Geometric Modeling:

surface

=Patch:
- patch di Bézier
- NURBS surfaces
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Polygonal Mesh:

Territorial data

16K x 16K verteces
~537 milion of triangles
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Parametric Surfaces

Tensor product surfaces W /
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Bezier Patch

A surface is the locus of a
curve that is moving
through space and
thereby changing its

shape.

A surface is obtained by

moving the control points

of a Bézier curve along
/ other Bézier curves.
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Beézier Patch
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Beézier Patch
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Beézier Patch
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Beézier Patch

o ©
o o8, *%
o o
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Beézier Patch
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Bezier Patch

Given an initial Bézier curve of degree m

o(u) = Dby, (u)

]=0

Let each control point b; traverse a Bezier curve of degree n

b, = ¢, (V) = Y b,B,(v)

Combine these%eqs&nd obtain the surface:

s(u,v) = _

b; control points
Control mesh : (n+1)x(m+1)

Tensor-product surface defined on a rectangular parameter domain
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Control Mesh

« Consider a bicubic Bézier surface (bicubic means that it is a cubic
function in both the u and w parameters)

« A cubic curve has 4 control points, and a bicubic surface has a grid
of 4x4 control points, p, through p:

ALMA MATER STUDIORUM ~ UNIVERSITA DI BOLOGNA




Normal Vectors

The normal vector n of a parametric surface is a normalized
vector that is normal to the surface in a given point (u,v).

It is computed by the cross product of any two vectors that

~  0S(U,v) y os(u,v)
ou oV

n
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Properties

" The patch interpolates the four control points corners of
the control mesh

5(0,0)=byy s(0.1) =by,, s(10)=Dbyg, s(11)=Dby,

= Boundary curves: The 4 boundaries of the Bézier
surface are just Bézier curves defined by the points on
the edges of the surface. Pos

s(u,0) = Y.b,B"(u)
s(u,l), s(O_, v),s(1,v)

Bézier Curve

P3,u
Pu,3



Properties

n m
= Partition of Unity ZZ BT(U)Bin (v) =1
i=0 j=0
= Convex Hull property: for 0 < u,v <1, the terms
B"(v),B,"(u) are non-negative.
Then, taking into account the partition of unity property,
n m
. m n
s(u,V) = Z(;Z(;b‘ij (U)B"(v)
1=0 |=
IS a convex combination. The Bézier patch will fall within
the convex hull of the control points.

= Affine Invariance: each affine transformation of the
control mesh defines a new Bézier patch which is the
transformation of the original. |
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Properties

= Linear Precision: when all the control points lie on a
plane, then the patch lies on the same plane.

= Shape approximation: the control mesh approximates
the shape of the patch
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Bilinear Surface: Bézier patch
of degree (1,1)

Hyperbolic paraboloid

_pbn

The “simplest”
surface between -
four points

D

S(U’V) = Zl:ibij Bj (U)Bi (V) = [(1_ u)boo T Ublo](l_v) + [(1_ u)bm T Ubll]v

i=0 j=0




A Bézier patch object
the Utah teapot

« 32 patches x 16 control points/patch
= 288 vertices
= 288 x 3 real numbers
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Tensor product
Spline Surfaces

'leen two knot vectors U and V on a parametric domain
[0,1]x][0,1],

U={a,..,a u,..,u.,b,.. b} V={a,..,a V..V, ,D,.. b}

the spline surface of orders n and m defined by the
bidirectional net of control points P; is

n+K m+L

s(u,v)= ZZ PijNi,n(u)Nj,m(V)

i=1 j=1

where the CP define the Control Mesh
N; n(U),N; (V) univariate B-Spline basis functions
of degree n-1 and m-1 |
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(n+K m+L )
szijNi,n(u)Nj,m(V)
RIChRM g pees
s(uv)=| s, (uv) [=| 33 vy N L (WN (V)
S U)o
Z; N; ((U)N; (V)
NERE )

Pii= (Xij,Yij»Z;j) control points Control mesh : KxL
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Properties

« The properties of the tensor product basis functions

Ni,n(u)Nj,m(V)
follow from the corresponding properties of the univariate
basis functions (nonnegativity, partition of unity, ..)

Local support:
Ni,n(u)Nj,m(V) = O

if(u,v) is outside the rectangle [u;.u,,,)x[V;,v,.)

