
Geometric Modeling: 

surfaces

▪Patch: 

- patch di Bézier

- NURBS surfaces



Polygonal Mesh:
piecewise planar surfaces 

70000 facce



Polygonal Mesh:

Territorial data

16K x 16K verteces

~537 milion of triangles



Parametric Surfaces

Tensor product surfaces

v

v



Bézier Patch

A surface is the locus of a 

curve that is moving 

through space and 

thereby changing its 

shape. 

A surface is obtained by 

moving the control points 

of a Bézier curve along 

other Bézier curves.



Bézier Patch
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bij control points

Control mesh : (n+1)x(m+1)

Given an initial Bézier curve of degree m

Let each control point bj traverse a Bézier curve of degree n

Combine these two eqs. and obtain the surface: 

Tensor-product surface defined on a rectangular parameter domain
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Example: 

bicubic Bézier Patch



Control Mesh

• Consider a bicubic Bézier surface (bicubic means that it is a cubic 

function in both the u and w parameters)

• A cubic curve has 4 control points, and a bicubic surface has a grid 

of 4x4 control points, p0 through p15
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Matrix form of a Bézier patch
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Bicubic Bézier patch in

Matrix Form (m=n=3)

( )

2 3

2 3

,

1

1

T

x

T

y

T

z

T

x x

V U

s u v V U

V U

M M

V v v v

U u u u

  
 

=   
   

=  

 =  

 =  

C

C

C

C G 0 4 8 12

1 5 9 13

2 6 10 14

3 7 11 15

x x x x

x x x x

x

x x x x

x x x x

p p p p

p p p p

p p p p

p p p p

 
 
 =
 
 
 

G

1 0 0 0

3 3 0 0

3 6 3 0

1 3 3 1

M

 
 −
 =

− 
 
− − 

• The matrix form is a nice and compact notation and leads to an efficient method 
of computation

• It can also take advantage of 4x4 matrix support which is built into graphics 
hardware



Tangents

• To compute the u and v tangent vectors at 

some (u,v) location, we can use:
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Normal Vectors

The normal vector n of a parametric surface is a normalized 

vector that is normal to the surface in a given point (u,v).

It is computed by the cross product of any two vectors that 

are tangent to the surface at that point:
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Isoparametric Bézier curves
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Properties
▪ The patch interpolates the four control points corners of 

the control mesh

▪ Boundary curves: The 4 boundaries of the Bézier

surface are just Bézier curves defined by the points on 

the edges of the surface.
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Properties

▪ Partition of Unity

▪ Convex Hull property: for 0 ≤ u,v ≤1, the terms 

are non-negative. 

Then, taking into account the partition of unity property,  

is a convex combination. The Bézier patch will fall within 

the convex hull of the control points.

▪ Affine Invariance: each affine transformation of the 

control mesh defines a new Bézier patch which is the 

transformation of the original.
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Properties

▪ Linear Precision: when all the control points lie on a 

plane, then the patch lies on the same plane.

▪ Shape approximation: the control mesh approximates 

the shape of the patch



▪ Surface shape control



Bilinear Surface: 

Bézier patch of degree (1,1) 
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Hyperbolic paraboloid
The “simplest” 

surface between 

four points



Bézier Patch Evaluation mode I

by direct de Casteljau

Compute the point on the 

Bézier patch at a given (u,v) 

by repeated application of 

bilinear interpolation.

Suppose we are given a 

rectangular array of control 

points bij  

The de Casteljau algorithm 

evaluates s(u,v)



Bi-Lerp: bilinear interpolation

00 01 10 11[(1 ) ](1 ) [(1 ) ]v b vb u v b vb u− + − + − +

Lerp(b00,b01,v)=(1-v) b00+vb01

Lerp(b10,b11,v)=(1-v) b10+vb11

Bi-Lerp(b00 , b01, b10, b11,u,v)=

Lerp(Lerp(b00, b01,v), Lerp(b10, b11,v),u)=



The de Casteljau Evaluation 

Algorithm
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Example: computing a point on a Bézier

patch using de Casteljau algorithm
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Control mesh

Step 2

Bézier patch of degree 2 at (u,v)=(0.5,0.5)

Step 1

The point 

on the 

surface is:



Example

Control mesh

Bézier patch of degree 3 at (u,v)



Example

Bézier patch of degree (2,3) at (u,v)

Proceeds in a 

univariate manner 

after no more direct 

de Casteljau steps 

can be performed



Bézier Patch: 

Evaluation mode II
Example biquadratic Bézier patch

Compute the point on the 

patch at a given (u,v) by 

evaluating univariate de 

Casteljau algorithm for 

curves

first in u, then in v



Example: computing a point on a Bézier

patch using univariate de Casteljau
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Control mesh

Step 2

Bézier patch of degree 2 at (u,v)=(0.5,0.5)

