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Generalized Jacobi identities and ball-box theorem

for horizontally regular vector fields∗

Annamaria Montanari Daniele Morbidelli

Abstract

Consider a family H := {Xj =: fj · ∇ : j = 1, . . . ,m} of C1 vector fields in Rn

and let s ∈ N. We assume that for all p ∈ {1. . . . , s} and j1, . . . , jp ∈ {1, . . . ,m}
the horizontal derivatives Xj1Xj2 · · ·Xjp−1

fjp exist and are Lipschitz continuous with

respect to the control distance defined by H. Then we show that different notions

of commutator agree. This involves an accurate analysis of some algebraic identities

involving nested commutators which seem to have an independent interest.

Our principal applications are a ball-box theorem, the doubling property and the

Poincaré inequality for Hörmander vector fields under an intrinsic “horizontal regular-

ity” assumption on their coefficients.
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1. Introduction and main results

In this paper we study the notion of higher order commutator for a given family H =
{X1, . . . ,Xm} of vector fields in R

n. Our main issue is to discuss to what extent the notion
of higher order commutator can be extended to vector fields Xj ∈ C1

Euc whose higher order
derivatives are assumed to have regularity only along the “horizontal directions” provided
by the family H. The main application of such study consists of a discussion of a class of
almost exponential maps under very low, intrinsic regularity assumptions which is carried
out in [MM12a]. This enables us to prove a boll-box theorem, the doubling property
and the Poincaré inequality for vector fields satisfying the Hörmander’s bracket-generating
condition of step s ≥ 1 under very low regularity requirements.

∗2010 Mathematics Subject Classification: 53C17. Key words and Phrases: Jacobi identities, Lie
derivatives. Horizontal regularity, Ball-box theorem, Poincaré inequality
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A. Montanari and D. Morbidelli, Jacobi identities and ball-box theorems

To understand the problem, which starts to appear for commutators of length three,
assume that X1, . . . ,Xm are vector fields of class C1

Euc, i.e. of class C1 in the Euclidean
sense. Write Xi = fi · ∇ for i = 1, . . . ,m. The definition of commutarors of length two is
clear, namely we set

Xjk := (X♯
jfk −X♯

kfj) · ∇ =: fjk · ∇ for all j, k ∈ {1, . . . ,m}

and Xjkψ := fjk ·∇ψ for ψ ∈ C1
Euc(R

n). Here we denote by X♯f(x) := limt→0
1
t (f(e

tXx)−
f(x)) the Lie derivative along a vector field X ∈ C1

Euc of a scalar funciton f (such unusual
notation will be convenient for our purposes).

Passing to length three, we have two alternatives. For each i, j, k, we can define either

Xijk := [Xi, [Xj ,Xk]] := (X♯
iX

♯
jfk −X♯

iX
♯
kfj −X♯

jX
♯
kfi +X♯

kX
♯
jfi) · ∇, (1.1)

or

adXi Xjk := (X♯
i fjk −Xjkfi) · ∇. (1.2)

Both operators act on C1
Euc functions. The first one is the most natural and symmetric

(for instance one gets the Jacobi identity for free). The second one appears in some useful
non commutative calculus formulae which play a key role in our work, see Theorem 2.6.
It is rather easy to see that [Xi, [Xj ,Xk]] = adXi Xjk, if the involved vector fields are
C2

Euc, so that Euclidean second order derivatives commute (here end hereafter by Ck
Euc we

denote Euclidean Ck regularity). In this paper we are able to show that this regularity
is not necessary. Indeed, if we denote by C2,1

H,loc all functions f which have two horizontal

derivatives and such that for all i, j ∈ {1, . . . ,m} the function X♯
iX

♯
jf is locally Lipschitz

with respect to the distance associated to the vector fields in H, then we have

Theorem 1.1 (see Theorem 3.1 for a higher order statement). Let H = {X1, . . . ,Xm}
be a family of C1

Euc vector fields. Write Xj = fj · ∇ and assume that fj ∈ C2,1
H,loc for all

j ∈ {1, . . . ,m}. Then we have

[Xi, [Xj ,Xk]] = adXi Xjk for all i, j, k ∈ {1, . . . ,m}.

In Theorem 3.1 we give the general version of this statement which involves commuta-
tors of arbitrary length s ≥ 1, where the vector fields fj belong to the class C1

Euc ∩ C
s−1,1
H,loc

introduced in Definition 2.1.
Although the analysis of statements like Theorem 1.1—together with the techniques

we develop in the proof—may have some independent interest, the strong motivation why
we need to analyze operators like adXi Xjk comes from their natural appearance in the
noncommutative formulas of Theorem 2.6 and ultimately in the theory of differentiation of
the almost exponential maps E introduced below. Let us mention that in [MM12a] we prove
a higher order orbit theorem for families H in such class; [MM12a, Example 3.14] shows
that our regularity classes capture examples which do not fall in the classical framework.

In order to show that (1.1) and (1.2) agree, we need to analyze carefully the algebraic
properties of the coefficients appearing in the expansion of nested commutators as sums
of higher order derivatives. In particular, we exploit some higher order algebraic identi-
ties which we denote as “generalized Jacobi identities”; see Proposition 3.3 and see also
Proposition 3.7. It is interesting to observe that some of those identities, specialized to
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particular situations, give the proof of some old nested commutators identities going back
to Baker and discussed in [Ote91]. This is discussed in Subsection 3.1. We believe that
these algebraic features may have some independent interest.

From an historical point of view, let us mention that for commutators of length two,
notions of nonsmooth Lie brackets have been studied deeply by Rampazzo and Suss-
mann [RS07]. The notion of set-valued commutator studied in [RS07] concerns vector
fields which are quite less regular than ours, actually Lipschitz continuous only, but this
approach does not provide a quantitative knowledge of control balls or Poincaré inequali-
ties. Moreover, the notion of set-valued commutator is not clear, if the length exceeds two;
see the counterexample in [RS07, Section 7.2]. We work here at a slightly more comfortable
level of regularity, which ensures that commutators are pointwise defined and “horizontally”
Lipschitz continuous, which will be sufficient to obtain some good information on control
balls.

Next we discuss our applications to sub-Riemannian geometry. Let H = {X1, . . . ,Xm}
be a family of vector fields and assume that Xj ∈ C1

Euc ∩ C
s−1,1
H,loc for some s ∈ N. Denote

by Bcc(x, r) the Carnot–Carathéodory ball with center at x and radius r. Let P :=
{Y1, . . . , Yq} be the family of all nested commutators of length at most s. Let length(Yj) =:
ℓj ≤ s. Assume that H satisfies the Hörmander condition of step s, i.e. dim span{Yj(x)} =
n, for all x ∈ R

n. To identify a family of n commutators, let us choose a multiindex
I = (i1, . . . , in) ∈ {1, . . . , q}n. Given a radius r > 0, define the scaled commutators
Ỹik := rℓikYik and the almost exponential map

EI,x,r(h) := expap(h1Ỹi1) · · · expap(hpỸin)x (1.3)

for each h close to 0 ∈ R
n (after passing to Ỹij , the variable h lives at a unit scale). See (4.8)

for the definition of the approximate exponential expap. Below, B̺ denotes the control ball
defined by all commutators (with their degrees, see (4.5)), which trivially contains the
Carnot–Carathéodory ball Bcc with same center and radius defined in (2.2). Then we
have the following ball-box theorem and Poincaré inequality. A more detailed statement
is contained in Section 4.

Theorem 1.2. Let H be a family of vector fields in the class C1
Euc ∩ C

s−1,1
H,loc for some s.

Assume the Hörmander condition of step s and assume that Yj ∈ C
0
Euc for all Yj ∈ P. Let

Ω ⊂ R
n be a bounded set. Then there is C > 1 such that the following holds. Let x ∈ Ω and

take a positive radius r < C−1. Then there is a subfamily {Yi1 , . . . , Yin} ⊂ P such that the
map E := EI,x,r in (1.3) is C1 in the Euclidean sense on the unit ball BEuc(1) ⊂ R

n. Its
Jacobian satisfies the estimate C−1|det dE(0)| ≤ |det dE(h)| ≤ C|det dE(0)| and we have
the ball-box inclusion

E(BEuc(1)) ⊇ B̺(x,C
−1r). (1.4)

The map E is one-to-one on BEuc(1) and we have

|Bcc(x, 2r)| ≤ C|Bcc(x, r)| for all x ∈ Ω r < C−1. (1.5)

Moreover, for any C1 function f we have the Poincaré inequality

∫

Bcc(x,r)
|f(y)− fBcc(x,r)|dy ≤ C

m∑

j=1

∫

Bcc(x,Cr)
|rXjf(y)|dy. (1.6)
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It is well known that the doubling estimate and the Poincaré inequality are important
tools in subelliptic PDEs, sub-Riemanninan geometry and analysis in metric spaces; see
[FL83b, NSW85, Jer86, SC92, GN96, Che99, HK00]. Note that inequality (1.6) improves
all previous versions of the Poincaré inequality from a regularity standpoint; compare
[Jer86,LM00,BBP12a,MM12b,Man10]. Indeed, in such papers some higher order Euclidean

regularity were assumed, whereas our higher order derivatives X♯
j1
· · ·X♯

jp−1
fjp with 2 ≤

p ≤ s are assumed to be horizontally Lipschitz continuous only. 1

Let us mention that in [MM12a] and [MM11], relying on the results obtained here, we
also prove an integrability result for orbits, a ball-box theorem and the Poincaré inequality
in a setting where the Hörmander’s condition is removed.

Our work in low regularity is also motivated by the appearance, in several recent papers,
of subelliptic PDEs involving nonlinear first order operators. This happens for instance in
several complex variables, while studying graphs with prescribed Levi curvature in C

n, see
[CLM02], or in the study of intrinsic regular hypersurfaces in Carnot groups, see [ASCV06],
where vector fields with non Euclidean regularity naturally appear. These papers suggest
that it would be desirable to remove even our assumption Xj ∈ C1

Euc for the vector fields
of the horizontal family H. However, note that removing such assumption would destroy
uniqueness of integral curves and dealing efficiently with our almost exponential maps
would require nontrivial new ideas.

Before closing this introduction, we mention some recent papers where nonsmooth
vector fields are discussed. In [SW06], the case of diagonal vector fields is discussed deeply.
In the Hörmander case, in the model situation of equiregular families of vector fields,
nonsmooth ball-box theorems have been studied by see [KV09,Gre10]. Finally, [BBP12b]
contains a nonsmooth lifting theorem.

Acknowledgements. We thank Francesco Regonati, who helped us to formalize some
of the questions we encountered in Section 3 in the language of polynomial identities.

2. Preliminary facts on horizontal regularity

2.1. Horizontal regularity classes

Vector fields and the control distance. Consider a family H = {X1, . . . ,Xm} of
vector fields and assume that Xj ∈ C1

Euc(R
n) for all j. Here and later C1

Euc means C1

in the Euclidean sense. Write Xj =: fj · ∇, where fj : R
n → R

n. The vector field Xj ,
evaluated at a point x ∈ R

n, will be denoted by Xj,x or Xj(x). All the vector fields in this
paper are always defined on the whole space R

n.
Define the Franchi–Lanconelli distance [FL83a]

d(x, y) := inf
{
r > 0 : y = et1Z1 · · · etµZµx for some µ ∈ N

where
∑

|tj| ≤ 1 with Zj ∈ rH
}
.

(2.1)

Here and hereafter we let rH := {rX1, . . . , rXm} and ±rH := {±rX1, . . . ,±rXm}.

