
Geometric Modeling: 

surface 
Patch:  

   - patch di Bézier 

   - NURBS surfaces 

    



Polygonal Mesh: 
piecewise planar surfaces  

 

70000 facce 



Polygonal Mesh: 

 

Territorial data 

16K x 16K verteces 

~537 milion of triangles 



Parametric Surfaces 

 
Tensor product surfaces 



Bézier Patch 

A surface is the locus of a 

curve that is moving 

through space and 

thereby changing its 

shape.  

 

A surface is obtained by 

moving the control points 

of a Bézier curve along 

other Bézier curves. 



Bézier Patch 

 



Bézier Patch 



Bézier Patch 

 



Bézier Patch 

 



Bézier Patch 

 



Bézier Patch 
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bij control points 

Control mesh : (n+1)x(m+1) 

Given an initial Bézier curve of degree m 

 

 

 

Let each control point bj traverse a Bézier curve of degree n 

 

 

 

Combine these two eqs. and obtain the surface:  

Tensor-product surface defined on a rectangular parameter domain 
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Example:  

bicubic Bézier Patch 



Control Mesh 

• Consider a bicubic Bézier surface (bicubic means that it is a cubic 

function in both the u and w parameters) 

• A cubic curve has 4 control points, and a bicubic surface has a grid 

of 4x4 control points, p0 through p15 
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Normal Vectors 

The normal vector n of a parametric surface is a normalized 

vector that is normal to the surface in a given point (u,v). 

  

It is computed by the cross product of any two vectors that 

are tangent to the surface at that point: 
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Properties 
 The patch interpolates the four control points corners of 

the control mesh 

 

 

 Boundary curves: The 4 boundaries of the Bézier 

surface are just Bézier curves defined by the points on 

the edges of the surface. 
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Properties 

 Partition of Unity 

 

 Convex Hull property: for 0 ≤ u,v ≤1, the terms  

    are non-negative.  

 Then, taking into account the partition of unity property,   

 

 

 is a convex combination. The Bézier patch will fall within 

the convex hull of the control points. 

 Affine Invariance:  each affine transformation of the 

control mesh defines a new Bézier patch which is the 

transformation of the original. 
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Properties 

 Linear Precision: when all the control points lie on a 

plane, then the patch lies on the same plane. 

 

 Shape approximation: the control mesh approximates 

the shape of the patch 

 

 

 

 



Bilinear Surface: Bézier patch  

of degree (1,1)  
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Hyperbolic paraboloid 

 
The “simplest” 

surface between 

four points 



A Bézier patch object  

 the Utah teapot 
• 32 patches  16 control points/patch  

     = 288 vertices 

     = 288  3 real numbers 



Tensor  product 

Spline Surfaces  
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Given two knot vectors U and V on a parametric domain 

[0,1]x[0,1],  

 

 

 

the spline surface of orders n and m defined by the 

bidirectional net of control points Pij is: 

 

 

 

 

where  the CP define the    Control Mesh 

Ni,n(u),Nj,m(v)       univariate B-Spline basis functions  

    of degree n-1 and m-1 
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Spline surfaces 
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Pij= (xij,yij,zij)  control points Control mesh : KxL 



Properties 

• The properties of the tensor product basis functions  

 

 follow from the corresponding properties of the univariate 

basis functions (nonnegativity, partition of unity, ..) 

 Local support:   

 

 

•  The spline surface have the following properties: 

– Affine invariance 

– Local convex hull property 

– Local modification: if Pij is moved it affects the surface 

only in the rectangle 

– No variation diminishing property for spline surface   
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UxV=[0,1]x[0,1]  

Parametric domain 

Example of tensor 

product bicubic spline  

(6x3 patch) 

Spline Surface  

 



 

  Surface shape control 



Non Uniform Rational B-Splines 

(NURBSs) 
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Pij control points  --   Control mesh : KxL 

UxV=[0,1]x[0,1]   Parametric domain, knot vectors 

Ni,n(u),Nj,m(v)   B-Spline basis functions 

wij     weights ≥0  

Let sw be a spline surface in the homogeneous space 4D: 

Project into 3D 



Non Uniform Rational B-Splines 

(NURBSs) 

1 1

1 1

n K m L

ij ij i ,n j ,m

i j

n K m L

ij i ,n j ,m

i j

w P N ( u )N ( v )

s( u,v )

w N ( u )N ( v )

 

 

 

 







A NURBS surface of degree n-1 in the u-direction and m-1 in the 

v direction is a bivariate vector-valued piecewise rational 

function of the form: 

 

 

 

 

 

Introducing the piecewise rational basis functions: 

 

 

 

 

The surface can be written as 
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w4,3=50 

w4,3=5 

P43 

The effect of  

varying the weights 

If wi=1 for all i, then the NURBS is a non-rational spline surface 

w4,3=1 

 



 Rational Bézier Patch: A NURBS surface without internal 
knots and open knot vector 

 

 Closed Surface (no periodic): First column of the CP grid (or 
first row) coincides with the last column (or row) 

 

 Corner:  If all the CP in a subgrid (n-1)x(m-1) coincide, then 
the surface interpolates that CP, modelling a corner. 