Step 1

Step 2: 

evaluate the 

obtained 

curve s(0.5,v) 

for v=0.5   

Step 1: 

evaluate each 

row of Bézier 

points for u=0.5



Joining Bézier patches

C1 continuity:

(a) blue CP must be collinear

(b) All be in the same ratio (a/b)

Without (b) there is no 

continuous tangent plane

biquadratic Bézier patches

Two adjacent patches are Cr across their common boundary if 

and only if all rows of their control mesh vertices can be 

interpreted as control polygons of Cr Bézier curves



Tensor  product

Spline Surfaces 
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Given two knot vectors U and V on a parametric domain

[0,1]x[0,1],

the spline surface of orders n and m defined by the

bidirectional net of control points Pij is:

where  the CP define the Control Mesh

Ni,n(u),Nj,m(v) univariate B-Spline basis functions 

of degree n-1 and m-1
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Spline surfaces
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Pij= (xij,yij,zij)  control points Control mesh : KxL



Properties

• The properties of the tensor product basis functions 

follow from the corresponding properties of the univariate 

basis functions (nonnegativity, partition of unity, ..)

Local support:  

• The spline surface have the following properties:

– Affine invariance

– Local convex hull property

– Local modification: if Pij is moved it affects the surface 

only in the rectangle

– No variation diminishing property for spline surface  

i ,n j ,m
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0
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Spline Surface Evaluation at (u,v)

▪ Find the knot span in which u in [ul,ul+1);

▪ Compute the n nonzero basis functions in  [ul,ul+1);

▪ Find the knot span in which v in [vh,vh+1);

▪ Compute the m nonzero basis functions in  [vh,vh+1);

▪ Multiply the values of the nonzero basis functions with the 

corresponding control points:

l h
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i l n j h m

s( u,v ) P N ( u )N ( v )
= − + = − +
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1 1



UxV=[0,1]x[0,1] 

Parametric domain

Example of tensor 

product bicubic spline 

(6x3 patch)

Spline Surface 



Non Uniform Rational B-Splines

(NURBSs)
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Pij control points -- Control mesh : KxL

UxV=[0,1]x[0,1] Parametric domain, knot vectors

Ni,n(u),Nj,m(v) B-Spline basis functions

wij weights ≥0

Let sw be a spline surface in the homogeneous space 4D:

Project into 3D



Non Uniform Rational B-Splines

(NURBSs)
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A NURBS surface of degree n-1 in the u-direction and m-1 in the 

v direction is a bivariate vector-valued piecewise rational 

function of the form:

Introducing the piecewise rational basis functions:

The surface can be written as
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w4,3=50

w4,3=5

P43

The effect of 

varying the weights

If wi=1 for all i, then the NURBS is a non-rational spline surface

w4,3=1



▪ Rational Bézier Patch: A NURBS surface without internal 
knots and open knot vector

▪ Closed Surface (no periodic): First column of the CP grid (or 
first row) coincides with the last column (or row)

▪ Corner: If all the CP in a subgrid (n-1)x(m-1) coincide, then 
the surface interpolates that CP, modelling a corner.

By using multiply coincident CP, visual discontinuities can be 
created where there are no corresponding discontinuity in the 
basis functions. 

▪ Planarity: If all the CP in a subgrid nxm lie on a plane, then 
the surface lies on the same plane.



NURBS Surface Evaluation at (u,v)

Apply spline surface procedure where the control points are 

multiplied by the weights

Pij=(wijxij,wijyij,wijzij,wij)

Compute  the  four contributions

(Sx,Sy,Sz,Sw) where

The point on the NURBS surface is:

x=Sx/Sw,  y=Sy/Sw, z=Sz/Sw

 
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Spline Surface in 

piecewise Bézier patches form 
n K m L

i ,n ij j ,m

i j

s( u,v ) N ( u )[ P N ( v )]
+ +

= =
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1 1

Curve in u

direction

-convert each spline curve in u direction into piecewise    

Bézier curves by  knot insertion until multiplicity = degree

-Analogously in v direction

Bicubic spline Piecewise bicubic  Bézier



How to store a spline/NURBS 

surface

FILENAME: namefile.snurbs

DEGREE_U_V

2         2

N.C.P._U_V

5         9

N.KNOTS_U_V

8         12

COORD.C.P.(X,Y,Z,W)

0.000000e+00 0.000000e+00 1.000000e+00 0.00000e+00

….

KNOTS_U

0.000000e+00

….

KNOTS_V

0.000000e+00

….



Surface fitting

interpolant approximant



.. to a spline surface interpolant

From a gray scale image



Spline Surface by interpolating a 

network of curve



NURBS limits

▪ NURBS surfaces have rectangular topology

▪ Arbitrary topologies can be obtained by 

collapsing CP, which can cause bad 

parameterizations



Trimmed NURBS surfaces

A trimmed NURBS surface is one in which specified patches 

have been trimmed out, or removed.