1Technically speaking, both the approaches adopted in in [BBP12a] and [MM12b]—via Euclidean Taylor
approximation or Euclidean regularization—do not work in our situation, because one cannot prove that
higher order commutators of mollified vector fields converge to mollified of the corresponding commutators.
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Let also dcc be the Fefferman–Phong and Nagel–Stein–Wainger distance [FP83,NSW85]

dcc(x, y) := inf
{
r > 0 : there is γ ∈ LipEuc((0, 1),R

n) with γ(0) = x

γ(1) = y and γ̇(t) ∈
{∑

1≤j≤m cjXj,γ(t) : |c| ≤ r
}

for a.e. t ∈ [0, 1]
}
.

(2.2)

As usual, we call Carnot–Carathéodory or control distance the distance dcc. Note that in
the definition of dcc we may choose paths γ such that γ̇ =

∑
j bj(t)Xj(γ) where b : (0, 1) →

BEuc(0, r) is measurable, see Remark 4.2. In the present paper we shall make a prevalent
use of the distance d. In the definition of both distances we agree that d(x, y) = +∞ if
there are no paths in the pertinent class which connect x and y.

Horizontal regularity classes. Here we define our notion of horizontal regularity in
terms of the distance d. Note that we do not use the control distance dcc.

Definition 2.1. Let H := {X1, , . . . ,Xm} be a family of vector fields, Xj ∈ C1
Euc. Let

d be their distance (2.1) Let g : Rn → R. We say that g is d-continuous, and we write
g ∈ C0

H(R
n), if for all x ∈ R

n, we have |g(y) − g(x)| → 0, as d(x, y) → 0. We say that
g : Rn → R is H-Lipschitz or d-Lipschitz in A ⊂ R

n if

LipH(g;A) := sup
x,y∈A, x 6=y

|g(x)− g(y)|

d(x, y)
<∞.

We say that g ∈ C1
H(R

n) if the derivative X♯
jg(x) := limt→0(f(e

tXjx) − f(x))/t is a d-

continuous function for any j = 1, . . . ,m. We say that g ∈ Ck
H(R

n) if all the derivatives

X♯
j1
. . . X♯

jp
g are d-continuous for p ≤ k and j1, . . . , jp ∈ {1, . . . ,m}. If all the derivatives

X♯
j1
. . . X♯

jk
g are d-Lipschitz on each Ω bounded set in the Euclidean metric, then we say

that g ∈ Ck,1
H,loc(R

n). Finally, denote the usual Euclidean Lipschitz constant of g on A ⊂ R
n

by LipEuc(g;A).

We will usually deal with vector fields which are of class at least C1
Euc ∩C

s−1,1
H,loc , where

s ≥ 1 is a suitable integer. In this case it turns out that commutators up to the order s can
be defined, see Definition 2.3 and Remark 2.5. It will take a quite hard work (the whole
Section 3) to show that the different notions given in Definition 2.3 actually agree.

Definitions of commutator. Our purpose now is to show that, given a family H of
vector fields with Xj ∈ Cs−1,1

H,loc ∩ C1
Euc, then commutators can be defined up to length s.

For any ℓ ∈ N, denote by Wℓ := {w1 · · ·wℓ : wj ∈ {1, . . . ,m}} the words of length
|w| := ℓ in the alphabet 1, 2, . . . ,m. Let also Sℓ be the group of permutations of ℓ letters.

Definition 2.2 (Coefficients πℓ(σ)). Define πℓ : Sℓ → {−1, 0, 1} as follows: let us agree
that π1(σ) = 1 for the unique σ ∈ S1. Then, for σ ∈ S2, let π2(σ) := 1, if σ(01) = 01 and
π2(σ) := −1, if σ(01) = 10. Then, define inductively for ℓ ≥ 2,





πℓ+1(σ̃) := πℓ(σ) if σ̃(01 · · · ℓ) = 0σ(1 · · · ℓ) and σ ∈ Sℓ

πℓ+1(σ̃) := −πℓ(σ) if σ̃(01 · · · ℓ) = σ(1 · · · ℓ)0 and σ ∈ Sℓ

πℓ+1(σ̃) := 0 if σ̃0(01 · · · ℓ) 6= 0 6= σ̃ℓ(01 · · · ℓ).

(2.3)
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Here we used the notation σ̃(01 · · · ℓ) = σ̃0(01 · · · ℓ)σ̃1(01 · · · ℓ) · · · σ̃ℓ(01 · · · ℓ). The co-
efficients πℓ are designed in order to write commutators in a convenient way. Indeed,
if A1, . . . , Am : V → V are linear operators on a vector space V , then one can check
inductively that, given a word w = w1 · · ·wℓ, we have

[Aw1
, [Aw2

, . . . [Awℓ−1
, Awℓ

]] . . . ] =
∑

σ∈Sℓ

πℓ(σ)Aσ1(w)Aσ2(w) · · ·Aσℓ(w). (2.4)

We will benefit later of the property

πℓ(σ1 · · · σℓ) = (−1)ℓ+1πℓ(σℓ · · · σ1) for all σ ∈ Sℓ. (2.5)

We are now ready to define commutators for vector fields in our regularity classes.

Definition 2.3 (Definitions of commutator). Given a family H = {X1, . . . Xm} of vector

fields of class Cs−1,1
H,loc ∩ C1

Euc, define, for ψ ∈ C1
H, X♯

jψ(x) := LXjψ(x), the Lie derivative;

let also Xjψ(x) := fj(x) · ∇ψ(x) where ψ ∈ C1
Euc. Moreover, let

fw :=
∑

σ∈Sℓ

πℓ(σ)
(
Xσ1(w) · · ·Xσℓ−1(w)fσℓ(w)

)
for all w with |w| ≤ s,

Xwψ := [Xw1
, , . . . , [Xwℓ−1

,Xwℓ
]]ψ := fw · ∇ψ for all ψ ∈ C1

Euc |w| ≤ s,

X♯
wψ :=

∑

σ∈Sℓ

πℓ(σ)X
♯
σ1(w) · · ·X

♯
σℓ−1(w)X

♯
σℓ(w)ψ for all ψ ∈ Cℓ

H |w| ≤ s− 1.

Given words u and v, define the (possibly non-nested) commutators

f[u]v := X♯
ufv −X♯

vfu

=
∑

α∈Sp,β∈Sq

πp(α)πq(β)
(
Xα1(u) · · ·Xαp(u)Xβ1(v) · · ·Xβq−1(v)fβq(v)

−Xβ1(v) · · ·Xβq(v)Xα1(u) · · ·Xαp−1(u)fαp(u)

)
,

X[u]v := [Xu,Xv] := f[u]v · ∇ = (X♯
ufv −X♯

vfu) · ∇ if |u|+ |v| ≤ s,

[Xu,Xv ]
♯ := X♯

[u]v := X♯
uX

♯
v −X♯

vX
♯
u if |u|+ |v| ≤ s− 1,

where X[u]v and X♯
[u]v

act respectively on C1
Euc and C

|u|+|v|
H functions. Finally, for any

j ∈ {1, . . . ,m} and w with 1 ≤ |w| ≤ s, let

adXj Xwψ := (X♯
jfw − fw · ∇fj) · ∇ψ = (X♯

jfw −Xwfj) · ∇ψ for all ψ ∈ C1
Euc. (2.6)

Note that we will never need in this paper the commutators X♯
wψ for |w| = s.

Remark 2.4. Let Z ∈ ±H, where H is a family in Cs−1,1
H,loc ∩ C1

Euc. If |w| ≤ s − 1, then
there are no problems in defining adZ Xw. More precisely, in Theorem 3.1 we will see
that adZ Xw = [Z,Xw]. If instead |w| = s, then the function t 7→ fw(e

tZx) is Lipschitz
continuous. In particular it is differentiable for a.e. t. In other words, for any fixed x ∈ R

n,
the limit d

dtfw(e
tZx) =: Z♯fw(e

tZx) exists for a.e. t close to 0. Therefore the pointwise
derivative Z♯fw(y) exists for almost all y ∈ R

n and ultimately adZ Xw is defined almost
everywhere. See the discussion in Theorem 2.6-(b) and Proposition 4.1.
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We will recognize that the first order operator Xw agrees with X♯
w against functions

ψ ∈ Cs−1,1
H,loc ∩ C1

Euc and for |w| ≤ s − 1. This is trivial if |w| = 1, because Xkψ := fk · ∇ψ

and X♯
kψ := LXk

ψ are the same, if both Xk and ψ are C1
Euc.

Remark 2.5. Both our definitions of commutator, Xw and X♯
w are well posed from an

algebraic point of view. Indeed, it is easy to check that [Xu,Xv] = (X♯
ufv −X♯

vfu) · ∇ =
−[Xv,Xu]. Moreover

[Xw, [Xu,Xv]] = (X♯
wf[u]v − [Xu,Xv ]

♯fw) · ∇

= {X♯
wX

♯
ufv −X♯

wX
♯
vfu −X♯

uX
♯
vfw +X♯

vX
♯
ufw} · ∇,

for any u, v, w with |u|+ |v|+ |w| ≤ s. This immediatley implies the Jacobi identity

[Xu, [Xv ,Xw]] + [Xv, [Xw.Xu]] + [Xw, [Xu,Xv ]] = 0. (2.7)

Antisymmetry and the Jacobi identity for the commutators X♯
w can be checked with the

same argument.

Let Ω0 ⊂ R
n be a fixed open set, bounded in the Euclidean metric. Given a family H

of vector fields of class C1
Euc ∩ C

s−1,1
H,loc , introduce the constant

L0 : =

m∑

j1,...,js=1

{
sup
Ω0

(
|fj1 |+ |∇fj1|+

∑

p≤s

|X♯
j1
· · ·X♯

jp−1
fjp|

)

+ LipH(X
♯
j1
· · ·X♯

js−1
fjs; Ω0)

}
.

(2.8)

Fix also Ω ⋐ Ω0. We shall always choose points x ∈ Ω and we fix a constant t0 > 0 small
enough to ensure that

eτ1Z1 · · · eτNZNx ∈ Ω0 if x ∈ Ω, Zj ∈ H, |τj | ≤ t0 and N ≤ N0, (2.9)

where N0 is a suitable algebraic constant which depends on the data n,m and s associated
with the family H.

2.2. Non commutative formulas

In this section we discuss some preliminary tools on noncommutative calculus. Some of
the objects we discuss here already appeared in [MM12b], for Hörmander vector fields, in
a higher regularity setting. Observe that Theorem 2.6 has also a relevant role in [MM12a,
Lemma 3.1 and Theorem 3.5].

Theorem 2.6. Let H be a family of C1
Euc ∩C

s−1,1
H,loc smooth vector fields. Fix Z ∈ ±H and

Xw with |w| ≥ 1. Then:

(a) if |w| ≤ s− 1, then, for all ψ ∈ C1
Euc, y ∈ Ω and |t| ≤ t0 (see (2.9)) we have

d

dt
Xw(ψe

−tZ)(etZy) = adZ Xw(ψe
−tZ)(etZy); (2.10)

7
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(b) if |w| = s, then for any ψ ∈ C1
Euc and y ∈ Ω the function ϕ(t) := Xw(ψe

−tZ )(etZy)
is Euclidean Lipschitz and satisfies

d

dt
Xw(ψe

−tZ)(etZx) = adZ Xw(ψe
−tZ)(etZx) for a.e. t ∈ (−t0, t0). (2.11)

To comment on (2.10), assume that Z = Xj for some j ∈ {1, . . . ,m}. Note that in
Theorem 3.1 we will show that adXj Xw = [Xj ,Xw] = Xjw, if |w| ≤ s− 1, j ∈ {1, . . . ,m}.
Looking instead at equation (2.11), the operator adZ Xw has been defined in (2.6). If we
assume the Hörmander condition of step s, we shall see in Proposition 4.1 that we can
write

LZXw(ψe
−tZ)(etZx) :=

d

dt
Xw(ψe

−tZ)(etZx) =
∑

1≤|u|≤s

bu(t)Xu(ψe
−tZ)(etZx), (2.12)

where the functions bu may depend on Z,w, x and are measurable and bounded.