* The spline surface have the following properties:
— Affine invariance

— Local convex hull property

— Local modification: if P IS moved it affects the surface
only in the rectangle [U.  Uiin )XI:V, Viem)

- — No variation diminishing property for spline surface .




UxXV=[0,1]x[0,1]
Parametric domain

Example of tensor

product bicubic spline

(6x3 patch)
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= Surface shape control
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Non Uniform Rational B-Splines

s (NURBSS)
Let s" be a spline surface in the homogeneous space 4D:
n+K m+L
SW(U1V)= Z Z PijWNi,n(u)Nj,m(V)
i=1 j=1

_ _ n+K m+L
Project into 3D (SX(U,V)\ ZZWUP'N' (UIN; (V)

s(u,v)=|s,(uv)|=—=

n+K m+L

s, (uv)) 20 2N (LN (V)

=1 j=1
P;; control points - Control mesh : KxL
UxV=[0,1]x[0,1] Parametric domain, knot vectors
N;i n(U),N; (V) B-Spline basis functions

Wi, weights >0 |
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Non Uniform Rational B-Splines
(NURBSS)

A NURBS surface of degree n-1 in the u-direction and m-1 in the
v direction is a bivariate vector-valued piecewise rational
function of the form:

n+K m+L
Z ZwijpijNi,n(u)Nj,m(V)
i=1 j=1
n+K m+L
w;N; ((U)N; (V)

i=1 j=1

s(u,v)=

Introducing the piecewise rational basis functions:
wW;N; ((U)N; (V)

n+K m+L

ZzwijNi,n(u)Nj,m(V)

i=1 j=1

Rij(u1V)=

Nn+K m+L

The surface can be written as | S(U,V) = Z Z P;Ri ;(u,v)

i=1 j=1




If w=1 for all i, then the NURBS is a non-rational spline surfiace
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= Rational Bézier Patch: A NURBS surface without internal
knots and open knot vector

» Closed Surface (no periodic): First column of the CP grid (or
first row) coincides with the last column (or row)

= Corner: If all the CP in a subgrid (n-1)x(m-1) coincide, then
the surface interpolates that CP, modelling a corner.

By using multiply coincident CP, visual discontinuities can be
created where there are no corresponding discontinuity in the
basis functions.

= Planarity: If all the CP in a subgrid nxm lie on a plane, then
the surface lies on the same plane. |

ALMA MATER STUDIORUM ~ UNIVERSITA DI BOLOGNA



How to store a spline/NURBS

surface

FILENAME: namefile.snurbs
DEGREE_U_V

2 2
N.C.P. UV

5 9
N.KNOTS U V

8 12

COORD.C.P.(X,Y,Z,W)
0.000000e+00 0.000000e+00 1.000000e+00 0.00000e+00

KNOTS U
0.000000e+00

KNOTS_V
0.000000e+00 |
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NURBS limits

* NURBS surfaces have rectangular topology

= Arbitrary topologies
can be obtained by
collapsing CP, which
can cause bad &g
parameterizations, or
by joining patch
together

,,,,,
i
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Trimmed NURBS surfaces

A trimmed NURBS surface is one in which specified patches
have been trimmed out, or ryemoved.




Trimmed NURBS surfaces

The surface S(u,v) is limited to a subdomain D in UxV of the
parametric space, called Trimming Region (TR)

* TR specifies in the parametric domain regions of interest
* Visualize the original surface S(u,v) only on TR

(v,V)=(0,0)

VA trimming

C @%
spline

Parametric Domain |

ALMA MATER STUDIORUM ~ UNIVERSITA DI BOLOGNA




A trimming region is defined by a set of closed trimming
loops in the parameter space of a surface.

« A trimming loop consists of a closed
NURBS curve and/or piecewise linear curve.
« Self Iintersecting curves are not allowed.