Trimmed NURBS surfaces

The surface S(u,v) is limited to a subdomain D in UxV of the 

parametric space, called Trimming Region (TR)

▪ TR specifies in the parametric domain regions of interest

▪ Visualize the original surface S(u,v) only on TR

Lab

Surf

Parametric Domain

D



Trimming Region

Parametric Domain

Lab

Surf

• A trimming region is defined by a set of closed trimming 

loops in the parameter space of a surface. 

• A trimming loop consists of a closed

NURBS curve and/or piecewise linear curve.

• Self intersecting curves are not allowed.
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Jorg Peters’ UFL group



Trimming region

Loops (curves c(t)) may be nested, but a nested loop must 
be oriented oppositely from the loop that contains it. The 
outermost loop must be oriented counter-clockwise.

Outer loops: oriented counter-clockwise

Inner loops: oriented clockwise

c0 outer

c1 inner

c2 inner

c3 outer

The trimming region D is defined by  the left-region of the 
outer loop removing the right-regions of the inner loops.

c1

c2

c3

c0





Trimmed NURBS surfaces

Applications:

▪ Hierarchical modelling

▪ Composing solids by Boolean Operations



Trimmed NURBS surfaces: 

hierarchical modelling
▪ Using Trimmed NURBS

▪ Restrict the domain into regions of interest

▪ The original surface is unchanged

▪ Construct local details on the trimming regions

▪ Locally modify the surface adding geometric details  without any 

parametric changes.



Hierarchical modelling



Hierarchical modelling



Hierarchical modeling

Courtesy of CGGroup , xcmodel , Univ. Bologna



Trimmed NURBS surfaces: solid 

modeling by boolean operations

Courtesy of CG

Group , xcmodel , Univ. Bologna



Trimmed NURBS: solid modeling



Cylinder part

Disk part

Composing solids: 

Difference between a disk 

and a cylinder



Sphere union Cube



Sphere - Cube



Sphere intersection cube

sfera
cubo



Cross sectional design: 

from curves to surfaces
Model the shape of a surface by modifing its 3D CP in a

2D window is a difficult task,

We need tools to construct surfaces from curves

automatically.

▪ Extruded Surface

▪ Ruled Surface 

▪ Surfaces of Revolution 

▪ Skinned Surface

▪ Swept Surface

▪ ....



Extruded Surface

Obtained by moving a profile curve c(u) in a given 

direction W for a a given distance d



Extruded Surface

▪Extrusion direction: W (unitary vector in v direction)

▪Extrusion offset: d

▪ For fixed u, s(u,v) is a straight segment from c(u) to c(u)+dW

▪ For fixed v , s(u,v) is the curve


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Extruded Surface
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Extruded surface :

▪Control points Pi1=Pi; Pi2=Pi+dW; 

▪Knot vectors: UxV, V=[0,0,1,1]

▪If c(u) is rational (NURBS) with weights wi, 

then s(u,v) is rational with weights  wi1=wi2=wi



Extruded Surfaces


= =

=
9

1

2

1

2,3, )()(),(
i j

jiij vNuNPvus

The cylinder is obtained by traslating

the NURBS circle (9 points) a

distance d along a vector normal to

the plane of the circle.



Ruled Surface
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1

1

2

1

Obtained by linear interpolation in v direction between curves

c1(u) and c2(u) defined on U parametric domain.

For fixed u, s(u,v) is a straight segment joining c1 and c2

Same degree n-1

Same knot vector U



Ruled Surface
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The spline ruled surface on the parametric domain

UxV, V=[0,0,1,1] is defined as :

If the two curves are NURBS, then the ruled 

surface is rational as well, with weights



Surfaces of revolution

Given a profile curve c(t) in the plane, the surface is defined by 

spinnig it through an arbitrary angle around an axis



Surfaces of revolution
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Profile curve in the x-z plane (revolve it about the z axis):

Control points

For fixed u=u0, s(u0,v) is the isoparametric curve c(v)

rotated by a given angle around the z axis

For fixed v=v0, s(u,v0) is a circle in x-y plane, with its center

on the z axis



Surfaces of revolution
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NURBS surface of revolution s(u,v):

Weights for the NURBS 

circle curve

Knot vector for a 9-points circle





Example: profile curve and 

Surfaces of revolution



Sphere as a revolution 

NURBS surface 


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Skinned Surface
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Skinning is the process of interpolating (blending) a 

given set of NURBS curves (section curves with 

common degree and number of CP) to form a 

surface.