Remark 2.7. The proof of (2.10) is standard for smooth (say at least C2) vector fields, see
[KN96, Proposition 1.9], or, for a different argument, [Aub01, Proposition 3.5] and [MM12b,
Lemma 3.1]. Note also that Ue−tV (etV x) = e−tV

∗ (UetV x), by definition of tangent map.
Thus, (LV U)x = d

dtUe
−tV (etV x)

∣∣
t=0

, by definition of Lie derivative. Then, in Step 1 of the
proof below, we are proving nothing but the probably known fact that LV U = (V ξ−Uη)·∇,
if V = η · ∇ and U = ξ · ∇ ∈ C1

Euc.

Proof of Theorem 2.6. We split the proof in three steps.

Step 1. We prove that for any U = ξ · ∇ ∈ C1
Euc and V = η · ∇ ∈ C1

Euc, we have for all
x ∈ R

n

d

dt
U(ψe−tV )(etV x) = [V,U ](ψe−tV )(etV x) if |t| is small enough.

Here [V,U ] := (V ξ − Uη) · ∇ and ψ ∈ C1
Euc.

Let ψ ∈ C1
Euc. Take the usual smooth approximations V σ = ησ ·∇, Uσ = ξσ ·∇ and ψσ.

Since V and U are C1, elementary properties of Euclidean mollifiers show that ησ → η,
ξσ → ξ and V σξσ − Uσησ → V ξ − Uη, uniformly on compact sets, as σ → 0. Therefore,
we have

d

dt
Uσ(ψσe−tV σ

)(etV
σ
x) = V σUσ(ψσe−tV σ

)(etV
σ
x)− UσV σ(ψσe−tV σ

)(etV
σ
x)

= (V σξσ − Uσησ)(etV
σ
x) · ∇(ψσe−tV σ

)(etV
σ
x) =: R(σ).

First equality is provided in textbooks, see Remark 2.7. In our notation, the intermediate
term here is [V σ, Uσ]♯(ψe−tV σ

)(etV
σ
x). Both its addends may have a not clear behaviour,

as σ → 0. After the cancellation, second derivatives against ψσe−tV σ
disappear and we

may let σ → 0 in the second line. By standard ODE theory, see for example [Har02,
Chapter 5], ∇etV

σ
→ ∇etV , uniformly on Ω and |t| ≤ t0, as σ → 0. Then limσ→0R(σ) =

[V,U ](ψe−tV )(etV x), uniformly on t ∈ [−t0, t0] and x ∈ Ω. Moreover,

lim
σ→0

Uσ(ψσe−tV σ
)(etV

σ
x) = U(ψe−tV )(etV x) for all t ∈ [−t0, t0] x ∈ Ω.

Therefore, Step 1 is accomplished.

8
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Step 2. We prove statement (a). By uniqueness of the flow of Z, we may work with t = 0.

d

dt
Xw(ψe

−tZ)(etZx)
∣∣∣
t=0

= lim
t→0

1

t

{
[fw(e

tZx)− fw(x)] · ∇(ψe−tZ)(etZx)

+ fw(x) · [∇(ψe−tZ)(etZx)−∇ψ(x)]
}
.

But limt→0
1
t [fw(e

tZx) − fw(x)] =: Z♯fw(x) exists, because fw ∈ C1
H. Moreover, since

∂1, . . . , ∂n, Z ∈ C1
Euc, Step 1 gives for all α ∈ {1, . . . , n},

lim
t→0

1

t
[∂α(ψe

−tZ )(etZx)− ∂αψ(x)] = [Z, ∂α]ψ(x) = −∂αf(x) · ∇ψ(x), (2.13)

where Z = f · ∇. This concludes the proof of Step 2.

Step 3. Proof of (b). We will show that t 7→ Xw(ψe
−tZ)(etZx) =: ϕ(t) is Lipschitz

continuous on [−t0, t0] for all x ∈ Ω.

ϕ(τ)− ϕ(t) = fw(e
τZx) ·

[
∇(ψe−τZ)(eτZx)−∇(ψe−tZ)(etZx)

]

+ [fw(e
τZx)− fw(e

tZx)] · ∇(ψe−tZ)(etZx).

But, since fw ∈ LipH, we have |fw(e
τZx)−fw(e

tZx)| ≤ C|τ−t|. Moreover, if t ∈ (−t0, t0) is
a differentiability point for t 7→ fw(e

tZx), we have limτ→t(fw(e
τZx)− fw(e

tZx))/(τ − t) =
Z♯fw(e

tZx), by definition of derivative along Z. Finally, for any α ∈ {1, . . . , n}, (2.13)
shows that the function t 7→ ∂α(ψe

−tZ)(etZx) ∈ C1
Euc and that

d

dt
∂α(ψe

−tZ)(etZx) = −∂αf(e
tZx) · ∇(ψe−tZ)(etZx).

Then the proof of (b) is easily concluded.

2.3. Integral remainders

Here we introduce a class of integral remainders Op(t
λ, ψ, y). There is a reason why we use

a different notation from the seemingly similar remainders Rp(t
λ, ψ, y) appearing in the

Taylor formula below, see (2.21). Namely, the remainders Op(. . . ) have a much more “bal-
anced” structure. Under suitable involutivity conditions and using such balanced structure,
in [MM12a] we will be able to show that they can be given a pointwise form (a consequence
of this fact is the pointwise form of the remainders in expansion (4.9)).

Let H be a family in the regularity class Cs−1,1
H ∩ C1

Euc. Let λ ∈ N, p ∈ {2, . . . , s+ 1}.
We denote, for y ∈ Ω and t ∈ [0, t0], ψ ∈ C1

Euc(Ω0)

Op(t
λ, ψ, y) =

N∑

i=1

∫ t

0
ωi(t, τ)

d

dτ
Xwi(ψϕ

−1
i e−τZi)(eτZiϕiy)dτ, (2.14)

where N is a suitable integer and ψ is the identity map or ψ = exp(tZ1) · · · exp(tZµ), for
some integer µ and suitable vector fields Zj ∈ ±H. The “balanced structure” we mentioned
above, follows from identity (ψϕ−1

i e−τZi)(eτZiϕiy) = ψ(y).
To describe the generic term of the sum above, we drop the dependence on i:

(∗) :=

∫ t

0
ω(t, τ)

d

dτ
Xw(ψϕ

−1e−τX)(eτXϕy)dτ. (2.15)

9



A. Montanari and D. Morbidelli, Jacobi identities and ball-box theorems

Here Xw is a commutator of length |w| = p − 1 and X ∈ ±H. Moreover, for any t < t0,
the function ω(t, τ) is a polynomial, homogeneous of degree λ− 1 in all variables (t, τ), so
that ∫ t

0
ω(t, τ)dτ = btλ for any t > 0 (2.16)

for a suitable constant b ∈ R. The map ϕ is the identity map or otherwise it has the form
ϕ = exp(tZ1) · · · exp(tZν) for some ν ∈ N, where Zj ∈ ±H. Observe that, if p ≤ s, i.e.
|w| ≤ s− 1, Lemma 2.6 (a) gives

(∗) =

∫ t

0
ω(t, τ) adX Xw(ψϕ

−1e−τX)(eτXϕy)dτ.

Therefore the remainder has the same form of the analogous term in [MM12b, Eq. (3.5)],
provided that we are able to show that adX Xw = [X,Xw] (this will be achieved in The-
orem 3.1). If instead p = s + 1, i.e. |w| = s, we need to use part Theorem 2.6-(b) to get
some information on the remainder. See also Proposition 4.1 and see the paper [MM12a]
for a detailed discussion of remainders of higher order Os+1(· · · ).

A remainder of the form (2.14) satisfies for every α, λ ∈ N and p ≤ s+ 1 estimate

tαOp(t
λ, ψ, y) = Op(t

α+λ, ψ, y) for all y ∈ Ω t ∈ [0, t0]. (2.17)

Let us also recall estimate
|Op(t

λ, ψ, y)| ≤ Ctλ, (2.18)

which holds for p ≤ s + 1, λ ∈ N. To see (2.18), just observe that, at any t and for
j ∈ {1, . . . ,m} and |w| ≤ s, we have

∣∣∣
d

dτ
Xw(ψϕ

−1e−τXj )(eτXjϕx)
∣∣∣ =

∣∣adXj Xw(ψϕ
−1e−τXj )(eτXjϕx)

∣∣ ≤ C,

at any τ such that X♯
jfw(e

τXjϕx) exists. Here we use the trivial estimate |adXj Xw| ≤

|X♯
jfw|+ |Xwfj| ≤ C, because fw ∈ LipH and fj ∈ C

1
Euc.

Note finally that, if j ∈ {1, . . . ,m}, p ≤ s+ 1 and Z ∈ ±H, we have

Op(t
λ, ψetZ , y) = Op(t

λ, ψ, etZy).

Proposition 2.8. Assume that p ≤ s and assume that adXj Xw = Xjw for all word w
with length |w| ≤ p − 1 and j ∈ {1, . . . ,m}. Then there are constants cw, |w| = p, such
that

Op(t
λ, ψ, y) =

∑

|w|=p

cwt
λXwψ(y) +Op+1(t

λ+1, ψ, y). (2.19)

The proof of Proposition 2.8 has been given in [MM12b, Proposition 3.3] for smooth
vector fields. The argument is the same in our case. One just needs to check that all the
computations we made there work perfectely in our regularity setting. We omit the details.

Remark 2.9. • The statement of Proposition 2.8, and in particular the assumption
adXj Xw = Xjw, is designed in order to be a part of the induction machinery we
shall implement to prove Theorem 3.1 in the following section.

10
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• The generalization of (2.19) to the case p = s+1 is discussed under the Hörmander
condition in Section 4, see (4.2). In the companion paper [MM12a] we deal with a
more general situation.

Remark 2.10. Let for a while H = {X1, . . . ,Xm} be a family of smooth vector fields.
Iterating Theorem 2.6, we have for x ∈ Ω and |t| sufficiently small

Xw(ψe
−tZµ · · · e−tZ1)x =

ℓ∑

|α|=0

ad
αµ

Zµ
· · · adα1

Z1
Xwψ(e

−tZµ · · · e−tZ1x)
t|α|

α!

+Oℓ+|w|(t
ℓ+1, ψ, x).

(2.20)

Formula (2.20) will be referred to later.

Taylor formula with integral remainder. Here we show that functions of class Cs−1,1
H,loc

enjoy an elementary Taylor expansion with integral remainder. Let p, λ ∈ N. Denote by
Rp(t

λ, ψ, x) a sum of a finite number of terms of the form

∫ t

0
ω(t, τ)

d

dτ
(X♯

j1
)k1 · · · (X♯

jµ
)kµψ(eτXiϕx)dτ, (2.21)

where the polynomial ω(t, τ) is homogeneous of degree λ − 1 in all variables (t, τ). This
ensures that

∫ t
0 ω(t, τ)dτ = Ctλ, for any t > 0. Moreover, i, j1, . . . , jµ ∈ {1, . . . ,m}, k1 +

· · ·+kµ = p−1. The map ϕ is the identity map or it has the form ϕ = exp(tZ1) · · · exp(tZν)
for some ν ∈ N, where Zj ∈ ±H. If Ω ⊂ R

n is bounded, then we have, for all x ∈ Ω,
|t| ≤ t0,

|Rp(t
λ, ψ, x)| ≤ C LipH

(
(X♯

j1
)k1 · · · (X♯

jµ
)kµψ,Bd(x,C|t|)

)
tλ,

where t0 is positive, small enough, see (2.9).
Denote ∆j1···jqx := ∆j1∆j2 · · ·∆jqx := etXj1 · · · etXjq x, where j1, . . . , jq ∈ {1, . . . ,m}.