 By using multiply coincident CP, visual discontinuities can be 
created where there are no corresponding discontinuity in the 
basis functions.  

 

 Planarity:  If all the CP in a subgrid nxm lie on a plane, then 
the surface lies on the same plane. 



How to store a spline/NURBS 

surface 

FILENAME: namefile.snurbs 

DEGREE_U_V 

         2         2 

N.C.P._U_V 

         5         9 

N.KNOTS_U_V 

         8         12 

COORD.C.P.(X,Y,Z,W) 

0.000000e+00 0.000000e+00 1.000000e+00 0.00000e+00 

…. 

KNOTS_U 

0.000000e+00 

…. 

KNOTS_V 

0.000000e+00 

…. 



NURBS limits 

 

 NURBS surfaces have rectangular topology 
 

 Arbitrary topologies 

can be obtained by 

collapsing CP, which 

can cause bad 

parameterizations, or 

by joining patch 

together  



Trimmed NURBS surfaces 

A trimmed NURBS surface is one in which specified patches 

have been trimmed out, or removed. 



Trimmed NURBS surfaces 

The surface S(u,v) is limited to a subdomain D in UxV of the 

parametric space, called Trimming Region (TR) 

 TR specifies in the parametric domain regions of interest 

 Visualize the original surface S(u,v) only on TR 

Lab 

Surf 

Parametric Domain 

D 



Trimming Region 

Parametric Domain 

Lab 

Surf 

• A trimming region is defined by a set of closed trimming 

loops in the parameter space of a surface.  

• A trimming loop consists of a closed 

 NURBS curve and/or piecewise linear curve. 

• Self intersecting curves are not allowed. 
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Jorg Peters’ UFL group 



Trimmed NURBS surfaces 

Applications: 
 

 Hierarchical modelling 

 

 Composing solids by Boolean Operations 



Trimmed NURBS surfaces: 

hierarchical modelling 
 Using Trimmed NURBS 

 Restrict the domain into regions of interest 

 The original surface is unchanged 

 Construct local details on the trimming regions 

 Locally modify the surface adding geometric details  without any 

parametric changes. 



Hierarchical modelling 

 



Hierarchical modelling 

 



Hierarchical modeling 

 

Courtesy of CGGroup , xcmodel , Univ. Bologna 



Geometric Modelling of surfaces 

• Modelling/ design  methods: 

– Cross-section design 

 

– Interactive design by manipulating the control mesh 

 

– Creating a patch net or mesh from a set of 3D points 

representing a real object (surface interpolation/surface 

fitting) 



Surface fitting 

interpolant approximant 



.. to a spline surface interpolant 

From a gray scale image 



Spline Surface by interpolating a  

network of curve 



Cross sectional design:  

from curves to surfaces 
Model the shape of a surface by modifing its 3D CP in a 

2D window is a difficult task, 

We need tools to construct surfaces from curves 

automatically. 

 

 Extruded Surface 

 Ruled Surface  

 Surfaces of Revolution  

 Skinned Surface 

 Swept Surface 

 .... 



Extruded Surface 

Obtained by moving a profile curve c(u) in a given 

direction W for a a given distance d 

 



Extruded Surface 

Extrusion direction: W (unitary vector in v direction) 

Extrusion offset: d 

 

 For fixed u, s(u,v) is a straight segment from c(u) to c(u)+dW 

 For fixed v , s(u,v) is the curve 
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Extruded Surface 
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Extruded surface : 

 
 

 

 

 

Control points  Pi1=Pi;  Pi2=Pi+dW;  

Knot vectors:  UxV, V=[0,0,1,1] 

 

If c(u) is rational (NURBS) with weights wi,  

then s(u,v) is rational with weights  wi1=wi2=wi 



Extruded Surfaces 
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The cylinder is obtained by traslating 

the NURBS circle (9 points) a 

distance d along a vector normal to 

the plane of the circle.  



Ruled Surface 
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Obtained by linear interpolation in v direction between curves 

c1(u) and c2(u) defined on U parametric domain. 