C (1) =(x, (1), Y (1)) =

pk+K

Z WiPiNi,pk(t)
c (t)=-"5 k=1,., M

pk+K

Z WiNi,pk(t)

Parametric Domain
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Trimmed NURBS surfaces

Applications:
= Hierarchical modelling

= Composing solids by Boolean Operations

e@
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Trimmed NURBS surfaces:
hierarchical modelling

= Using Trimmed NURBS
» Restrict the domain into regions of interest
= The original surface is unchanged
= Construct local details on the trimming regions

» Locally modify the surface adding geometric details without any
parametric changes.
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Hierarchical modeling

Courtesy of CGGroup , xcmodel , Univ. Bologna
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2 Geometric Modelling of surfaces

* Modelling/ design methods:
— Cross-section design

— Interactive design by manipulating the control mesh

— Creating a patch net or mesh from a set of 3D points
representing a real object (surface interpolation/surface
fitting)
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Surface fitting

Interpolant approximant

(=
= 2




From a gray scale image

#

.. to a spline surface interpolant




> Spline Surface by interpolating a
network of curve
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Cross sectional design:
from curves to surfaces

Model the shape of a surface by modifing its 3D CP in a
2D window is a difficult task,

We need tools to construct surfaces from curves
automatically.

= Extruded Surface

» Ruled Surface

= Surfaces of Revolution
= Skinned Surface

= Swept Surface
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direction W for a a given distance d

BN u isocurve
v isocurve ' N




Extruded Surface

n+K

c(u)=>» PN, (u) knot vectorU
=1

=Extrusion direction: W (unitary vector in v direction)
=EXxtrusion offset: d

* For fixed u, s(u,v) is a straight segment from c(u) to c(u)+dW
» For fixed v, s(u,v) is the curve

n+K

s(u, V) = c(u)+VvdW = > (P, +vdW)N; , (u)
1=1
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Extruded Surface

Extruded surface :

n+K 2

s(u,v) =) D PN ()N, (V)
i=1 j=1

=Control points P;;=P;; P.,=P,+dW,

=Knot vectors: UxV, V=[0,0,1,1]

=|f c(u) Is rational (NURBS) with weights w;,
then s(u,v) Is rational with weights w;,=w,,=w,
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o
(1Y) = Y Y RN UN, ()

i=1 j=1

The cylinder is obtained by traslating
the NURBS circle (9 points) a
distance d along a vector normal to
the plane of the circle.

rs




C,(u) and c,(u) defined on U parametric domain.
For fixed u, s(u,v) Is a straight segment joining ¢, and c,

Cl(u)=r§PiNi,n(u)

n+K

Cz(u)= ZTij,n(u)

Same degree n-1
Same knot vector U
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Ruled Surface

The spline ruled surface on the parametric domain
UxV, V=[0,0,1,1] is defined as :

n+K

S(U V) ZZWU uNln(u)N Z(V)
=1 j=1

Pu=F, Pi=T;

If the two curves are NURBS, then the ruled
surface Is rational as well, with weights

— ylil- — L2l
Wipg = Wi, Wi =W,
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Given a profile curve c(t) in the plane, the surface is defined by
spinnig it through an arbitrary angle around an axis
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Surfaces of revolution

Profile curve in the x-z plane (revolve it about the z axis):
m+K

c(v)= > PN, (v) KnotvectorV

j=1
_ T Control points
P, =(x,,0,2;)

For fixed u=u0, s(uO,v) is the isoparametric curve c(v)
rotated by a given angle around the z axis

For fixed v=v0, s(u,v0) is a circle in x-y plane, with its center
on the z axis
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Surfaces of revolution

NURBS surface of revolution s(u,v):

m+K

S(U V) ZZ ij |3(U)ij(v)

=1 j=1

U ={0,0,0,1/4,1/4,1/2,1/2,3/4,3/4,1,1,1}

(

- Knot vector for a 9-points circle
P, 1=1

P. = { rotation Pj of 45° 1=2,3,...9

J/

\(for fixed j CP lie on the z=zj plane)

- {1’*5/2’1’\5/2,1,\/7/2,1,\5/2,1}

Weights for the NURBS
Wij = Wi Wj circle curve
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Example: profile curve and
Surfaces of revolution




NURB f

Revolving about the z-axis a half-circle
(unitary ray, centered at the origin) c(u) of order 3

> WAN,,
c(u) ==
ij N 5(U) . :
d :"x . -. -
U :{O,O,O,E,E,l,l,l}, W :{1,ﬁ’1’ﬁ’1} oo . :. ;
2 2 2 2

CP at the North and South poles are repeated 9 times,
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Skinning is the process of interpolating (blending) a
given set of NURBS curves (section curves with
common degree and number of CP) to form a
surface.