Lemma 2.11. Let ψ ∈ Cℓ−1,1
H,loc , for some ℓ ≤ s. Then for any q ≥ 1 and j1, . . . , jq ∈

{1, . . . ,m}, we have in standard multi-index notation

ψ(∆j1···jqx) =
∑

k1,...,kq≥0
k1+···+kq≤ℓ−1

(X♯
jq
)kq · · · (X♯

j1
)k1ψ(x)

t|k|

k!
+Rℓ(t

ℓ, ψ, x). (2.22)

Proof. We prove formula (2.22) by induction on q ≥ 1. Fix j ∈ {1, . . . ,m}. Let ψ ∈ Cℓ−1,1
H,loc ,

Then
(
d
dt

)k
ψ(etXjx) = (X♯

j)
kψ(etXjx), for k = 0, 1, . . . , ℓ − 1. Moreover, the function

t 7→ (X♯
j)

ℓ−1ψ(etXjx) is Euclidean Lipschitz and, for a.e. t ∈ (−t0, t0), its derivative can

be estimated by LipH((X
♯
j )

ℓ−1ψ;Bd(x, t0)). Therefore, the Taylor formula gives

ψ(etXjx) =

ℓ−1∑

k=0

(X♯
j)

kψ(x)
tk

k!
+

∫ t

0

(t− τ)ℓ−1

(ℓ− 1)!

d

dτ
(X♯

j)
ℓ−1ψ(eτXjx)dτ

=
ℓ−1∑

k=0

(X♯
j)

kψ(x)
tk

k!
+Rℓ(t

ℓ, ψ, x).

11
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Next we give the induction step. Let q ≥ 1. Then,

ψ(∆j0∆j1···jqx) =

ℓ−1∑

k0=0

(X♯
j0
)k0ψ(∆j1···jqx)

tk0

k0!
+Rℓ(t

ℓ, ψ,∆j1···jqx)

=

ℓ−1∑

k0=0

tk0

k0!

{ ∑

k1,...,kq≥0
k1+···+kq≤ℓ−1−k0

(X♯
jq
)kq · · · (X♯

j1
)k1(X♯

j0
)k0ψ(x)

tk1+···+kq

k1! · · · kq!

+Rℓ−k0(t
ℓ−k0 , (X♯

j0
)k0ψ, x)

}
+Rℓ(t

ℓ, ψ, x).

The proof is concluded by property tk0Rℓ−k0(t
ℓ−k0 , (X♯

j0
)k0ψ, x) = Rℓ(t

ℓ, ψ, x).

3. Commutator identities

In this section we show that, if the vector fields of the family H belong to Cs−1,1
H,loc ∩ C1

Euc,
then the various notions of commutators introduced in Definition 2.3 agree. This requires
a quite elaborate algebraic work which will be performed in the first subsection. Later
on, we will show that the machinary we construct, in particular the generalized Jacobi
identities in Proposition 3.3 can be useful to detect nested commutators identities.

Let H = {X1, . . . ,Xm} be family of vector fields of class C1
Euc ∩ C

s−1,1
H,loc . We use the

notation Wℓ to indicate the set of words w = w1 · · ·wℓ of length ℓ.
The main result of this section is the following theorem, which has a key role in the

proof of [MM12a, Theorems 3.5 and 3.8] and ultimately of Theorem 4.3 here; see the
discussion at the beginning of [MM12a, Subsection 3.2].

Theorem 3.1. Let H be a family of vector fields of class C1
Euc ∩C

s−1,1
H,loc . Then, if 1 ≤ ℓ ≤

s− 1, the following statements are equivalent and true.

(i) For any w ∈ Wℓ and for all ψ ∈ C1
Euc ∩C

ℓ,1
H,loc we have

Xwψ = X♯
wψ. (3.1)

(ii) For any Z = ψ · ∇ ∈ C1
Euc ∩ C

ℓ,1
H,loc and for all w ∈ Wℓ, we have

adZ Xwϕ = [Z,Xw]ϕ for all ϕ ∈ C1
Euc. (3.2)

Remark 3.2. In view of Theorem 3.1, formula (2.10) in Theorem 2.6 becomes,

d

dt
Xw(ψe

−tZ)(etZy) = [Z,Xw](ψe
−tZ )(etZy) if |w| ≤ s− 1 t ∈ (−t0, t0). (3.3)

The case |w| = s will be discussed in Section 4, see e.g. Proposition 4.1.

To prove Theorem 3.1, we need the following proposition which may have some inde-
pendent interest.

12
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Proposition 3.3 (Generalized Jacobi identities). Let H be a family in the regularity class
Cs−1,1
H,loc ∩ C1

Euc. For any v ∈ Wp, w ∈ Wq, p, q ≥ 1, p+ q ≤ s, we have

X[v]w =
∑

σ∈Sp

πp(σ)Xσ1(v)...σp(v)w . (3.4)

If |w| = 0, then (3.4) fails, but for any v = v1 · · · vℓ ∈ Wℓ, ℓ ≤ s, we have

Xv =
1

ℓ

∑

σ∈Sℓ

πℓ(σ)Xσ1(v)...σℓ(v). (3.5)

Before proving the proposition, to explain the reason of our terminology, we give a
couple of examples to show that our identities, suitably specialized, give back some familiar
identities. See also Subsection 3.1.

Example 3.4. Let X1,X2 and X3 be sufficiently smooth vector fields. Then

[X1, [X2,X3]] =: X123 =
1

3

∑

σ∈S3

π3(σ)Xσ1(123)σ2(123)σ3(123)

=
1

3

{
X123 −X132 −X231 +X321

}

=
1

3

{
[X1, [X2,X3]]− [X1, [X3,X2]]− [X2, [X3,X1]] + [X3, [X2,X1]]

}

=
2

3
[X1, [X2,X3]]−

1

3
[X2, [X3,X1]]−

1

3
[X3, [X1,X2]].

Comparing the first and the list line one can recognize the familiar Jacobi identity.

Example 3.5. Here, looking at the fourth order identity (3.5) with ℓ = 4 and taking
w = 1212, we check the nested commutators identity

X1212 = X2112 = −X1221 (3.6)

discussed in [Ote91, eq. (4.3)]. To get (3.6), start from the 4-th order formula

X1234 =
1

4
{X1234 −X1243 −X1342 +X1432 −X2341 +X2431 +X3421 −X4321}.

Letting 1 instead of 3 and 2 instead of 4, we get

4X1212 = X1212 −X1221 −X1122 +X1212 −X2121 +X2211 +X1221 −X2121,

which is equivalent to 2X1212 = −2X2121, and gives immediately (3.6).

Proof of Proposition 3.3. To prove (3.4), we argue by induction on |v|. The property is
trivial if |v| = 1 and 1 ≤ |w| ≤ s− 1. Assume that for a given p ∈ {1, . . . , s− 2}, formula
(3.4) holds for all v,w with |v| = p and 1 ≤ |w| ≤ s− p and we will prove that it holds for
any v,w with |v| = p+ 1 and 1 ≤ |w| ≤ s− p− 1.

13
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Write ṽ = v0v ∈ Wp+1 and σ̃(ṽ) = σ̃0(v0v) . . . σ̃p(v0v). Then the defining property
(2.3) of the coefficients π(σ) gives

∑

σ̃∈Sp+1

πp+1(σ̃)Xσ̃0(ṽ)σ̃1(ṽ)···σ̃p(ṽ)w

=
∑

σ∈Sp

πp(σ)
(
Xv0σ1(v)···σp(v)w −Xσ1(v)···σp(v)v0w

)

=
[
Xv0 ,

∑

σ∈Sp

πp(σ)Xσ1(v)···σp(v)w

]
−

∑

σ∈Sp

πp(σ)Xσ1(v)···σp(v)v0w (inductive assumption)

= [Xv0 ,X[v]w]−X[v]v0w = X[v0v]w,

by the Jacobi identity (2.7) and the antisymmetry. Thus (3.4) is proved.
To prove (3.5), we work by induction. The statement for ℓ = 2 is obvious. Assume

that (3.5) holds for some ℓ ∈ {2, . . . , s− 1}. We need to show that

Xv0v =
1

ℓ+ 1

∑

σ∈Sℓ+1

πℓ+1(σ̃)Xσ̃0σ̃1...σ̃ℓ
for all v0v = v0v1 · · · vℓ ∈ Wℓ+1,

where for all j we denoted σ̃j = σ̃j(v0v). But the definition of πℓ+1, the induction assump-
tion and (3.4) show that

∑

σ̃∈Sℓ+1

π(σ̃)Xσ̃0σ̃1···σ̃ℓ
=

∑

σ∈Sℓ

πℓ(σ)(Xv0σ1···σℓ
−Xσ1···σℓv0)

= [Xv0 ,
∑

σ∈Sℓ

πℓ(σ)Xσ1...σℓ
]−

∑

σ∈Sℓ

πℓ(σ)Xσ1···σℓv0

= ℓXv0v −X[v]v0 = (ℓ+ 1)Xv0v,

as desired.

Recall the notation ∆k1···kℓx := etXk1 · · · etXkℓx, where ℓ ∈ N and kj ∈ {1, . . . ,m}.

Lemma 3.6. For any ℓ ∈ {2, . . . , s − 1}, for each w ∈ Wℓ and for each ψ ∈ Cℓ,1
H,loc, we

have

X♯
wψ(x) = lim

t→0

1

tℓ

∑

σ∈Sℓ

πℓ(σ)ψ(∆
σℓ(w)···σ1(w)x) for all x ∈ R

n.

Proof. To prove the statement, we shall show the Taylor expansion

∑

σ∈Sℓ

πℓ(σ)ψ(∆
σℓ···σ1x) = tℓX♯

wψ(x) +Rℓ+1(t
ℓ+1, ψ, x) for all ψ ∈ Cℓ,1

H,loc. (3.7)

We will work by induction. The statement for ℓ = 2 follows immediately from the Taylor
formula (2.22). Indeed

ψ(∆kjx) = ψ(x) + t(X♯
jψ +X♯

kψ)(x)

+
t2

2

(
(X♯

k)
2ψ + (X♯

j)
2ψ + 2X♯

jX
♯
kψ

)
(x) +R3(t

3, ψ, x),

14
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where j, k ∈ {1, . . . ,m}. Thus ψ(∆k∆jx)− ψ(∆j∆kx) = t2X♯
jkψ(x) +R3(t

3, ψ, x).
Let us assume that (3.7) holds for some ℓ ∈ {2, . . . , s − 2}. Looking at the Taylor

expansion (2.22), this means that

∑

σ∈Sℓ

ℓ∑

|α|=0

πℓ(σ)
t|α|

α!
(X♯

σ1
)α1 · · · (X♯

σℓ
)αℓψ(x) = tℓX♯

wψ(x) for all t, x and ψ ∈ Cℓ,1
H,loc.

In particular, if k ≤ ℓ− 1, we have

k∑

|α|=0

t|α|

α!

∑

σ∈Sℓ

πℓ(σ)(X
♯
σ1
)α1 · · · (X♯

σℓ
)αℓψ(x) = 0 for all t, x. (3.8)

In order to prove the induction step, let ψ ∈ Cℓ+1,1
H,loc . Then, omitting all the ♯ symbols

∑

σ̃∈Sℓ+1

πℓ+1(σ̃)ψ(∆
σ̃ℓ···σ̃1σ̃0x)

=
∑

σ∈Sℓ

πℓ(σ)
(
ψ(∆σℓ···σ1w0x)− ψ(∆w0σℓ···σ1x)

)

=

ℓ+1∑

|α|+β=0

t|α|+β

α!β!