For fixed u, s(u,v) is a straight segment joining c1 and c2 

Same degree n-1 

Same knot vector U 

 



Ruled Surface 
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The spline ruled surface on the parametric domain 

UxV, V=[0,0,1,1] is defined as : 

If the two curves are NURBS, then the ruled 

surface is rational as well, with weights 



Surfaces of revolution 

Given a profile curve c(t) in the plane, the surface is defined by 

spinnig it through an arbitrary angle around an axis 

  

 



Surfaces of revolution 
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Profile curve in the x-z plane (revolve it about the z axis): 

Control points 

For fixed u=u0, s(u0,v) is the isoparametric curve c(v) 

rotated by a given angle around the z axis  

 

For fixed v=v0, s(u,v0) is a circle in x-y plane, with its center 

on the z axis 

 



Surfaces of revolution 
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NURBS surface of revolution s(u,v): 

Weights for the NURBS  

circle curve 

Knot vector for a 9-points circle 





Example: profile curve and 

Surfaces of revolution 

 



Sphere as a revolution  

NURBS surface  
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Revolving about the z-axis a half-circle 

(unitary ray, centered at the origin) c(u) of order 3 

 

 

 

 

 

 

 

 

 

  

CP at the North and South poles are repeated 9 times, 
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Skinned Surface 
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Skinning is the process of interpolating (blending) a 

given set of NURBS curves (section curves with 

common degree and number of CP) to form a 

surface. 

 
Section curves of degree n-1 and knot vector U: 

 

 

 
For each index i, the CP Qij

w (points   ) in v direction are 

interpolated in the homogeneous space, obtaining the 

curves 

 

 



Skinned Surface 

 

 
The skinned surface is defined by the computed CP Pij
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Example 

 
Section curves 

Skinned surface 



Skinning example 

 



Skinning for animation 

(morphing) 

• Doug L. James and Christopher D. Twigg. Skinning mesh animations. ACM Transactions on Graphics (SIGGRAPH 2005), 24(3), 

August 2005 



Swept Surfaces 

Surface defined by a 

cross sectional curve 

moving along a spine. 

Simple version: a single 

3D curve for spine and a 

single 2D curve for the 

cross section 

 

Sweeping example: 

several cross sections 

rather than just one.  

The planes containing the cross sections are perpendicular to the spine 



Swung surfaces 
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It’s a generalization of a surface of revolution where 

the trajectory curve is not necessary circular. 

Profile Curve P(u) defined in the xz plane: 

 

 

 

Trajectory Curve T(v) defined in the xy plane: 

 

 

 

Trace out surface s(u,v) by moving a profile curve 

P(u) along a trajectory curve T(v) 
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Swung surface 

 Swinging P(u) about the z axis and simultaneously 

scaling it according to T(v), s is an arbitrary scaling 

factor. S(u,v) has a NURBS representation given by: 
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Profile Curve Trajectory curve 
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Swung surface 

Control points of the swung surface:  

jiij www and weights: 
The U and V knot vectors for s(u,v) are those defining 

P(u) and T(v).  

Fixing u yields curves having the shape of T(v) but scaled in 

the x and y directions. 

Fixing v=v the isoparametric curve Cv(u) are obtained by 

rotating P(u) into the plane containing the vector (Tx(v), 

Ty(v),0), and scaling the x and y coords. of the rotated curve 

with the factor s|T(v)|.  

 

 



Swinging Example 

 



Tessellation 

• Tessellation is the process of taking a complex surface 
and approximating it with a set of simpler surfaces (like 
triangles) 

 

• The most straightforward way to tessellate a parametric 
surface is uniform tessellation 

• With this method, we simply choose some resolution in u 
and v and uniformly divide up the surface like a grid 

• This method is very efficient to compute, as the cost of 
evaluating the surface reduces to approximately the same 
cost as evaluating a curve 

• However, as the generated mesh is uniform, it may have 
more triangles than it needs in flatter areas and fewer than 
it needs in highly curved areas 



Adaptive Tessellation 

• The goal of a tessellation is 
to provide the fewest 
triangles necessary to 
accurately represent the 
original surface 

 

• For a curved surface, this 
means that we want more 
triangles in areas where the 
curvature is high, and fewer 
triangles in areas where the 
curvature is low 



Adaptive Tessellation 

• We may also want more 
triangles in areas that are 
closer to the camera, and 
fewer farther away 

 Level Of Details 

 

• Adaptive tessellation 
schemes are designed to 
address these 
requirements 



Draw a Bézier patch:  

adaptive subdivision method 

 – basic approach: recursively test flatness 

• if the patch s(u,v) is not flat enough,  

• subdivide into four using curve subdivision twice in 

v=1/2 and u=1/2, and  

• recursively process each subpatch 

– as with curves, convex hull property is useful for 

termination testing (is inherited from the curves) 

Flat test: (convex hull flatness test) 

Construct a plane interpolating 3 noncollinear CP 

Compute the distances di from the remaining CP from 
this plane.  D=max |di| 

If (D < Tolerance Tol) then the patch is considered flat 
and is approximated as a flat quadrilateral.   



Crack Problem 

With adaptive subdivision, must take care with cracks 

– at the boundaries between degrees of subdivision 

A surface is subdivided and its neighbor is not :  

small gaps or small overlaps can appear in the surface 

 



Crack Problem and solutions 

Solution: 

Replace the patch B with two coplanar patches to allow 

the common boundary to have the same points and 

normals  
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