
Polygonal Mesh
▪ Representation and properties

▪ Data Structure

▪ Simplification, compression, LOD

▪ Parametrization, Fairing

Polygonal Mesh
Polygonal meshes are simply

collections of polygons, or

“faces,” that together form the

“skin” of an object. They have

become a standard way of

representing a broad class of

shapes in graphics.

78K vertices

160K triangle

ACCURACY

vs.

SPEED 4 vertices

4 triangles

Complex meshes in CG..

860,000 facce

H.Hoppe

Complex meshes in art…

[Digital Michelangelo Project, 2000]

2,000,000,000

faces

Objectives:

- rendering

- storage

- transmission

- scalability

Courtesy General Dynamics, Electric Boat Div.

Complex meshes in CAD

• Submarine

Auxiliary

Machine

Room

• 500,000

polygons

Meshes in medical imaging...

Visible-body: 512x512x1734 punti

Complex meshes for terrain

topography

Territorial Data: special meshes

16K x 16K vertices

~537 milion of triangles

View-dependent,

Geometric model +

bump (texture) mapping

Height field

Visualize the explicit function:
z = f(x,y)

A height field is defined on a
regular grid of quotes

h : [0, N - 1]2 → R,

where N is huge

Store the height

as an image (i.e. Format gif)

Geometry images

Surface

Geometry image

(), , (,)

(,) (,)

Z (,)

ij ij

ij ij ij

u v z u v

u v i u j v

z u v

=

=

.obj from google earth

Height field as a TIN

Alternatively, a height
field is stored as

triangular irregular
networks (TIN) or
mesh: a vector-based
representation of a
surface

use an optimal
number of polygons to
approximate a surface
to a given level of
detail and accuracy

Mesh generation

• Mesh from points:

triangulation or tetraedralization

▪ Sampling by a digitizer

▪ Reconstruction from multiple views

▪ 3D Scanner

▪ Territorial models

• Mesh from surfaces: tessellation (for surface rendering)

• Mesh from data volumes: polygonalization

▪ Volumetric data (isosurfacing: extract a surface of

constant value through the volume)

Mesh representation

• Structured (regular) mesh : all internal vertices are surrounded by

a costant number of elements.

• Semi-regular mesh is obtained by regular subdivision of an

irregular mesh: all the vertices are regular except for a small number

of extraordinary vertices

Mesh & Manifold

M is a piecewise

linear approximation

of M

M MM is a 2D-manifold of

arbitrary topology

embedded in R3

Manifold

2-manifold Not a manifold

Earth is an example of a 2-manifold

A topological space in which every point has a

neighborhood homeomorphic to (topological disc)

is called an n-dimensional (or n-) manifold

Triangle Mesh

A triangle mesh M consists of a geometric and a topological

component, where the latter can be represented by a graph

structure of the form (V,E,F) consisting of

Vertices

Edges

between two vertices

Faces

between edges

 1,.., vV N=

 (,) : ()j iE i j V V X N X=

 (, ,) : (,), (,), (,)F i j k V V V i j i k k j E=

Approximation Quality

• If a sufficiently smooth surface is approximated by a

piecewise linear function, the approximation error is of

the order O(h2), with h denoting the maximum edge

length.

• The actual magnitude of the approximation error

depends on the curvature of the underlying smooth

surface.

…..the error is reduced by a factor of about 1/4 ….
[Botsch et al.]

2D-manifold (Embedded surface)

◼ Boundaries of tangible physical objects are two-dimensional manifolds.

◼ They reside in (are embedded into, are subspaces of) the ambient

three-dimensional Euclidean space.

◼ Two-dimensional manifolds are also called embedded surfaces (or simply

surfaces).

◼ Can often be described by the map

◼ is a parameter domain.

◼ the map

is a global parameterization (embedding) of the manifold.

◼ Smooth global parameterization does not always exist or is easy to find.

2 3:S D R R →

()(,) (,) (,) (,)
T

S u v x u v y u v z u v=

2D R
D

v

x y

z

0

u

◼ The description of most manifolds requires more than

one parametric domain (more than one patch).

◼ A single patch is adequate for only the simplest

manifolds.

M M

Charts and atlases

Chart

M is a 2D manifold of arbitrary topology

embedded in R3.

