1 Let f be a(%I map. Assume that J f is nonsingular at any point and,

for a suitable constant the estimatsupy |(J f) 7| < Cop holds. Then f H — H

is a global G; diffeomorphism.

In the statement of the theorendy = Jmax |Av| denotes the norm of a22
Vi+vs=

matrix A.

Theorem 3.2 Let f € CL, withsup; |Jf| =L < . Then
d(f(P),f(Q) <Ld(PQ), PQeH.

First we recall a version of the Inverse Function Theorem proved by Magnani
[12]

Theorem 3.3 Let f : H — H be aC} map. Assume détf(P) 0 at anyP € H.
Then, for anyP € H, there ardJ andV neighborhoods oP and f(P) such that
f :U —V is ahomeomorphisnf,~1:V — U is a continuously differentiable map
in Pansu sense and formula

Df(P)DFL(f(P)) =1, PeU,
holds.
The following Lemma 3.1 will give the proof of Theorem 3.2.

Lemma 3.1 Let f € C}. Lety: [0,T] — H be a C path in the Euclidean sense.
Assume also thatis Lipschitz continuous with respectto d. Letip |[Jf(y(s))| =
se[0,T

]
L. Then, for anyer, 3] C [0, T],

length(f o y)|(q,p) < LlENgth(¥q.p))- (3.1)

As a consequenceofy is a Lipschitz path with Lipschitz constant L.
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Proof Lety:[0,T] — H. Write y(s) = a(s)X(¥(s)) +b(s)Y (y(s)) at anys. By [13,
Proposition 4.1}y is differentiable in Pansu sense betwé&andH and, for any

se [0, T],
ua(s
Dy(s)(u) = (uzgsg) , ueR.
0

Next, by the chain rule for Pansu differentials

D(foy)(s) = DF(r(s))Dr(s)

_(3trs) 0 AN ra(y) (3:2)
(" det(Jf(y@)))(b%S) - (56)

al(s a(s
(53) =1 (59) 33)
By definition of Pansu differential, it is not difficult to check that (3.2) implies
that the pathf o y = () is a solution of the ODE

where we let

%(f oy)(s) =a(s)X((foy)(s) +D(g)¥((foy)(s), 0<s<T.

Sincea andlb’ are continuous functiond,(y) is aC! path and equation (3.3)
ensures estimate (3.1) in any subinterfeal3] C [0, T]. The lemma is proved. O

Lemma 3.1 provides immediately a proof of Theorem 3.2.

Proof (Proof of Theorem 3.ZJakeP,Q € H. Lety: [0,d(P, Q)] — H be a geodesic

such thaty(0) = P, y(d(P,Q)) = Q. Then, lengtli(y) < Ld(P,Q). Therefore

d(f(P),f(Q)) <Ld(PQ). O
Next we show that Lemma 3.1 holds for any Lipschitz path

Lemma 3.2 Let f € C}. Denote L= supy |J f|. Assume I< . Lety: [0,T] — R
be a Lipschitz path. Then, for afg, 3] C [0, T],

length((f o ¥)[ja.5)) < Llength(y|q.p))- (3.4)
In particular f(y) is Lipschitz and.ip f (y) <L Lip(y).

It can be checked that in the right—-hand side of (84gan be changed with
maxs(q.) [J f(¥(S))|. A deeper result concerning quasiconformal images of recti-
fiable curves is in [13], Proposition 7.7.

Proof Takey: [0,T] — H, Lipschitz. Takde, 3] C [0, T]. In order to estimate the
length of f oy, consider a partitiom = sp < 51 < --- < Sy = . By definition of

length,
length(vl(a,p)) > H d(7(s), ¥(Sj+1)- (3.5)
]
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Lety; : [0,d(¥(sj), ¥(Sj+1))] — H be a unit speed geodesic connectjrigj) and
Y(Sj+1). Thend(y(s;), y(sj+1)) = length(y;). Observe that geodesics in the Heisen-
berg group are smooth paths. Then, Lemma 3.1 gives lehgth)) > Llength(y;).
Moreover, lengthf (%)) > d(f(y(sj+1)), f(¥(sj))). Then

> d(f(¥(sjr2)), F(¥(s)) < ) length(f(v)))
J J
<L length(y))
I
=L d(r(s)), 7(sj+1)
I

< Llength(¥](s.5)-

Since this holds for any partitiofs; }, we conclude that

length( f (7)ljq,p)) < Llength(yliq.),
as desired. O

Theorem 3.1 will be proved with the help of the following lemma.