Section curves of degree n-1 and knot vector U:

For each index i, the CP Qij
w (points   ) in v direction are 

interpolated in the homogeneous space, obtaining the 

curves



Skinned Surface

The skinned surface is defined by the computed CP Pij
w

n K m L
w w
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+ +

= =

= 
1 1



Example

Section curves

Skinned surface



Skinned Surface

ALGORITHM

INPUT:  m degree in direction v (m-1<=K).

{vk} , k=1,..,m+L interpolation nodes

V knot vector in direction v

section curves : degree n, CP Q, U knot vector 

OUTPUT: Pij control point of the skinned surface 

Compute n+K interpolant curves through the control points Qij
w of 

the section curves (solve n+K linear systems) 

for i=1 to n+K

P(i,:)=curveinterp_skinning(n+K,Q,m-1,V,vk);

end

(Pij
w is the j-th control point of the curve which interpolates  the 

points Qi1
w,…,Qim+L

w.)



Skinning example



Skinning for animation 

(morphing)

• Doug L. James and Christopher D. Twigg. Skinning mesh animations. ACM Transactions on Graphics (SIGGRAPH 2005), 24(3), 

August 2005



Swept Surfaces

Surface defined by a 

cross sectional curve

moving along a spine.

Simple version: a single 

3D curve for spine and a 

single 2D curve for the 

cross section

Sweeping example: 

several cross sections 

rather than just one. 

The planes containing the cross sections are perpendicular to the spine



Swung surfaces
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It’s a generalization of a surface of revolution where 

the trajectory curve is not necessary circular.

Profile Curve P(u) defined in the xz plane:

Trajectory Curve T(v) defined in the xy plane:
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Swung surface

Swinging P(u) about the z axis and simultaneously scaling it 

according to T(v), s is an arbitrary scaling factor. 

S(u,v) has a NURBS representation given by:

( )T
zyxxx uPvTusPvTusPvus )(),()(),()(),( =

Profile Curve Trajectory curve



( )Tzyxxxij ijiji
PTsPTsPQ ,,=

Swung surface

Control points of the swung surface:

jiij www =and weights:

U and V knot vectors for s(u,v) are those defining P(u) and T(v) 

Fixing u yields curves having the shape of T(v) but scaled in

the x and y directions.

Fixing v=v the isoparametric curve Cv(u) are obtained by

rotating P(u) into the plane containing the vector (Tx(v),

Ty(v),0), and scaling the x and y coords. of the rotated

curve with the factor s|T(v)|.



Swinging Example



Domain Space Tessellation

• Tessellation is the process of taking a complex surface 
and approximating it with a set of simpler surfaces (like 
triangles)

• The most straightforward way to tessellate a parametric 
surface is uniform tessellation

With this method, we simply choose some 
resolution in u and v and uniformly divide up the 
surface like a grid
- This method is very efficient to compute, as the 
cost of evaluating the surface reduces to 
approximately the same cost as evaluating a curve
- However, as the generated mesh is uniform, it 
may have more triangles than it needs in flatter 
areas and fewer than it needs in highly curved areas



Adaptive Tessellation

• The goal of a tessellation is to provide the 
fewest triangles necessary to accurately 
represent the original surface

• For a curved surface, this means that we want 
more triangles in areas where the curvature is 
high, and fewer triangles in areas where the 
curvature is low



Adaptive Tessellation:

View-Dependent Rendering of Parametric 

Surfaces

• We may also want more 
triangles in areas that are 
closer to the camera, and 
fewer farther away

Level Of Details

• Adaptive tessellation
schemes are designed to 
address these 
requirements



Draw a Bézier patch: 

adaptive subdivision method
– basic approach: recursively test flatness/view dependent

• if the patch s(u,v) is not flat enough, 

• subdivide into four using curve subdivision twice in 

v=1/2 and u=1/2, and 

• recursively process each subpatch

– as with curves, convex hull property is useful for 

termination testing (is inherited from the curves)

Flat test: (convex hull flatness test)

Construct a plane interpolating 3 noncollinear CP

Compute the distances di from the remaining CP from
this plane. D=max |di|

If (D < Tolerance Tol) then the patch is considered flat
and is approximated as a flat quadrilateral.



• Adaptively subdivide rational Bézier patches until a view-

dependent error metric is satisfied. For a1600x1200 

image of the car model (right) render 192k quads at 143 

fps on a NVIDIA GTX 280 
Real-Time View-Dependent Rendering of Parametric Surfaces,  C. Eisenacher, Q. Meyer, C.Loop Microsoft Research



Crack Problem

With adaptive subdivision, must take care with cracks

• A surface is subdivided and its neighbor is not: small 

gaps or small overlaps can appear in the surface.

Crack prevention: Patches sharing an edge (a), are subdivided 

to different levels, generating a crack (b). If an edge is close to 

being linear (control points green) we set it to linear (c) and 

subdivision cracks are avoided (d).



Tesselating

NURBS 

surfaces with 

CUDA

Tesselator

shader
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