A collection of charts

whose domains cover the

manifold is called an atlas

(,) AU

U

2:U R →A homeomorphism

from a neighborhood

to is called a chart
2R

M

M

2()U R

x U

U =

It is not generally possible to

describe a manifold with just one

chart

Charts and atlases

Manifolds with boundary

A topological space in which every

point has an open neighborhood

homeomorphic to either

◼ topological disc ; or

◼ topological half-disc

is called a manifold with boundary

Points with disc-like

neighborhood are called

interior, denoted by

Points with half-disc-like

neighborhood are called

boundary, denoted by

Int(X)

X

Int(X) X

Manifold meshes

A mesh is a 2-manifold if

◼ Neighborhood of each interior

vertex is homeomorphic to a disc

◼ Neighborhood of each boundary

vertex is homeomorphic to a half-disc

Two kinds of vertices

allowed:

Internal

Boundary

Non-manifold meshes

Edge shared by

four triangles

A triangle mesh is a 2-manifold if it

contains neither non-manifold

edges nor non-manifold vertices

nor self-intersections

• non-manifold edge has more

than two incident triangles

• non-manifold vertex is incident

to more than one fan of triangles

Representing meshes

• Discrete surface representation

• The mesh is a piece-wise planar approximation

obtained by gluing the polygonal faces together,

Connectivity (Topological) data

The mesh is a purely topological object and
does not contain any geometric properties

Geometric data

The geometric realization of the mesh is
defined by specifying the coordinates of the
vertices

Orientation data

3 for all iX R i V

Representing meshes

• Geometry:

– Vertex Coords

(x1, y1, z1)

(x2, y2, z2)

. . .

(xn, yn, zn)

• Orientation

– List of normals

• Connectivity

– List of triangles

(i1, j1, k1)

(i2, j2, k2)

. . .

(im, jm, km)

Example

Normal Vectors

▪ Local connectivity

Valence of a vertex: number of incident edges at a vertex

Vertex 1-ring

Face 1-ring

▪ Normal Computation

Face Normal

Vertex Normal

 () : (,)N i j V i j E V=

 () (, ,) : ,N f i j k F j k V T=

()

() ()
(, ,) ,

() ()

1
,

()

j i k i

f

j i k i

i
i i f

f N fi

X X X X
f i j k T n

X X X X

n
i V n average n n

N fn

− −
 = =

− −

 = =

Vertex Normal

Max-Nelson’s Method

Take into account the edge lengths

– N(i) number of edges that share the vertex

– (i+1) mod N(i) next edge after i

– Compute the normal vector of vertex i:

j j ie X X= −

1

2 2
()

1

1
,

()

j j

i

j N i
j j

e e
i V n

N f e e

+

+

 =

Connectivity matrix

(Discrete Laplacian matrix)

Connectivity graph can be

represented as a matrix L

with dimension Nv x Nv

1

(,) (neighbors)

0 otherwise

ij ij

i j

L i j E

− =

=

5

choice of weights λij

1 2 1 3 1 4 1 5

2 1 2 3 2 4

3 1 3 2 3 4 3 5

4 1 4 2 4 3

5 1 5 3

1

1 0

1

1 0

0 0 1

, , , ,

, , ,

, , , ,

, , ,

, ,

L

−

−
 −=

−
 −

Connectivity matrix

(Discrete Laplacian matrix)

5

choice of weights λij satisfying:

1 2 1 3 1 4 1 5

2 1 2 3 2 4

3 1 3 2 3 4 3 5

4 1 4 2 4 3

5 1 5 3

1

1 0

1

1 0

0 0 1

, , , ,

, , ,

, , , ,

, , ,

, ,

L

−

−
 −=

−
 −

, ,

, ,

()

,

0 , 1

i i i j

j i

i j i j

j N i

= −

 =

1

(,) (neighbors)

0 otherwise

ij ij

i j

L i j E

− =

=

◼ For a given point P each direction eϴ in the tangent

plane defines a curve C (normal section) as the

intersection between the plane containing N, eϴ and the

surface S

◼ Curves passing in different

directions have different values of

normal curvatures

Curvature on surface

() ,N N C =

C e =

P

TpS

N

For each direction , a curve C may have

a different normal curvature

◼ A point has

multiple curvatures!