∑

σ∈Sℓ

πℓ(σ)
(
Xβ

w0
Xα1

σ1
· · ·Xαℓ

σℓ
ψ(x) −Xα1

σ1
· · ·Xαℓ

σℓ
Xβ

w0
ψ(x)

)

+Rℓ+2(t
ℓ+2, ψ, x)

=

ℓ+1∑

|α|=0

t|α|

α!

∑

σ∈Sℓ

πℓ(σ)
(
Xα1

σ1
· · ·Xαℓ

σℓ
ψ(x)−Xα1

σ1
· · ·Xαℓ

σℓ
ψ(x)

)

+ t

ℓ∑

|α|=0

t|α|

α!

∑

σ∈Sℓ

(
Xw0

Xα1

σ1
· · ·Xαℓ

σℓ
ψ(x) −Xα1

σ1
· · ·Xαℓ

σℓ
Xw0

ψ(x)
)

+
ℓ+1∑

β=2

tβ

β!

ℓ+1−β∑

|α|=0

t|α|

α!

∑

σ∈Sℓ

πℓ(σ)
(
Xβ

w0
Xα1

σ1
· · ·Xαℓ

σℓ
ψ(x)−Xα1

σ1
· · ·Xαℓ

σℓ
Xβ

w0
ψ(x)

)

+Rℓ+2(t
ℓ+2, ψ, x).

Now note that the first line (case β = 0) vanishes trivially. The third line, where β ≥ 2,

vanishes by virtue of (3.8) (note that Xβ
w0
ψ ∈ Cℓ+1−β,1

H,loc ). It remains the term with β = 1
which gives

∑

σ̃∈Sℓ+1

πℓ+1(σ̃)ψ(∆
σ̃ℓ···σ̃1σ̃0x) = tℓ+1(X♯

w0
X♯

wψ(x)−X♯
wX

♯
w0
ψ(x)) +Rℓ+2(t

ℓ+2, ψ, x)

= tℓ+1X♯
w0wψ(x) +Rℓ+2(t

ℓ+2, ψ, x),

by definition of X♯
w0w.

Proof of Theorem 3.1. We first show that (i) and (ii) are equivalent for ℓ = 2, . . . , s − 1.
The statement is obvious if ℓ = 1. Let now ℓ ∈ {2, . . . , s − 1} and take Z = ψ · ∇ ∈
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Cℓ,1
H ∩C1

Euc. Fix also w ∈ Wℓ. Comparing the definitions adZ Xw := (Z♯fw−Xwψ) ·∇ and

[Z,Xw] := (Z♯fw −X♯
wψ) · ∇, we immediately recognize that (i) and (ii) are equivalent.

Next we prove that (i) holds for all ℓ ∈ {2, . . . , s−1}. In view of Lemma 3.6, it suffices
to prove that for all w = w1 · · ·wℓ ∈ Wℓ, we have

lim
t→0

∑

σ∈Sℓ

1

tℓ
πℓ(σ)ψ(∆

σℓ(w)···σ1(w)x) =
∑

σ∈Sℓ

πℓ(σ)Xσ1(w) · · ·Xσℓ−1(w)fσℓ(w)(x) · ∇ψ(x),

(3.9)

for any ψ ∈ Cℓ,1
H,loc ∩ C

1
Euc and for all ℓ = 2, 3, . . . , s − 1.

We first prove the statement for ℓ = 2. Fix Xw1
,Xw2

∈ {X1, . . . ,Xm} and ψ ∈
C2,1
H,loc ∩ C

1
Euc. We need to show that

lim
t→0

1

t2

∑

σ∈S2

π2(σ)ψ(∆
σ2(w)∆σ1(w)x) = Xw1w2

ψ(x) for all x ∈ R
n, (3.10)

where Xw1w2
:= (Xw1

fw2
−Xw2

fw1
) · ∇. Observe that since trivially Xkψ = X♯

kψ for all
ψ ∈ C1

Euc and k = 1, . . . ,m, we already have

adXk
Xi = Xki for all k, i ∈ {1, . . . ,m}. (3.11)

For each fixed x, let g(t) :=
∑

σ π2(σ)ψ(∆
σ2∆σ1x). Here we take the abridged notation

σi = σi(w). We will prove (3.10) by calculating the limit in the left-hand side with
de l’Hôpital’s rule.

g′(t) =
∑

σ∈S2

π2(σ)
{
Xσ1

(ψ∆σ2)(∆σ1x) +Xσ2
ψ(∆σ2∆σ1x)

}

=
∑

σ∈S2

π2(σ)
{
Xσ1

ψ(∆σ2∆σ1x) +Xσ2
ψ(∆σ2∆σ1x)

+Xσ2σ1
ψ(∆σ2∆σ1x)(−t) +O3(t

2, ψ,∆σ2σ1x)
}
.

(3.12)

Here we already used Theorem 2.6 and we also invoked (3.11) to claim that adXσ2
Xσ1

=
Xσ2σ1

. To accomplish the proof for ℓ = 2, observe first that

lim
t→0

1

2t

∑

σ∈S2

π2(σ)
(
Xσ2σ1

ψ(∆σ2∆σ1x)(−t) +O3(t
2, ψ,∆σ2σ1x)

)
= Xw1w2

ψ(x).

Here we used estimate (2.18) and the definition of π2(σ). Therefore the last line of (3.12)
has the expected behaviour. It remains to show that the second one behaves as O(t2), as
t → 0. To prove this claim, introduce ϕ := Xw1

ψ +Xw2
ψ ∈ C1,1

H,loc. The Taylor formula
(2.22) gives

ϕ(∆w2∆w1x)− ϕ(∆w1∆w2x) = ϕ(x) + (Xw2
ϕ(x) +Xw1

ϕ(x))t +R2(t
2, ϕ, x)

−
{
ϕ(x) + (Xw1

ϕ(x) +Xw2
ϕ(x))t+R2(t

2, ϕ, x)
}
= R3(t

2, ψ, x),

as t→ 0. Therefore,

lim
t→0

1

t

∑

σ∈S2

π2(σ)
(
Xσ1

ψ(∆σ2σ1x) +Xσ2
ψ(∆σ2σ1x)

)
= lim

t→0

1

t

∑

σ∈S2

π2(σ)ϕ(∆
σ2σ1x) = 0,
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as desired.
Next we show the induction step (which is not needed if s ≤ 3). Assume that s ≥ 4

and that for some ℓ ∈ {3, . . . , s − 1} we have

Xvϕ = X♯
vϕ for all ϕ ∈ C1

Euc ∩ C
ℓ−1,1
H,loc |v| ≤ ℓ− 1. (3.13)

We want to show (3.9) for all ψ ∈ Cℓ,1
H,loc ∩C

1
Euc and |w| = ℓ.

Fix x and let g(t) :=
∑

σ∈Sℓ
πℓ(σ)ψ(∆

σℓ · · ·∆σ1x), where σj = σj(w). It suffices to

show that limt→0 g(t)/t
ℓ = Xwψ(x). This will follow by de l’Hôpital’s rule, as soon as we

prove that

lim
t→0

g′(t)

ℓtℓ−1
= Xwψ(x). (3.14)

To show (3.14), observe first that by the induction assumption we have

adXj Xv = Xjv for all j ∈ {1, . . . ,m} |v| ≤ ℓ− 1. (3.15)

Now we calculate g′(t) keeping (2.20) into account.

g′(t) =
∑

σ∈Sℓ

πℓ(σ)

ℓ∑

j=1

Xσj

(
ψ∆σℓ···σj+1

)(
∆σj ···σ1x

)

=
∑

σ∈Sℓ

πℓ(σ)

ℓ∑

j=1

∑

0≤kj+1+···+kℓ≤ℓ−1

X
σ
kℓ
ℓ ···σ

kj+1

j+1
σj
ψ(∆σℓ···σ1x)

(−t)kj+1+···+kℓ

kj+1! · · · kℓ!

+Oℓ+1(t
ℓ, ψ,∆σℓ ···σ1x).

In view of (3.15), we can expand as in (2.20) and use identity adkℓXσℓ
· · · ad

kj+1

Xσj+1

Xσjψ =

X
σ
kℓ
ℓ ···σ

kj+1

j+1
σj
ψ, which is legitimate because kℓ + · · · + kj+1 ≤ ℓ − 1, see (3.15). We may

rearrange as

g′(t) =
∑

σ∈Sℓ

πℓ(σ)
∑

1≤i1≤ℓ

Xσi1
ψ(∆σℓ···σ1x)

+

ℓ∑

µ=2

(−t)µ−1
µ∑

p=2

∑

1+b2+···+bp=µ
b2,...,bp≥1

1

b2! · · · bp!

∑

σ∈Sℓ

πℓ(σ)
∑

1≤i1<···<ip≤ℓ

X
σ
bp
ip

···σ
b2
i2

σi1

ψ(∆σℓ···σ1x)

+Oℓ+1(t
ℓ, ψ,∆σℓ ···σ1x)

=: H1(t) +

ℓ−1∑

µ=2

(−t)µ−1Hµ(t) + (−t)ℓ−1
ℓ−1∑

p=2

hℓ,p(t) + (−t)ℓ−1hℓ,ℓ(t)

+Oℓ+1(t
ℓ, ψ,∆σℓ ···σ1x).

Everywhere σj stands for σj(w).
The proof of (3.14) will be a consequence of the following three facts.

Fact 1. We have

lim
t→0

(−t)ℓ−1hℓ,ℓ(t)

ℓtℓ−1
=

(−1)ℓ

ℓ
hℓ,ℓ(0) = Xwψ(x).

17



A. Montanari and D. Morbidelli, Jacobi identities and ball-box theorems

Fact 2. For any p ∈ {1, . . . , ℓ− 1}, we have

lim
t→0

(−t)ℓ−1hℓ,p(t)

tℓ−1
= (−1)ℓ−1hℓ,p(0) = 0.

Fact 3. We have

lim
t→0

ℓ−1∑

µ=1

(−t)µ−1Hµ(t)

tℓ−1
= 0. (3.16)

Facts 1,2, and 3 give easily the proof of (3.14) and of the theorem.
To check Fact 1, just observe that property (2.5) and the generalized Jacobi iden-

tity (3.5) give

lim
t→0

(−t)ℓ−1

ℓtℓ−1
hℓ,ℓ(t) =

(−1)ℓ−1

ℓ
hℓ,ℓ(0) =

(−1)ℓ−1

ℓ

∑

σ∈Sℓ

πℓ(σ)Xσℓ ···σ1
ψ(x) = Xwψ(x),

as desired. Note that we used limt→0 hℓ,ℓ(t) = hℓ,ℓ(0).
To verify Fact 2, note first that limt→0 hℓ,p(t) = hℓ,p(0). Thus

hℓ,p(0) =
∑

1+b2+···+bp=ℓ
b2,...,bp≥1

1

b2! · · · bp!

{ ∑

σ∈Sℓ

πℓ(σ)
∑

i≤i1<···<ip≤ℓ

X
σ
bp
ip

···σ
b2
i2

σi1

ψ(x)
}

=
∑

1+b2+···+bp=ℓ
b2,...,bp≥1

1

b2! · · · bp!
0,

because for any p ≤ ℓ − 1 and b2, . . . , bp ≥ 1, the term {· · · } vanishes by Proposition 3.7
below.

