
Polygonal Mesh
▪ Representation and properties

▪ Data Structure

▪ Simplification, compression, LOD

▪ Parametrization, Fairing



Polygonal Mesh 
Polygonal meshes are simply 

collections of polygons, or 

“faces,” that together form the 

“skin” of an object. They have 

become a standard way of 

representing a broad class of 

shapes in graphics.

78K vertices

160K triangle

ACCURACY

vs.

SPEED 4 vertices

4 triangles



Complex meshes in CG..

860,000 facce

H.Hoppe



Complex meshes in art…

[Digital Michelangelo Project, 2000]

2,000,000,000

faces

Objectives:

- rendering

- storage

- transmission

- scalability



Courtesy General Dynamics, Electric Boat Div.

Complex meshes in CAD

• Submarine

Auxiliary 

Machine

Room 

• 500,000

polygons



Meshes in medical imaging...

Visible-body: 512x512x1734 punti



Complex meshes for terrain

topography



Territorial Data: special meshes

16K x 16K vertices

~537 milion of triangles

View-dependent,

Geometric model + 

bump (texture) mapping



Height field

Visualize the explicit function: 
z = f(x,y)

A height field is defined on a 
regular grid of quotes  

h : [0, N - 1]2 → R, 

where  N is huge

Store the height 

as an image (i.e. Format gif) 



Geometry images

Surface

Geometry image
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.obj from google earth



Height field as a TIN

Alternatively, a height 
field is stored as 

triangular irregular 
networks (TIN) or 
mesh: a vector-based 
representation of a 
surface

use an optimal 
number of polygons to 
approximate a surface 
to a given level of 
detail and accuracy



Mesh generation

• Mesh from points:

triangulation or tetraedralization

▪ Sampling by a digitizer

▪ Reconstruction from multiple views

▪ 3D Scanner 

▪ Territorial models

• Mesh from surfaces: tessellation (for surface rendering)

• Mesh from data volumes:  polygonalization

▪ Volumetric data (isosurfacing: extract a surface of 

constant value through the volume)



Mesh representation

• Structured (regular) mesh : all internal vertices are surrounded by 

a costant number of elements.

• Semi-regular mesh is obtained by regular subdivision of an 

irregular mesh: all the vertices are regular except for a small number

of extraordinary vertices



Mesh & Manifold

M is a piecewise 

linear approximation 

of M

M MM is a 2D-manifold of 

arbitrary topology 

embedded in R3



Manifold

2-manifold Not a manifold

Earth is an example of a 2-manifold

A topological space in which every point has a 

neighborhood homeomorphic to     (topological disc) 

is called an n-dimensional (or n-) manifold



Triangle Mesh

A triangle mesh M consists of a geometric and a topological 

component, where the latter can be represented by a graph 

structure of the form (V,E,F)  consisting of

Vertices

Edges

between two vertices

Faces

between edges

 1,.., vV N=

 ( , ) : ( )j iE i j V V X N X=   

 ( , , ) : ( , ), ( , ), ( , )F i j k V V V i j i k k j E=    



Approximation Quality

• If a sufficiently smooth surface is approximated by a 

piecewise linear function, the approximation error is of 

the order O(h2), with h denoting the maximum edge 

length.

• The actual magnitude of the approximation error

depends on the curvature of the underlying smooth

surface.

…..the error is reduced by a factor of about 1/4 ….
[Botsch et al.]



2D-manifold (Embedded surface)

◼ Boundaries of tangible physical objects are two-dimensional manifolds.

◼ They reside in (are embedded into, are subspaces of) the ambient 

three-dimensional Euclidean space.

◼ Two-dimensional manifolds are also called embedded surfaces (or simply 

surfaces).

◼ Can often be described by the map                                                

◼ is a parameter domain.

◼ the map                                    

is a global parameterization (embedding) of   the manifold.

◼ Smooth global parameterization does not always exist or is easy to find.

2 3:S D R R →

( )( , ) ( , ) ( , ) ( , )
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◼ The description of most manifolds requires more than 

one parametric domain (more than one patch).

◼ A single patch is adequate for only the simplest 

manifolds.

M M



Charts and atlases

Chart

M is a 2D manifold of arbitrary topology 

embedded in R3.