◼ Principal curvatures

◼ Principal directions

Principal curvatures

pe T S

p S

1 2min (), max ()
p p

N N
e T S e T S

k k

= =

1 2arg min (), arg max ()
p p

N N
e T S e T S

e e

= =

() ,N N C =

◼ Mean curvature

◼ Gaussian curvature

Mean and Gaussian curvatures

1 2

1 2

1
()

2
H

K

= +

=

K determines if a surface is locally saddle (-) or locally convex (+)

hyperbolic point elliptic pointparabolic point

0K 0K 0K =

Discrete Mean Curvature

◼ Mean Curvature vector:

– unit surface normal

– (Scalar) Mean Curvature at v:

()

1
() (cot cot)

2
j j j

j N vv

H v v v
A

= + −

()

() 1
() () () (cot cot)()

2 2
j j j

j N vv

v
H v H v N v v v

A

−
= = = + −

()
()

()

H v
N v

H v
=()N v

Compute cot(α)

()

1 2

2 2 2

1 2 1 2

1 1 2 1

1
() (cot cot)()

2

cot

()

,

j j j

j N vv

i i i

H v v v
A

e e

e e e e

e v v e v v

+ +

= + −

=

−

= − = −

1e

2e

1iv +

: (cot() cot()) 0ij ij ij ijTheorem + +

Discrete Mean Curvature

False colors visualization

low curvature

high curvature

Discrete Gaussian Curvature

Gaussian Curvature at v:

where are the incident internal angles at v

– Measure of the distance of a surface (mesh) to a plane

– Depends on angles and lengths

– Zeros curvature in flat areas

()

1
(2)v j

j N vv

K
A

= −

v

j

v

Principal curvatures

2

1 H H K = + −

2

2 H H K = − −

Properties of a Mesh

• Solidity : a mesh represents a solid object if its faces together

enclose a positive and finite amount of space.

• Connectedness : A mesh is connected if an unbroken path

along polygon edges exists between any two vertices.

• Simplicity : A mesh is simple if the object it represents is solid

and has no holes through it ; that is, the object can be deformed

into a sphere without tearing. Genus = 0

• Convexity : The mesh represents a convex object if the line

connecting any two points within the object lies wholly inside the

object.

Surface Genus

In TOPOLOGY, the genus of a surface is

defined as the biggest number of simple, close

curves that can be drawn on the surface

without splitting it into two non-connected

parts

For orientable surfaces, the genus counts the

number of “handles or holes” of an object

Genere 0 Genere 1
genus 0 genus 1 genus 2

sphere of genus 0 torus of genus 1 double torus of genus 2

Euler’s formula for a mesh

without boundaries
Euler’s formula provides a fundamental relationship between

the number of faces, edges, and vertices for polyhedral in a
closed and connected (but otherwise unstructured) mesh.

For a mesh that is not simple:

is the Euler Characteristic and g is the GENUS

through the polyhedron.

For a simple, solid, connected mesh:

2V E T = − + =

2(1)V E T g = − + = −

()??cube

Euler’s formula for mesh

with Boundaries

|B| # of boundaries

Example:

Genus = 1-(4-5+2+1)/2
= 0

Triangle Meshes with v vertices have about 2v face and 3v edges

2(1)V E T B g = − + + = −

.obj Mesh format file

• Popular file format

– VRML, Wavefront, etc.

• Ordered list of vertices

– Prefaced by “v” (Wavefront)

– Spatial coordinates x,y,z

– Index given by order

• List of polygons

– Prefaced by “f” (Wavefront)

– Ordered list of vertex indices

– Length = # of sides

– Orientation given by order

v x0 y0 z0

v x1 y1 z1

v x2 y2 z2

v x3 y3 z3

f 0 1 2

f 1 3 2

(x0,y0,z0)
(x1,y1,z1)

(x2,y2,z2)
(x3,y3,z3)

Other Attributes

• Vertex normals
– Prefixed w/ “vn” (Wavefront)

– Contains x,y,z of normal

– Not necessarily unit length

– Not necessarily in vertex order

– Indexed as with vertices

• Texture coordinates
– Prefixed with “vt” (Wavefront)

– Not necessarily in vertex order

– Contains u,v surface parameters

• Faces
– Uses “/” to separate indices

– Vertex “/” normal “/” texture

– Normal and texture optional

– Can eliminate normal with “//”

v x0 y0 z0

v x1 y1 z1

v x2 y2 z2

vn a0 b0 c0

vn a1 b1 c1

vn a2 b2 c2

vt u0 v0

vt u1 v1

vt u2 v2

(x0,y0,z0)