Finally we discuss Fact 3. Here it does not suffice to know that Hµ(t) → Hµ(0), as
t→ 0. We need instead a more refined expansion, whose explicit analysis is of considerable
algebraic difficulty. Therefore, we use a slightly more implicit argument. First of all we
expand all the terms by means of the Taylor formula, taking into account that ψ ∈ Cℓ,1

H,loc.

By inductive assumption we may claim that X
σ
bp
ip

...σ
b2
i2

σi1

ψ = X♯

σ
bp
ip

...σ
b2
i2

σi1

ψ. Thus we

express the latter as a sum of horizontal derivatives of order µ with suitable coefficients.
This gives for µ ∈ {2, . . . , , ℓ− 1},

Hµ(t) =

µ∑

p=1

∑

1+b2+···+bp=µ
b2,...,bp≥1

1

b2! · · · bp!

∑

σ

πℓ(σ)
∑

1≤i1<···<ip≤ℓ

X♯

σ
bp
ip

...σ
b2
i2

σi1

ψ(∆σℓ···σ1x)

=:
∑

p,b,σ,i

∑

(k1,...,kµ)∈{w1,...,wℓ}µ

ckp,b,σ,iX
♯
k1

· · ·X♯
kµ
ψ(∆σℓ···σ1x)

=

ℓ−µ∑

|α|=0

∑

p,b,σ,i

∑

(k1,...,kµ)∈{w1,...,wℓ}µ

ckp,b,σ,i
α!

t|α|(X♯
σ1
)α1 · · · (X♯

σℓ
)αℓX♯

k1
· · ·X♯

kµ
ψ(x)

+Rℓ+1(t
ℓ+1−µ, ψ),
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where we also used the Taylor expansion. A similar expansion holds for µ = 1. Algebra
of such coefficients is quite complicated, and it seems rather difficult to show Fact 3 di-
rectly. We are instead able to prove what we need indirectly. What we actually have is a
polynomial expansion of the form

ℓ−1∑

µ=1

(−t)µ−1Hµ(t) =

ℓ∑

λ=1

tλ−1Pλ(X
♯
w1
, . . . ,X♯

wℓ
)ψ(x) +Rℓ+1(t

ℓ, ψ, x), (3.17)

where Pλ is an homogeneous polynomial of degree λ involving the coefficents ckp,b,σ,i/α!
above. Taking Fact 1 and Fact 2 for granted, this gives

X♯
wψ(x) = lim

t→0

g(t)

tℓ
(H)
= lim

t→0

g′(t)

ℓtℓ−1

= Xwψ(x) + lim
t→0

1

ℓtℓ−1

( ℓ−1∑

µ=1

(−t)µ−1Hµ(t) +Rℓ+1(t
ℓ, ψ)

)

= Xwψ(x) + lim
t→0

1

ℓtℓ−1

ℓ∑

λ=1

tλ−1Pλ(X
♯
w1
, . . . ,X♯

wℓ
)ψ(x)

(3.18)

Equality
(H)
= should be iterpreted in the usual conditional sense provided by de l’Hôpital’s

rule (the limit in the left-hand side exists and takes a value L if the limit in the right-hand
side exists and takes the same value L). We do not know at this stage the value of the
limit in the right-hand side. Our purpose is to show that it vanishes.

To prove such claim, note that equality (3.18) has an algebraic feature. Namely, all
the coefficients ckp,b,σ,i appearing implicitely in the polynomials Pλ do not change if we take

different vector fields Zj instead ov Xwj in some R
N with possibly N 6= n, provided that

we do not change the number ℓ of vector fields.
If we choose analytic vector fields Zj in R

N , we clearly have Zwψ = Z♯
wψ for all w

and for any ψ ∈ Cω. Moreover, the conditional equality (3.18) becomes a true equality,
because all functions depend analytically on t and x. Therefore we have found a family of
polynomial identities of the form

0 = Pλ(Z1, . . . , Zℓ)ψ(x) =:
∑

(k1,...,kλ)∈{1,...,ℓ}λ

C(k1, . . . , kλ)Zk1 · · ·Zkλψ(x)

which holds for any family Z1, . . . , Zℓ of analytic vector fields in R
N , for each N ∈ N, for

all analytic ψ : RN → R and any x ∈ R
N . Theorem 3.8 shows that the polynomial should

be trivial, i.e. C(k1, . . . , kλ) = 0 for all (k1, . . . , kλ). This concludes the proof of Fact 3
and of the theorem.

Next we state and prove the relevant results needed to accomplish the proof of Fact 2
and Fact 3, that we took for granted in the argument above.

The following family of nested commutators identities is relevant for the proof of Fact 2.
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Proposition 3.7. Let X1, . . . ,Xm be vector fields in the regularity class Cs−1,1
H,loc ∩ C1

Euc.
For any ℓ ∈ {2, . . . , s} and 1 ≤ p ≤ ℓ− 1, we have the following statement:

∑

σ∈Sℓ

πℓ(σ)
∑

1≤i1<···<ip≤ℓ

X
σ
bp
ip

(v)···σ
b2
i2

(v)σ
b1
i1

(v)w
= 0 for all b1, . . . , bp ∈ N ∪ {0}

|w| ≥ 0 |v| = ℓ 1 ≤ b1 + · · ·+ bp ≤ s− |w|.

(Fℓ,p)

We agree that if |w| = 0, then Xvw = Xv for any word v with |v| ≥ 1. To prove Fact
2 we need the case |w| = 0 and b1 = 1 of the proposition, but the case |w| = 0 is included
for convenience in the proof. Observe also that

• if |w| = 0 and b1 ≥ 2, then the statement is trivial;
• if ℓ = 1, then the statement is empty;
• Proposition 3.7 fails for ℓ = p, as (3.5) shows.

Since the statement of Proposition 3.7 is quite intricated, we first check its correctness
in the already significant case ℓ = 3 and p = 2, |w| = 0 and b ∈ N. The general case is
based on the same cancellation mechanism. In this model case, identity (F3,2) becomes

∑

σ∈S3

π3(σ)
{
Xσb

3
σ2

+Xσb
3
σ1

+Xσb
2
σ1

}
= 0,

which can be checked by writing explicitly the twelve terms (in the notation [jbk] := Xjbk):

[3b2] + [3b1] + [2b1]− {[2b3] + [2b1] + [3b1]}

− {[1b3] + [1b2] + [3b2]}+ {[1b2] + [1b3] + [2b3]} = 0.

Proof of Propoosition 3.7. We first prove by induction that (Fℓ,1) holds for any ℓ ∈ {2, . . . , s}.

Introduce the abridged notation [ib11 i
b2
2 ] instead of X

i
b1
1

i
b2
2

and so on. For convenience of

notation, we prove Fℓ+1,1 for all ℓ ∈ {1, . . . , s − 1}. Let ṽ = v0v ∈ Wℓ+1, w and b1 ≥ 1 be
such that b1 + |w| ≤ s. Then

∑

σ̃∈Sℓ+1

πℓ(σ̃)
∑

0≤i1≤ℓ

[σ̃b1i1 (ṽ)w] =
∑

σ̃∈Sℓ+1

πℓ(σ̃)
(
[σ̃b10 (ṽ)w] + [σ̃b11 (ṽ)w] + · · ·+ [σ̃b1ℓ (ṽ)w]

)

=
∑

σ∈Sℓ

πℓ(σ)
(
[vb10 w] + [σb11 (v)w] + · · ·+ [σb1ℓ (v)w]

−
(
[σb11 (v)w] + · · · + [σb1ℓ (v)w] + [vb10 w]

))
= 0,

as we claimed.
To fill up the triangle, we prove that if (Fℓ,p−1) holds for some ℓ ∈ {2, . . . , s − 1}

and p ∈ {2, . . . , ℓ}, then (Fℓ+1,p) holds. This will imply that (Fℓ,p) holds for all the
required couples (p, ℓ). We argue as usual by the defining property (2.3). Denote below
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ṽ = v0v ∈ Wℓ+1.
∑

σ̃∈Sℓ+1

πℓ+1(σ̃)
∑

0≤i1<···<ip≤ℓ

[σ̃
bp
ip
(ṽ) · · · σ̃b1i1 (ṽ)w]

=
∑

σ∈Sℓ

πℓ(σ)
( ∑

0≤i1<···<ip≤ℓ

[σ̃
bp
ip
(ṽ) · · · σ̃b1i1 (ṽ)w]

)∣∣∣
σ̃(v0v)=v0σ(v)

−
∑

πℓ(σ)
( ∑

0≤i1<···<ip≤ℓ

[σ̃
bp
ip
(ṽ) · · · σ̃b1i1 (ṽ)w]

)∣∣∣
σ̃(v0v)=σ(v)v0

=
∑

σ∈Sℓ

πℓ(σ)
( ∑

1≤i1<···<ip≤ℓ

[σ̃
bp
ip
(ṽ) · · · σ̃b1i1 (ṽ)w] +

∑

1≤i2<···<ip≤ℓ
i1=0

[σ̃
bp
ip
(ṽ) · · · σ̃b1i1 (ṽ)w]

)∣∣∣
σ̃(ṽ)=v0σ(v)

−
∑

σ∈Sℓ

πℓ(σ)
( ∑

0≤i1<···<ip≤ℓ−1

[σ̃
bp
ip
(ṽ) · · · σ̃b1i1 (ṽ)w] +

∑

0≤i1<···<ip−1≤ℓ−1
ip=ℓ

[σ̃
bp
ip
(ṽ) · · · σ̃b1i1 (ṽ)w]

)∣∣∣
σ̃(ṽ)=σ(v)v0

=
∑

σ∈Sℓ

πℓ(σ)
{ ∑

1≤i1<···<ip≤ℓ

[σ
bp
ip
(v) · · · σb1i1 (v)w] +

∑

1≤i2<···<ip≤ℓ

[σ
bp
ip
(v) · · · σb2i2 (v)v

b1
0 w]

}

−
{ ∑

0≤i1<···<ip≤ℓ−1

[σ
bp
ip+1(v) · · · σ

b1
i1+1(v)w] +

∑

0≤i1<···<ip−1≤ℓ−1

[v
bp
0 σ

bp−1

ip−1+1(v) · · · σ
b1
i1+1(v)w]

}

= 0,

because the first and the third term cancel, while both the second and the fourth vanish
by inductive assumption.

The following theorem has been used to check Fact 3 in the proof of Theorem 3.1.
See (3.16).

Theorem 3.8. Let m and p be natural numbers. Let C : {1, . . . ,m}p → R be given
coefficients. Consider the polynomial

P (X1, . . . ,Xm) :=
∑

(k1,...,kp)∈{1,...,m}p

C(k1, . . . , kp)Xk1Xk2 · · ·Xkp . (3.19)

Assume that for all N ∈ N, for any X1, . . . ,Xm analytic vector fields in R
N and for each

analytic ψ : RN → R we have

P (X1, . . . ,Xm)ψ(x) = 0 for all x ∈ R
N . (3.20)

Then P is the trivial polynomial, i.e. C(k1, . . . , kp) = 0 for all (k1, . . . , kp) ∈ {1, . . . ,m}p.

Proof. The argument is inspired to some ideas contained in the proof the Amitsur–Levitzki
theorem [Lev50,AL50]. We start by separating homogeneous parts in each variable. Let
N ∈ N and take X1, . . . ,Xm analytic vector fields in R

N and ψ analytic in R
N . Consider

the function

f(t1, . . . , tm) :=P (t1X1, . . . , tmXm)ψ(x)

=:

min{p,m}∑

q=1

∑

1≤i1<···<iq≤m

∑

d1,...,dq≥1
d1+···+dq=p

td1i1 · · · t
dq
iq
P

i1···iq
d1···dq

(Xi1 , . . . ,Xiq )ψ(x),
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where x is fixed. 2 The function f should vanish identically in t1, . . . , tm. Therefore it is
clear that it must be for each fixed q, i1, . . . , iq, d1, . . . , dq

P
i1···iq
d1···dq

(Xi1 , . . . ,Xiq )ψ(x) = 0 for all Xi1 , . . . ,Xiq , ψ ∈ Cω(RN ) N ∈ N x ∈ R
N .