Lemma 3.3 (Lifting of horizontal homotopies) Let f € CL. Assume that Jf is
nonsingular at any point and, for a suitable constang, Ghe estimate
supy |(Jf)~1| < Co holds. Let g [0,1] x [0,1] — H such that

(@) (A,t)— qg(A,t) is continuous;
(b) there is lg > 0 such that t— q(A,t) is Lipschitz continuous of Lipschitz con-
stant< Lo for anyA € [0, 1];
(c) there are endpointspFP; € H such that gA,0) = Ry and qA,1) = P, for any
A €[0,1].
Assume also that(A) = R, for some Ac H. Then there is p= p(4,t) satisfying
(a) and(b) and such that fp(2,t)) = q(A,t) on[0,1] x [0,1].

Proof The proof follows a rather standard argument, see e.g. [14]. We briefly show
how to adapt it to our setting. By continuity thereeis- 0 such thatj(1,t) is close

to R forall A € [0,1] andt € [0,¢]. Then the map(A,t) can be easily defined by
the local Inverse Map Theorem péi,t) = f~1(q(A,t)), wheref ~1is an inverse

of f nearA, f=1(Ry) = A. Put

a= sup{a >0:3p:[0,1] x [0,a] — H continuous and such that
f(p(4,t)) =a(A,t) V(A1) €[0,1] x [O,a[}
Assume by contradiction that< 1. Observe that the path— p(A,t) is a Lips-

chitz path, by Lemma 3.2 applied to some local inversé.dhdeed, taks < 7 <
a Then, for anyA € [0, 1],

d(p(z/,S), p(z’vr)) S Iengt}"(p(zﬁ .)|[S,T]) S C0|ength(q(7h )|[ST])
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Sinces— p(4,s) is uniformly Colg Lipschitz continuous, aé € [0,1], the map
p(A,t) extends continuosly on the closed rectan{flel] x [0,a]. Equation
f(p(1,s)) = q(1,s) holds there. Therefore, by the local Inverse Map Theorem
we can extend up tf®, 1] x [0,a+ €], for some small positive. Thus we reached

a contradiction and we conclude that it mustbe 1. O

We are now in a position to prove Theorem 3.1.

Proof (Proof of Theorem 3.1)

Step 1.f is onto. Indeed, assunf¢0) = 0. Let Q € H. We look forP € H such
that f (P) = Q. Take a geodesig: [0,1] — H, y(0) = 0, (1) = Q. Putq(A,s) =
y(s), A € [0,1]. Then lift the mapo. There isp such thatf (p(2,s)) = q(4,s) on
[0,1]. Then, lettingP = p(0,1), Step 1 is proved.

Step 2.f is one-to-one. Assumé&(P) = f(0) = 0 for someP # 0. Then let
n(1,s), s€ [0,1] be a geodesic between 0 aRdDefine then

Y(A,8) =8 (f(n(Ls), (4,5 €[0,1]x[0,1].

Theny(A,s) is a horizontal homotopy and by Lemma 3.3 thergy{g.,s) such
that

f(n(A,s)) =v(A,s), (A,s)€]0,1] x]0,1].
Then
f(n(4,1)) =7r(4,1) =6, f(n(1,1)) = 8, f(P) = 6,(0) =0,

foranyA € [0,1]. Thus, sincef is a local homeomorphism, the map— n(4,1)
is constant orf0, 1], i.e.

n1,1)=n(1,1) =P, foranyA €[0,1]. (3.6)
Analogouslyn (4,0) = n(1,0) =0 for anyA € [0, 1].

Observe that for any small the paths — 1 (1, ), s€ [0, 1], is uniquely deter-
mined by the Inverse Function Theorem, i.e.

n4,s) =9(v(4,9)),
whereg denoets the local inverse éfnear 0g(0) = 0. Thus, for small,
N4, 1) =9(r(4,1)) =9(8, f(n(1,1))) = 9(62 f(P)) = 9(0) = 0,

by the definition ofy. We have found thafy(A,1) = O for all smallA. But this is
incompatible with (3.6). ad
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