(a0,b0,c0)

(u0,v0)

(x1,y1,z1)

(a1,b1,c1)

(u1,v1)

(x2,y2,z2)

(a2,b2,c2)

(u2,v2)

f 0/0/0 1/1/1 2/2/2 f 0/0/0 1/0/1 2/0/2

Format file .obj (Wavefront)

v x,y,z vertex

f v1 v2 v3 face

comment

TRI/QUAD Face

v1

v2

v4 v3

.obj formato file: tetraedral mesh

v 1.0 0.0 0.0

v 0.0 1.0 0.0

v 0.0 0.0 1.0

v 0.0 0.0 0.0

f 2 4 3

f 4 2 1

f 1 2 3

f 1 3 4

Some applications support vertex colors, by putting

red, green and blue values after x y and z.

Mesh: orientation

• Given by the order of the vertices in a

face

• Every poly has counterclockwise

outline

Mesh Orientation checking

• If the orientation for an edge is the

same for both polys sharing it, then

flip the poly outline

v0 v1

v2 v3

OK

KO

F v0 v1 v2

F v0 v2 v1

v1

v2

v0

v3

F v0 v1 v2

F v1 v3 v2

Definition
1-ring neighborhood N(i)

Faces/vertices adjacent at vertex i

Valence of a vertex

Number of incident edges at a vertex

Common Mesh Operations

• Direct Access to the elements

• Ordered Access to the elements – From an initial elements

walk through the mesh elements by adjacent elements (i.e.

along edges, faces, …)

• Topological Relations – given a face, find out its edges and its

vertices. Given a vertex which is the set of incidents elements.

• Edge Split

Adds a vertex to get four

triangles

• Edge collapse

Removes an edge

Removes a vertex

• Edge Flip

Flip an edge

– beware of valence three

Additional operations

Winged-Edge data structure

• vertex

– 1 pointer to one edge

• edge pointers to

– 2 endpoint vertices

– 2 faces that share edge

– 4 edges emanating from its endpoints

• face

– 1 pointer to one edge

Halfedge data structure

• vertex

– 1 pointer to halfedge

• halfedge pointers to

– 1 incident vertex

– 1 incident face

– 1, 2, or 3 halfedges (prec.,next.,opposite)

• face

– 1 halfedge (random)

Geometry Mesh

Processing

Geometry Processing

Pipeline

scan

process

print

Outline

▪ Reconstruction

▪ Simplification

▪ Parameterization

▪ Remeshing

▪ Smoothing/Fairing

▪ Deformation/Editing

▪ Shape Analysis

Outline

▪ Reconstruction

▪ Simplification

▪ Parameterization

▪ Remeshing

▪ Smoothing/Fairing

▪ Deformation/Editing

▪ Shape Analysis

Original

irregular

uniform adapted semi-regular

Outline

▪ Reconstrction

▪ Simplification

▪ Parameterization

▪ Remeshing

▪ Smoothing/Fairing

▪ Deformation/Editing

▪ Shape Analysis

[Botsch and Sorkine]

Outline

▪ Reconstrction

▪ Simplification

▪ Parameterization

▪ Remeshing

▪ Smoothing/Fairing

▪ Deformation/Editing

▪ Shape Analysis
• Identify/understand important semantic features

• segmentation, correspondence, symmetry detection, ...

Outline

▪ Reconstruction

▪ Simplification

▪ Parameterization

▪ Remeshing

▪ Smoothing/Fairing

▪ Deformation/Editing

Mesh Optimization

PROBLEM:

the number of required polys to efficiently represent a

complex object is huge and redundant.

SOLUTION: optimize the mesh preserving its topology

• Produce approximations with fewer triangles

– should be as similar as possible to original

– want computationally efficient process

• Speed up Rendering

• Less storage

• Easier processing

Applications

70000 faces H.Hoppe

Oversampled 3D scan data

Applications

• Level of detail hierarchies

Vertices: 81457

Faces:162910

Vertices 60K Vertices:17K Vertices: 400

Applications
Adaptation to hardware capabilities

Kobbelt,Botsch,2008

What makes a “good” mesh?

• Good approximation of original shape!