In other words we can work with homogeneous polynomials in each variable. Renaming
variables, it suffices to prove the theorem for a polynomial P in q variables, where 1 ≤ q ≤ p
and such that

P (λ1X1, . . . , λqXq) = λd11 · · ·λ
dq
q P (X1, . . . ,Xq) for all λ1, . . . , λq ∈ R,

where d1, . . . , dq ≥ 1.
Next we show by a standard multilinearization argument that, possibly adding new

variables, we can assume that dj = 1 for all j = 1, . . . , q. Indeed, assume that d1 ≥ 2.
Define

P̃ (U, T,X2, . . . ,Xq) := P (U + T,X2, . . . ,Xq)− P (U,X2, . . . ,Xq)− P (T,X2, . . . ,Xq).

It turns out that P̃ is a homogeneous polynomial in q + 1 variables, but the degrees in
the new variables U and T are both strictly less that the original degree d1. Note that if
P (X1,X2, . . . ,Xq)ψ ≡ 0 for all ψ,X1, . . . ,Xq ∈ Cω, then P̃ (U, T,X2, . . . ,Xq)ψ ≡ 0 for all

ψ,U, T,X2, . . . ,Xq ∈ Cω. On the other side, if P̃ is the trivial polynomial (all its coefficients

vanish), then also the polynomial P must be trivial. Clearly, the polynomial P̃ can be
decomposed in a sum of homogeneous polynomials, where each of them is homogeneous in
each variable separately, as above.

Iterating this argument we may assume that we have a polynomial of the form

Q(X1, . . . ,Xp) =
∑

σ∈Sp

B(σ)Xσ1
· · ·Xσp

in p variables, where p is the original degree of the polynomial P in (3.19). Here 12 · · · p 7→
σ1σ2 · · · σp are permutations and σj = σj(12 · · · p). We know that

Q(X1, . . . ,Xp)ψ(x) = 0 for all X1, . . . ,Xp, ψ ∈ Cω N ∈ N x ∈ R
N (3.21)

and we want to show that B(σ) = 0 for all σ. Since we are free to increase the dimension
N of the underlying space, take N ≥ p+1, let Xj = xj∂j+1 for any j = 1, . . . , p. Therefore,
it turns out that, if we let ψ(x) = xp+1, we have

Xσ1
· · ·Xσpψ =

{
1 if σ1 · · · σp = 1 · · · p;

0 if σ1 · · · σp 6= 1 · · · p.

Therefore, if we make use of (3.21), we discover that it must be B(1, 2, . . . , p) = 0. Letting
then Xσj = xj∂j+1 we see that B(σ) = 0 for all σ ∈ Sp. Therefore Q is the trivial
polynomial and the proof is concluded.

2An informal example to understand quickly this splitting could be:

P (X1, X2, X3) = X
2
1X

2
2 +X

4
3 + (X1X2X3X1 +X

2
1X3X2)

= P
1,2
2,2 (X1, X2) + P

3
4 (X3) + P

1,2,3
2,1,1 (X1, X2, X3).
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3.1. An old nested commutators identity due to Baker

Here we show as an application that some very old nested commutator identities going
back to Baker (see the discussion in [Ote91]) can be found as a particular case of our
Proposition 3.3. All vector fields in this subsection are smooth.

Let v = v1 · · · vℓ be a word of length ℓ in the alphabet 1, · · · ,m. Let us adopt the
notation

Xk
aXb :=

{
XaXb if k = 1

XbXa if k = −1
for all a, b ∈ {1, . . . ,m},

Xk
aX

h
bXc :=

{
XaX

h
bXc if k = 1 and h ∈ {−1, 1}

Xh
bXcXa if k = −1 and h ∈ {−1, 1}

for all a, b, c ∈ {1, . . . ,m}

and analogous notation for higher order derivatives. Then it is rather easy to check that
we may write for all v = v1 · · · vℓ

Xv1···vℓ =
∑

k1,...,kℓ−1∈{−1,1}

(−1)k1+···+kℓ−1Xk1
v1 · · ·X

kℓ−1
vℓ−1

Xvℓ . (3.22)

This is an alternative way to write commutators, less focused on the inductive point of
view than the form (2.4). Let now n ∈ N, v ∈ Wn+1 and w ∈ W1. Thus,

Xwv +
∑

σ∈Sn+1

πn+1(σ)Xσ1(v)···σn+1(v)w = −X[v]w +
∑

σ∈Sn+1

πn+1(σ)Xσ1(v)···σn+1(v)w = 0,

by (3.4). Comparing (3.22) and (2.4), this is equivalent to

Xwv1···vnvn+1
+

∑

k1,...,kn∈{−1,1}

(−1)k1+···+knX
v
k1
1

···vknn vn+1,w
= 0,

or in the typographically better, self-explanatory notation

[wv1 · · · vnvn+1] +
∑

k1,...,kn∈{−1,1}

(−1)k1+···+kn [vk11 · · · vknn vn+1, w] = 0. (3.23)

Note that we introduced a comma before w to avoid confusion. Namely, when some of the
vj has power −1, then it goes on the right side of the previous vj+1, . . . , vn, vn+1 but not
of w. For instance, we have [v−1

1 v−1
2 v3v4, w] := [v3v4v2v1w] and so on (a precise definition

can be given by induction).
Now we show that the following Baker’s identity of order six

[ab4a]− 2[bab3a] + [b2ab2a] = 0 for all a, b ∈ {1, . . . ,m}, (3.24)

see [Ote91, eq. (4.4)], can be easily obtained specializing (3.23). Let n = 4 and choose
v1 · · · vnvn+1 = v1 · · · v4v5 = b · · · ba = b4a and w = a. Thus (3.23) becomes

[ab4a] +
∑

k1,...,k4∈{−1,1}

(−1)k1+···+k4 [bk1 · · · bk4a, a] = 0.
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Note that at least one among the numbers kj must be −1, otherwise we get [b4aa] = 0.
Therefore we get

[ab4a] +
{
−

(
4

1

)
[b3aba] +

(
4

2

)
[b2ab2a]−

(
4

3

)
[bab3a] +

(
4

4

)
[ab4a]

}
= 0

which gives [ab4a]− 2[b3aba] + 3[b2ab2a]− 2[bab3a] = 0. But the fourth order identity (3.6)
gives [b3aba] = [b2ab2a]. Thus (3.24) follows.

4. Applications to ball-box theorems

In this section we describe some applications of our results to ball-box theorems. We shall
use some results from [MM12a] on the expansion of almost exponential maps.

Assume that a family H of vector fields belongs to the regularity class Cs−1,1
H,loc ∩ C1

Euc

and assume that the vector fields satisfy the Hörmander condition of step s, namely
dim span{Xw(x) : 1 ≤ |w| ≤ s} = n, at any x ∈ R

n. Following a standard notation, denote
by P := {Y1, . . . , Yq} = {Xw : 1 ≤ |w| ≤ s} the family of commutators of length at most s.
Let ℓj ≤ s be the length of Yj and write Yj =: gj ·∇. For each I = (i1, . . . , in) ∈ {1, . . . , q}n,
let ℓ(I) = ℓi1 + · · ·+ ℓin λI(x) := det[Yi1(x), . . . , Yin(x)] and ℓ(I) := ℓi1 + · · ·+ ℓin . Define
also the vector valued function Λ(x, r) := (λI(x)r

ℓ(I))I∈{1,...,q}n . Finally, for all A ⊂ R
n,

put
ν(A) := inf

x∈A
|Λ(x, 1)|. (4.1)

Assume that each commutator Yj is continuous in the Euclidean topology. Then, on
the open set Ω0 ⊂ R

n fixed before (2.8), we have ν(Ω0) > 0. Moreover, take j ∈ {1, . . . ,m}

and any word w with |w| = s. For any x ∈ Ω0 where the derivative X♯
jfw(x) exists, we

have the obvious bound |X♯
jfw(x)| ≤ L0, the constant in (2.8). Furthermore we also have

|Xwfj(x)| ≤ L0 for all x. Therefore we can write

adXj Xw(x) =
∑

1≤|u|≤s

buXu(x) where (4.2)

|bu| ≤ C0 for all u with 1 ≤ |u| ≤ s. (4.3)

Here the constant C0 can be estimated in terms of the constant L0 in (2.8) and of the
infimum ν(Ω0); see [MM12b, Lemma 4.2].

Therefore, the vector fields are in the class As introduced in in [MM12a] (actually in
a subclass, because here we assume the Hörmander condition, while in [MM12a] we did
not). Moreover we have the following measurability property:

Proposition 4.1 (measurability). Let H be a family of vector fields in the regularity class
C1

Euc ∩ C
s−1,1
H,loc . Assume the Hörmander condition at step s and assume that fw ∈ C0

Euc, if
1 ≤ |w| ≤ s. Let w be a word with |w| = s and let Z = f · ∇ ∈ ±H. Then for any x ∈ Ω
we can write

adZ Xw(e
tZx) =

∑

1≤|v|≤s

bv(t)Xv(e
tZx) for a.e. t ∈ (−t0, t0), (4.4)

where the functions t 7→ bv(t) are measurable and |bv(t)| ≤ C0, the constant in (4.3).
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Proof. Denote γ(t) := etZx. Since t 7→ fw(γ(t)) is Lipschitz and x 7→ Xwf(x) is continu-
ous, the function t 7→ adZ Xw(γ(t)) :=

d
dtfw(γ(t))−Xwf(γ(t)) is measurable and bounded,

as observed above. Let for any x the matrix Yx = [Y1,x, . . . , Yq,x] ∈ R
n×q. Then let Y †

x

be the Moore–Penrose pseudoinverse of Yx. Therefore, choose b(t) = Y †
γ(t)(adZ Xw)γ(t)

at any differentiability point t. Note that b(t) is the least-norm solution of the sys-
tem

∑q
j=1 Yj,γ(t)ξ

j = (adZ Xw)γ(t), where ξ ∈ R
q. The Tychonoff approximation Y † =

limδ↓0(Y
TY + δIq)

−1Y T (see the appendix) shows measurability.

Remark 4.2. • One can prove Proposition 4.1 in a less elegant but more analytic way,
without using the Moore–Penrose inverse, looking instead for “almost least-squares”
solutions.

• The argument above can be used to see that in the definition of subunit distance
we may work with paths γ such that for a.e. t we have γ̇(t) =

∑
j b

j(t)Xj(γ(t)),
where the function t 7→ b(t) is measurable. Indeed, let γ be a subunit path as
in the definition of dcc in (2.2). Given a differentiability point t of γ, let b(t) :=

limδ↓0

(
XT

γ(t)Xγ(t) + δIp
)−1

XT
γ(t)γ̇(t), where Xx := [X1,x, . . . ,Xm,x] for all x. The

function b is measurable and at any differentiability point t of γ, the vector b(t) is
the least-norm solution of the system Xγ(t)ξ = γ̇(t), with ξ ∈ R

m. See [JSC87] for a
related discussion.

The distance associated with P where each Yj has degree ℓj will be denoted by ̺:

̺(x, y) := inf
{
r ≥ 0 : there is γ ∈ LipEuc((0, 1),R

n) with γ(0) = x

γ(1) = y and γ̇(t) =
∑q

j=1bjr
ℓjYj(γ(t)) with |b| ≤ 1 for a.e. t ∈ [0, 1]

}
.