Section curves of degree n-1 and knot vector U:

n+K

c'(u)= ZQSVNM(U), j=1,..L+m

For each index i, the CP Q" (points®) in v direction are
Interpolated in the homogeneous space, obtaining the
curves

m+L

c'(v)=) PN, (v), i=1.,K+n
j=1
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Skinned Surface

The skinned surface Is defined by the computed CP P

n+K m+L

s"(u,v)=Y Y PN, (U)N (V)

i=1 j=1
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Z‘i Example

Section curves




' le

inning examp

Sk
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Skinning for animation
(morphing)

N

QKJ 5), 24(3),
™

&
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Swept Surfaces

Surface defined by a
cross sectional curve
moving along a spine.
Simple version: a single
3D curve for spine and a
single 2D curve for the
Cross section

Sweeping example:
several cross sections
rather than just one.

o

The planes containing the cross sections are perpendicular to the spine
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Swung surfaces

e 2‘
I\

It's a generalization of a surface of revolution where
the trajectory curve is not necessary circular.
Profile Curve P(u) defined in the xz plane:

n+ K

P(U)= ZPiRi,n(u)’ I:)i =(P><i ’O’Pzi )T

Trajectory Curve T(v) defined In the xy plane:

m+ L

T(V)= 2 TR, (v). T,=(T,.T, 0

Trace out surface s(u,v) by moving a profile curve
P(u) along a trajectory curve T(V) |
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Swung surface

Swinging P(u) about the z axis and simultaneously
scaling it according to T(v), s is an arbitrary scaling
factor. S(u,v) has a NURBS representation given by:

s(u,v) = (sP, (U)T, (v), P, ()T, (v), P, (u) ]

Profile Curve Trajectory curve




Swung surface

Fixing u yields curves having the shape of T(v) but scaled in

the x and y directions.
Fixing v=v the isoparametric curve C, (u) are obtained by

rotating P(u) into the plane containing the vector (T,(v),
T,(v),0), and scaling the x and y coords. of the rotated curve

with the factor s|T(v)|.
Control points of the swung surface.:

Q, =[P.T, .SR.T, P, |

and weights: w, =w,-w,
The U and V knot vectors for s(u,v) are those defining
P(u) and T(v). |
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Swinging Example
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Tessellation

Tessellation is the process of taking a complex surface
and approximating it with a set of simpler surfaces (like
triangles)

The most straightforward way to tessellate a parametric
surface is uniform tessellation

With this method, we simply choose some resolution in u
and v and uniformly divide up the surface like a grid

This method is very efficient to compute, as the cost of
evaluating the surface reduces to approximately the same
cost as evaluating a curve

However, as the generated mesh is uniform, it may have
more triangles than it needs in flatter areas and fewer than
It needs in highly curved areas |
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The goal of a tessellation is
to provide the fewest
triangles necessary to
accurately represent the
original surface

For a curved surface, this
means that we want more
triangles in areas where the
curvature is high, and fewer
triangles in areas where the
curvature is low
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* We may also want more

« Adaptive tessellation

triangles In areas that are
closer to the camera, and
fewer farther away

Level Of Detalls

schemes are designed to
address these .
requirements ﬁ%@ﬁ
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Draw a Bézier patch:
adaptive subdivision method

— basic approach: recursively test flathess

« if the patch s(u,v) is not flat enough,

 subdivide into four using curve subdivision twice in
v=1/2 and u=1/2, and

* recursively process each subpatch

— as with curves, convex hull property is useful for
termination testing (is inherited from the curves)

Flat test: (convex hull flatness test)

Construct a plane interpolating 3 noncollinear CP

Compute the distances d; from the remaining CP from
this plane. D=max |dj|

If (D < Tolerance Tol) then the patch is considered flat

- and Is aﬁﬁroximated as a flat ﬂuadrilateral. -




Crack Problem

With adaptive subdivision, must take care with cracks
— at the boundaries between degrees of subdivision

A surface is subdivided and its neighbor is not :
small gaps or small overlaps can appear in the surface
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i 9 Crack Problem and solutions

Solution:

Replace the patch B with two coplanar patches to allow
the common boundary to have the same points and
normals
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Serena Morigi

Dipartimento di Matematica
serena.morigi@unibo.it

http://www.dm.unibo.it/~morigi
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