• Keep only elements that contribute information

about shape

• Add additional information where, e.g., curvature

is large

What else

makes a “good” triangle mesh?
• Another rule: triangle shape

“GOOD” “BAD”

• E.g., all angles close to 60 degrees

• More sophisticated condition: Delaunay

• Can help w/ numerical accuracy/stability

• Tradeoffs w/ good geometric approximation*

*See Shewchuk, “What is a Good Linear Element”

What else

constitutes a good mesh?
• Another rule: regular vertex degree

E.g., valence 6 for triangle meshes (equilateral)

• Why? Better polygon shape, important for (e.g.) subdivision:

• FACT: Can’t have perfect valence everywhere!

Mesh Optimization

Most common kinds of optimization methods:

1) Vertex clustering decimation

2) Incremental Decimation

PROBLEM STATEMENT:

Given: 3D model M = (V, E,F)

Point samples V={Pi}, Mesh connectivity F={Tj}

Find: 3D model M’ = (V’, F’) such that

– # V’ << #V

– ||M – M’|| < ε

Incremental mesh Decimation

(data reduction)
ALGORITHM:

Input M (original model)

For each geometric item (edge/face)

– rank all geometric item with some cost metric

– sort for increasing cost

Repeat

• contract minimum cost geometric item by

decimation

• update geometric item list of costs

until (no further reduction possible)

Output M’ (simplified model)

Decimation Operators:

vertex remove

Remove of the vertex

▪ Remove associated triangles

▪ Triangulate the hole

Decimation Operators:

edge collapse
Edge collapse: (v1,v2) v (based on appropriate rule like average)

removes:

• 1 vertex

• 3 edges

• 2 triangles

V’

Vertex split:

Dual of edge

collapse, adds 2

triangles

v2v1

Edge collapse

Vertex Split

v

Quadric Error Metric
Garland & Heckbert, SIGGRAPH 97 (DirectX)

• Based on point-to-plane distance

• The set of planes at a vertex is initialized to be the

planes of the triangles that meet at that vertex.

v

Quadric Error Metric

• The error of the vertex v with respect to the set

of planes is the sum of squared distances from

vertex to planes:

Signed distance to plane:

2(,)

1

(,)

v

p

T

Dist v p

x a

y b
v p

z c

d

Dist v p ax by cz d p v

 =

 = =

= + + + =

Quadric Error Metric

• Compute Q(p) for each triangle (distance to plane p)

• Set Q at each vertex to sum of Qs from incident

triangles

Error metric rewritten as a quadratic form:

symmetric 4x4 matrix Q

multiplied twice by a vector

2

()

(v)T

v

p

T T

p

T p

p

T

p

v pp v

v Q v

v Qv

 =

=

=

=

2

2

()

2

2

p

a ab ac ad

ab b bc bd
Q

ac bc c cd

ad bd cd d

 =

Using Quadrics

• Approximate error of edge collapses

– Each vertex v has associated quadric Q

– Error of collapsing v1 and v2 to v3 is

v3
TQ1v3 + v3

TQ2 v3

– Quadric for new vertex v3 is Q3=Q1+Q2

 0, 1,2i i iv Q v i= =

2v1v

Using Quadrics

Find optimal location v3 after collapse:

• How do we find a critical point (min/max/saddle)?

• Set derivative to zero!

• matrix Q is positive-definite → min

3

11 12 13 14

12 11 23 24

3

13 23 33 34

14 24 34 44

3 3 3min : 0T

v

q q q q

q q q q
Q

q q q q

q q q q

v Q v
x y z

 =

= = =

Using Quadrics

Find optimal location v3 after collapse:

11 12 13 14

12 11 23 24

3 3 3

13 23 33 34

0

0

0

0 0 0 1 1

q q q q

q q q q
Q v v

q q q q

 = =

1

11 12 13 14

12 11 23 24

3

13 23 33 34

0

0

0

0 0 0 1 1

q q q q

q q q q
v

q q q q

−

 =

Incremental mesh Decimation

(with Quadric Error Metric)
ALGORITHM: INPUT: the original model

• Compute the Q matrices for all the initial vertices

For each edge

• Compute the optimal contraction target v for each edge

(v1,v2). The error vT(Q1+Q2) v of this target vertex

becomes the cost of collapsing that edge.