(4.5)

Next we recall the definition of approximate exponential. Let w1, . . . , wℓ ∈ {1, . . . ,m}.
Given τ > 0, we define, as in [NSW85,Mor00] and [MM12b],

Cτ (Xw1
) := exp(τXw1

),

Cτ (Xw1
,Xw2

) := exp(−τXw2
) exp(−τXw1

) exp(τXw2
) exp(τXw1

),

...

Cτ (Xw1
, . . . ,Xwℓ

) := Cτ (Xw2
, . . . ,Xwℓ

)−1 exp(−τXw1
)Cτ (Xw2

, . . . ,Xwℓ
) exp(τXw1

).
(4.6)

Then let

e
tXw1w2...wℓ
ap := expap(tXw1w2...wℓ

) :=

{
Ct1/ℓ(Xw1

, . . . ,Xwℓ
), if t ≥ 0,

C|t|1/ℓ(Xw1
, . . . ,Xwℓ

)−1, if t < 0.
(4.7)

Let Ω0 be the open bounded set fixed before (2.8). By standard ODE theory, there is t0
depending on ℓ,Ω, Ω0, sup|fj| and sup|∇fj| such that exp∗(tXw1w2...wℓ

)x ∈ Ω0 for any

x ∈ Ω and |t| ≤ t0. Given r > 0, define Ỹj = rℓjYj for j = 1, . . . , q. Moreover, if
I = (i1, . . . , in) ∈ {1, . . . , q}n, x ∈ Ω, r ∈ (0, 1] and h ∈ R

n is sufficiently close to the
origin, define

EI,x,r(h) := expap(h1Ỹi1) · · · expap(hnỸin)(x)∥∥h
∥∥
I
:= max

j=1,...,n
|hj |

1/ℓij QI(r) := {h ∈ R
n : ‖h‖I < r}.

(4.8)
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Recall that, given η ∈ (0, 1), x ∈ K, r < r0 and I ∈ {1, . . . , q}n, the triple (I, x, r) is
said to be η-maximal if |λI(x)|r

ℓ(I) > ηmaxJ∈I(px,q)|λJ(x)|r
ℓ(J).

Theorem 4.3. Let H be a family of vector fields of class Cs−1,1
H,loc ∩ C1

Euc satisfying the
Hörmander condition of step s. Assume that all nested commutators up to length s are
continuous in the Euclidean sense. Then there is C > 1 such that the following properties
hold. Let I ∈ {1, . . . , q}n, x ∈ Ω and r < C−1. Let also E := EI,x,r be the map in (4.8).
Then

(a) E ∈ C1
Euc(QI(C

−1)).
(b) We have the expansion

∂

∂hk
E(h) = Ỹik(E(h)) +

s∑

ℓj=ℓik+1

ajk(h)Ỹj(E(h)) +

q∑

i=1

ωi
k(x, h)Ỹi(E(h)). (4.9)

where Ỹk := rℓkYk and the functions ajk and ωj
k satisfy

|ajk(h)| ≤ C
∥∥h

∥∥ℓj−ℓik
I for all h ∈ QI(C

−1) (4.10)

|ωj
k(x, h)| ≤ C

∥∥h
∥∥s+1−ℓik
I for all h ∈ QI(C

−1) x ∈ Ω. (4.11)

(c) If moreover (I, x, r) is 1
2 -maximal with I ∈ {1, . . . , q}n, x ∈ Ω and r < r0, then, for

all ε ≤ C−1 we have
EI,x,r(QI(ε)) ⊃ Bρ(x,C

−1εsr). (4.12)

Note that constants in Theorem 4.3 depend quantitatively on C0 and L0. Inclu-
sion (4.12) ensures the Fefferman–Phong type estimate d(x, y) ≤ C|x− y|1/s; see [FP83].

Moreover, we have

Theorem 4.4. Assume that the hypotheses of Theorem 4.3 hold. Then there is is a con-
stant C > 0 such that the following holds. Let x ∈ Ω ⋐ Ω0. Then, for any 1

2 -maximal
triple (I, x, r) with I ∈ {1, . . . , q}n, x ∈ Ω and r < C−1, the map EI,x,r is one-to-one on
the set QI(C

−1).

The constant C in Theorem 4.4 does not depend quantitatively on C0 and L0, because
(vi) below involves a qualitative covering argument. A more precise control on such con-
stant can be obtained assuming more regularity (for instance if the vector fields belong to
the class Bs of [MM11]).

Proof of Theorems 4.3 and 4.4. All arguments of the proofs are contained in the papers
[NSW85, Mor00, MM12b, MM12a] and [MM11]. Let us recapitulate the skeleton of the
proof with precise references to the mentioned papers.

(i) Specializing [MM12a, Remark 3.3] to our setting, we may claim that if (I, x, r) is
η-maximal, then (I, y, r) is C−1η-maximal for all y ∈ Bd(x,C

−1ηr).
(ii) The proof of Theorem 4.3, items (a) and (b) are contained in [MM12a, Theorem 3.11].

Note that the mentioned result holds even in a more general setting where the Hör-
mander’s rank condition is not assumed.
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(iii) In view of (i), (ii) and expansion (4.9) we can follow the proof of [MM12b, Lemma 5.14]
(just letting σ = 0). Thus, we may claim that if ξ ∈ Ω and |λI(ξ)| 6= 0, then EI,ξ,r

is one-to-one on QI(C
−1rℓ(I)|λI(ξ)|).

(iv) For all η ∈ (0, 1) there is Cη > 0 such that given an η-maximal triple (I, x, r), then
the map EI,x,r satisfies for all j ∈ {1, . . . , n} the expansion

∂

∂hj
E(h) = Ỹij (E(h)) +

∑

1≤k≤n

χk
j (h)Ỹik(E(h)) for all h ∈ QI(C

−1
η ), (4.13)

where χ ∈ C0
Euc(QI(C

−1
η ),Rn×n) satisfies

|χ(h)| ≤ Cη ‖h‖I if ‖h‖I ≤ C−1
η . (4.14)

Therefore, for a suitable C̃η possibly larger that Cη, the map EI,x,r

∣∣
QI(C̃

−1
η )

is a local

C1 diffeomorphism and in particular it is open. This ensures that the topologies of the
distances ̺, dcc and d are all locally equivalent to the Euclidean one. Expansion (4.13)
with estimate (4.14) has been proved in [MM11, Theorem 3.1]. As observed after
the statement in [MM11], such result holds in the broader class As. Note that
in [MM11] we discuss the case η = 1

2 . The case with η < 1
2 can be treated with

minor modifications.
(v) To prove Theorem 4.3-(c), it suffices to follow the proof of [MM11, Lemma 3.7]. This

is explained in [MM11, Remark 3.8].
(vi) Finally, keeping all previous items into account, to prove the injectivity result The-

orem 4.4, it suffices to follow [NSW85, pp. 132–133] or [Mor00, Lemma 3.6]. In the
proof of the latter lemma, note that in third line of [Mor00, Eq.(30)], which reads

|λI0,k(x)|δ
d(I0,k)
0,k >

1

2
max
J

|λJ(x)|δ
d(J)
0,k for all x ∈ Uk,

by (i) we may choose Uk = Bd(xk, C
−1δ0,k), which is open by (iv); moreover, by (iii)

we may assume that EI,x,δ0,k

∣∣
QI(δ0,k)

is one-to-one for each x ∈ Uk. The remaining

part of the proof in [Mor00] can be applied verbatim to our setting.

Remark 4.5. Theorem 4.4 implies the doubling property for vector fields satisfying the
hypotheses of Theorem 4.3. Let Ω ⊂ R

n be a bounded open set. Then there are C and
r0 > 0 so that

|Bcc(x, 2r)| ≤ C|Bcc(x, r)| for all x ∈ Ω r < r0.

Moreover, following [LM00], one gets for all f ∈ C1(Bcc(x,Cr)), the Poincaré inequality
∫

Bcc(x,r)
|f(y)− fB|dy ≤ Cr

∫

Bcc(x,Cr)

∑

j

|Xjf(y)|dy for all x ∈ Ω r < r0.

Finally, as in [MM12b, Proposition 6.2], given Ω′ ⊂⊂ Ω, and ε ∈ ]0, 1/s[, there is r0 and
C > 0 such that, for any f ∈ C1(Ω),

∫

Ω′×Ω′

d(x,y)≤r0

|f(x)− f(y)|2

|x− y|n+2ε
dxdy ≤ C

∫

Ω

∑

j

|Xjf(y)|
2dy. (4.15)
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A. Appendix

Tychonoff regularization for the Moore–Penrose pseudoinverse. Here we discuss
an approximation formula for the Moore–Penrose inverse of a matrix which has been used
in Proposition 4.1. This result is proposed as an exercise in some matrix-analysis textbooks
(see [GVL89, Problem 5.5.2]). We include here a short discussion for completeness.

Let a1, . . . , aq ∈ R
n and let A = [a1, . . . , aq] ∈ R

n×q. Take b ∈ span{a1, . . . , aq} and
look at the system Ax = b where x ∈ R

q. We do not assume that the vectors aj are
independent. Let xLS be the solution of minimal norm. We claim that

xLS = lim
λ→0

(ATA+ λ2Iq)
−1AT b. (A.1)

In other words, the family if matrices (ATA + λ2Iq)
−1AT gives an approximation of the

Moore–Penrose inverse A†, as λ → 0. Note that, if a1, . . . , aq are independent, then it is
well known that A† = (ATA)−1AT . If they are dependent, then ATA is singular, but still
we have limλ→0(A

TA+ λ2Iq)
−1AT = A†.

To show (A.1), write A = UΣV T as a singular value decomposition, i.e. U ∈ O(n),
V ∈ O(q), while Σ = diag(σ1, . . . , σr, 0, . . . , 0) ∈ R

n×q, where σ1 ≥ · · · ≥ σr > 0 are
the singular values of A and r ≤ min{q, n} is its rank. Note that UT [a1, . . . , aq] = ΣV T .
Therefore, UTaj ∈ R

r × {0n−r} and UT b ∈ R
r × {0n−r}, too.

By definition, the vector x ∈ R
q is a (not unique) least-square solution of the system

Ax = b if and only if it solves ATAx = AT b, which is equivalent to ΣTΣV Tx = ΣTUT b,
or, letting V Tx =: ξ and UT b =: β ∈ R

n, to the system

ΣTΣξ = ΣTβ. (A.2)

Since ΣTΣ = diag(σ21 , . . . , σ
2
r , 0, . . . , 0) ∈ R

q×q and since the system (A.2) has solutions by
assumptions on the data b, it must be ΣTβ = (σ1β1, . . . , σrβr, 0, . . . )

T ∈ R
q and the solu-

tions of (A.2) are ξ = (β1/σ1, . . . , βr/σr, ξr+1, . . . , ξq)
T , with ξr+1, . . . , ξq free parameters.

Clearly, the minimal-norm one is ξLS = (β1/σ1, · · · , βr/σr, 0, . . . )
T ∈ R

q.
Define now the vector xλ := (ATA + λ2Iq)

−1AT b = V (ΣTΣ + λ2Iq)
−1ΣTUT b. Since

ΣTUT b = ΣTβ = (σ1β1, . . . , σrβr, 0, . . . )
T , we have

V Txλ =: ξλ = (σ1β1/(σ
2
1 + λ2), . . . , σrβr/(σ

2
r + λ2), 0, . . . )T ∈ R

q.

Thus, as λ→ 0,

|xLS − xλ| = |ξLS − ξλ| =
∣∣∣
( λ2β1
σ1(σ21 + λ2)

, . . . ,
λ2βr

σr(σ2r + λ2)

)∣∣∣ −→ 0.

This concludes the proof of (A.1).
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