Sort for increasing cost

Repeat

• Edge collapse the minimum cost edge (vi,vj)

(decimation) to get new vertex v

• add Qi and Qj to get quadric Qv at v

• update cost of edges touching v

until (no further reduction possible)

Results: Quadric Visualization

Original

1k tris 100 tris

Quadrics

• Ellipsoids: iso-error surfaces

• Smaller ellipsoid = greater error

Progressive Mesh Algorithm
(Hoppe 1996)

Finest mesh Mn
Coarsest

mesh M0

Edge collapse
Edge collapse

Vertex split Vertex split

f1
f2

Mf Mc

Vertex split: aggiunta di un vertice

Edge collapse

Reversible :

store

edge collapses

in a ordered list

Progressive Mesh (Hoppe)

• Store edge collapses in a ordered list (decreasing edge

collapsing (ecol) cost)

• Iteratively process a decimation of minimum cost and

recompute the list of costs for neighbors

• An edge collapse is ok only if it does not change the mesh

topology

13,546 500 152 150 faces

M0M1M175

ecol0ecoliecoln-1

Mn

Applications

Mesh simplification applied to ..

❑ LOD Approximation

❑ Progressive Transmission

❑ Mesh compression

❑ Selective Refinement

LOD Approximation

Create meshes at different Level of Detail (LOD)

LOD Approximation

Need Multiresolution Models
• Context dictates required detail

– LOD should vary with context

10,108 polys 1,383 polys 474 polys 46 polys

Courtesy IBM

Overhead

Example: obj with 10000T viewer near the object, if the object is far away

(covers10x5 pixels) use a simplified model with 100 T

need high detail near the viewer
need less detail far away

LOD

• LOD of parametric surfaces:

Bézier patches, spline and subdivision have a natural
LOD on discrete parametric domain.Different LODs are
given by the resolution of the tessellation

• LOD of meshes:

ALGORITHM:

– Generation: Given a model, build a set of

approximations can be produced by any simplification

system

– Selection: at run time, simply select which to render

– Switching: Inter-frame switching from a LOD to the
next

LOD switching
• Discrete geometry LOD

– Switch from a LOD at frame i to the next LOD at frame i+1

– Causes popping

• Blend LOD

– Transition from LOD 1 to LOD2 in FB. If LOD1 is the current

LOD then draw LOD1 in z-buffer and color buffer with alpha =1

(opacity)

– Draw LOD2 in FB with alpha =0 (trasparency)

– LOD2 appears incrementing alpha from 0 to 1

– When LOD2 is visualized (alpha =1) LOD1 start to disappear

(alpha decreases to 0)

– Inbetween both LODs are rendered overlapped

– No popping, it works in hardware

LOD selection

Evaluate a criterium based on point of view and

object position, choose a suitable LOD

• Range-based

– Distance from point of view

– Each LOD is associated with a distance range

(LOD0 more detailed associated with [0,r1])

LOD0 LOD1 LOD2

r1 r2 r3

LOD selection

Polygon at

double distance

•Projected area based

–Projected Area from bounding volume of the object (eg.sphere)

–Sphere center c radius r, camera at v, direction vector d,

–n distance camera-near plane

La dimensione è dimezzata al raddoppiare della distanza

2

()

projection area

nr
p

d c v
=

 −
Radius projected sphere

Projection

plane

v

3D Data (Mesh) Compression

Different needs:

Lossy…

o Lossless?

Games Virtual malls

Medical Engineering Topography

Mesh compression

…01101101100010…

Not only the number of polys is

reduced, also the storage for

each LOD model is compressed.

M0 (Original) + vertex split records

Progressive transmission

The user waits for the entire transmission time in order to visualize the

entire object,

Single-rate…

or Progressive?

The user sees a first grasp of the object very early during the transmission.
T r a n s m i s s i o n

Coarse mesh +Database edge-collapse (compresses)
APPLY REVERSIBLE DECIMATIONS

Selective Refinement

• We may need varying

LOD over surface:

– large surface, oblique

view (eg. on terrain)
• high detail near the viewer
• less detail far away

– single LOD will be

inappropriate
• either excessively detailed

in the distance (wasteful)
• or insufficiently detailed

near viewer (visual
artifacts)

Selective Refinement for

territorial models
▪ Find a base mesh

▪ Subdivide recursively

the base mesh to

approximate the original

mesh

The closer part of the terrain is rendered to higher

resolution

Outline

▪ Reconstruction

▪ Simplification

▪ Parameterization

▪ Remeshing

▪ Smoothing/Fairing

▪ Deformation/Editing

▪ Shape Analysis

• surface

• parameter domain

• mapping and

Parameterization

A parameterization is a bijective mapping between a surface

and a parameter domain

u

v

Mesh Parameterization

3D space (x,y,z)
2D parameter domain

boundary

boundary

u

v

Applications - Texture mapping

Applications - Remeshing

Pierre Alliez

Desirable Properties

T
f

• Bijective function f (1-1 and onto): No triangles fold over.

• Minimal “distortion”

– Preserve 3D angles (conformal)

– Preserve 3D lengths (isometric)

– Preserve 3D areas (equiareal)

– No “stretch”

• Efficiently computable

Definitions

f

• f is isometric (length preserving), if the length of

any arc on S is the same as that of its pre-image on Ω.

• f is conformal (angle preserving), if the angle of

intersection of every pair of intersecting arcs on S* is the same

as that of the corresponding preimages on Ω.

• f is equiareal (area preserving) if every part of Ω

is mapped onto a part of S* with the same area

T

Distortion is (almost) Inevitable

• Theorema Egregium (C. F. Gauß)

“A general surface cannot be parameterized

without distortion.”

• no distortion = conformal + equiareal = isometric

• requires surface to be developable

– planes

– cones

– cylinders

Genus=0, with boundary

objects with disk topology

Cutting

• Introduce cuts on the mesh

Mario Botsch, Bielefeld Graphics & Geometry

UNFOLDING the word

Barycentric mapping theorem (Tutte)

Given a triangulated surface homeomorphic to a disk, if the

(u,v) coordinates at the boundary vertices lie on a convex

polygon, and if the coordinates of the internal vertices

are a convex combination of their neighbors, then the

(u,v) coordinates form a valid parametrization (without self-

intersection).

v1, v2, …, vn ; vn+1, …, vN

inner vertices boundary vertices

Convex combination maps
(Tutte-Floater)

Eck, DeRose, Duchamp, Hoppe, Lounsbery, Stuetzle: Multiresolution Analysis of Arbitrary Meshes, SIGGRAPH, 1995

Triangle Mesh Parameterization
Convex combination maps (Tutte-Floater)

• Works for meshes equivalent to a disk

• Algorithm:

– First, we map the 3D boundary to a 2D convex polygon

– Then we compute the inner vertices positions

{ (v1 ,u1), (v2 ,u2), …, (vn ,un)} { (vn+1 ,un+1), …, (vN ,uN)}

(V,U) inner vertices (VB,UB) boundary vertices

xi = (vi , ui)

coordinates of

parameter

points

Compute the inner vertices

• We constrain each inner vertex to be a weighted

average of its neighbors:

• with weights

,

()

1, 2, ,i i j j

j N i

x x , i n

= =

,

, ,

,

()

0 if (,) are not neighbors

0 if (,) (neighbors)

,

1

i j

i i i j

j i

i j

j N i

i j

i j E

= −

 =

i,j

xi

xj

Linear systems of equations

unknown param

(

eter poin

(

t

,

)

, ,

()\)

fixed (r)s

1, 2, ,

1, 2, ,

i

i i j j

j N i

i i j j i k k

j N i B k N i B

x x 0, i n

x x x , i n

− = =

− = =

1 1

1

5

1 1
1 1

2 2

4

1

1

1

1

d, j , j

, j

n nn , j

L

x r

x r

x r

−

− −

 =

−
 −

solve the linear system :

1 1

1

5

1 1
1 1

2 2

4

1

1

1

1

d, j , j

, j

n nn , j

L

x r

x r

x r

− −
 − −
 − =

 −−

Linear system of equations

• matrix L is

– sparse

– diagonally dominant

– nonsingular

• A unique solution always exists

• Important: the solution is legal (bijective)

• The system is sparse, thus fast numerical solution is

possible

• Numerical problems (because the vertices in the middle

might get very dense…)

i i i

B B

x (u ,v)

LU U and LV V

=

= =

• solve system twice

Choice of Weights

The weights are given by

, , ,

1
(cot cot)

2
i j i j i j

iA
 = +

• Uniform /Barycentric (Tutte)

• Discrete

harmonic

• Mean value
, ,

,

1
(tan() tan())

2 2

i j i j

i j

i jX X

 = +

−

,

1
i j

id
 =

, ,(), 1i j i iL = = −

Discrete Laplacian

di valence of vertex i

normalization

,

,

,()

i j

i j

i kk N i

=

Convex Combination Maps

• Comparison

Original

mesh

Barycentric Discrete

Harmonic

mean

value

Texture mapping applications

Texture map

Tutte Shape-preserving Conformal

Stretch

minimization
(S. Yoshizawa , 2004)

Iterative algorithm to correct the weights

• Initialize:

convex map

• STEP k:

– Update λi,j w.r.t. stretch σj in Xj

– Solve the new LS

• Stopping when the global stretch
energy stops decreases

Texture Atlas Generation

Split model into number of patches (atlas)

– because higher genus models cannot be mapped

onto plane and/or

– because distortion will be too high eventually

Levy, Petitjean, Ray, Maillot: Least Squares Conformal Maps for Automatic Texture Atlas Generation, SIGGRAPH, 2002

Constrained Parameterizations

Levy: Constraint Texture Mapping, SIGGRAPH, 2001

Outline

▪ Recnstruction

▪ Simplification

▪ Parameterization

▪ Remeshing

▪ Smoothing/Fairing

▪ Deformation/Editing

▪ Shape Analysis

Surface fairing

0

(, ,)

X X E

X x y z

= +

=

= +

Mesh Fairing

Fairness: low variation in curvature.

Move vertices to achieve - Mesh topology stays the same.

M a piecewise linear

approximation of M,

X is a surface

parameterization

of S

X is the vertex set

of M

M M

Surface Fairing

• A surface smoothing method, named

fairing, removes undesirable noise and

uneven edges from discrete surfaces.

• Extend the low-pass filter in image processing

▪ Idea: a low pass filter corresponds to diffusion
flow.

0 noisy image
u

u u
t

= =

()

t
u(t) G u=

2
0 2t =

[heat equation = Gaussian filter Witkin-Koenderink ‘83-84]

Image Denoising by

linear diffusion flow

Diffusion Flow on Meshes

s

X
X

t

=

s

X
HN X

t

= − =

1) Mean Curvature Flow (MCF)

(X)s

X
H

t

=

2) Surface Diffusion Flow

0 0

0() , S t

X
X f X X X

t
 =

= + − =

3) MCF + data fidelity

Noisy mesh

and its curvature

map

SDF

igea 268K faces

MCF

Discrete diffusion flow on mesh

• Considering a uniform discretization of the time interval

[0, T], T > 0, and using a temporal time step t,

• the approximation of an evolving surface at the n-th time

step is denoted by a spatial position vector Xn

• (connectivity matrix) represents the

discrete Laplace-Beltrami operator

In matrix vector form

1n nX X X

t t

+ −

M X L X

V VN N
L R

Discrete diffusion flow on mesh

• Considering a uniform discretization of the time interval

[0, T], T > 0, and using a temporal time step t, the

approximation of an evolving surface at the n-th time

step by MCF

• Given the position vector Xn we get Xn+1 by applying

explicit schemes:

• or implicit schemes

where L represents the discrete Laplace-Beltrami operator

1n n n nX X L Xt+ = +

1()n n nI L X Xt +− =

s

X
X

t

=

Initial Mesh umbrella operator Fujiwara operator

Desbrun et al., Siggraph 1999 Desbrun et al., Siggraph 1999

Laplace Beltrami operator applied to

the coordinate function X = (x,y,z)

Discrete Laplacian

Note that since the Laplacian measures the

difference between a vertex and the average

values of its neighbors, we expect that is

equal to zero on constant functions c, so:

0Lc =

Results of applying umbrella weights on the left and

cotangent weights on the right.

Material
Level Set Methods and Dynamic

Implicit Surfaces

Stanley Osher & Ronald Fedkiw

Series: Applied Mathematical Sciences,

Vol. 153 Springer, 2003

ISBN-10: 0-387-95482-1

ISBN-13: 978-0-387-95482-0

Polygon Mesh Processing

Mario Botsch, Leif Kobbelt

Mark Pauly, Pierre Alliez, Bruno Levy

A K Peters, Ltd.

Natick, Massachusetts 2008

ISBN 978-1-56881-426-1

Serena Morigi
Dipartimento di Matematica

serena.morigi@unibo.it

http://www.dm.unibo.it/morigi

mailto:serena.morigi@unibo.it