A collection of charts

whose domains cover the

manifold is called an atlas

( , ) AU  

U 

2:U R →A homeomorphism

from a neighborhood

to is called a chart
2R

M

M

2( )U R 

x U

U =

It is not generally possible to 

describe a manifold with just one 

chart



Charts and atlases



Manifolds with boundary

A topological space in which every

point has an open neighborhood

homeomorphic to either

◼ topological disc       ; or

◼ topological half-disc

is called a manifold with boundary

Points with disc-like

neighborhood are called

interior, denoted by

Points with half-disc-like

neighborhood are called

boundary, denoted by

Int(X)

X

Int(X) X



Manifold meshes

A mesh is a 2-manifold if 

◼ Neighborhood of each interior

vertex is homeomorphic to a disc

◼ Neighborhood of each boundary 

vertex is homeomorphic to a half-disc

Two kinds of vertices 

allowed:

Internal

Boundary



Non-manifold meshes

Edge shared by

four triangles

A triangle mesh is a 2-manifold if it 

contains neither non-manifold 

edges nor non-manifold vertices 

nor self-intersections

• non-manifold edge has more 

than two incident triangles 

• non-manifold vertex is incident 

to more than one fan of triangles 



Representing meshes

• Discrete surface representation

• The mesh is a piece-wise planar approximation 

obtained by gluing the polygonal faces together,

Connectivity (Topological) data

The mesh is a purely topological object and 
does not contain any geometric properties

Geometric data

The geometric realization of the mesh is 
defined by specifying the coordinates of the 
vertices 

Orientation data

3  for all iX R i V 



Representing meshes

• Geometry:

– Vertex Coords

(x1, y1, z1)

(x2, y2, z2)

.    .    .

(xn, yn, zn)

• Orientation

– List of normals

• Connectivity 

– List of triangles

(i1, j1, k1)

(i2, j2, k2)

.    .    .

(im, jm, km)



Example



Normal Vectors

▪ Local connectivity

Valence of a vertex: number of incident edges at a vertex

Vertex 1-ring

Face 1-ring 

▪ Normal Computation

Face Normal

Vertex Normal
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Vertex Normal

Max-Nelson’s Method 

Take into account the edge lengths

– N(i) number of edges that share the vertex

– (i+1) mod N(i) next edge after i

– Compute the normal vector of vertex i:
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Connectivity matrix

(Discrete Laplacian matrix)

Connectivity graph can be 

represented as a matrix L 

with dimension Nv x Nv
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Connectivity matrix

(Discrete Laplacian matrix)

5

choice of weights λij satisfying:
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◼ For a given point P each direction eϴ in the tangent 

plane defines a curve C (normal section) as the 

intersection between the plane containing N, eϴ and the 

surface S

◼ Curves passing in different 

directions have different values of

normal curvatures

Curvature on surface

( ) ,N N C  =

C e =

P

TpS

N



For each direction , a curve C may have

a different normal curvature

◼ A point              has 

multiple curvatures!

◼ Principal curvatures

◼ Principal directions

Principal curvatures
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◼ Mean curvature

◼ Gaussian curvature

Mean and Gaussian curvatures

1 2

1 2
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2
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K determines if a surface is locally saddle (-) or locally convex (+)

hyperbolic point elliptic pointparabolic point

0K  0K 0K =



Discrete Mean Curvature

◼ Mean Curvature vector: 

– unit surface normal 

– (Scalar) Mean Curvature at v:
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Compute cot(α)
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Discrete Mean Curvature

False colors visualization

low curvature

high curvature



Discrete  Gaussian Curvature

Gaussian Curvature at v:

where are the incident internal angles at v

– Measure of the distance of a surface (mesh) to a plane

– Depends on angles and lengths

– Zeros curvature in flat areas
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Principal curvatures

2

1 H H K = + −

2

2 H H K = − −



Properties of  a Mesh

• Solidity : a mesh represents a solid object if its faces together 

enclose a positive and finite amount of space.

• Connectedness : A mesh is connected if an unbroken path 

along polygon edges exists between any two vertices.

• Simplicity : A mesh is simple if the object it represents is solid 

and has no holes through it ; that is, the object can be deformed 

into a sphere without tearing. Genus = 0

• Convexity : The mesh represents a convex object if the line 

connecting any two points within the object lies wholly inside the 

object.



Surface Genus 

In TOPOLOGY, the genus of a surface is

defined as the biggest number of simple, close

curves that can be drawn on the surface

without splitting it into two non-connected

parts

For orientable surfaces, the genus counts the

number of “handles or holes” of an object

Genere 0                        Genere 1
genus 0 genus 1 genus 2

sphere of genus 0              torus of genus 1                       double torus of genus 2



Euler’s formula for a mesh 

without boundaries
Euler’s formula provides a fundamental relationship between 

the number of faces, edges, and vertices for polyhedral in a 
closed and connected (but otherwise unstructured) mesh.

For a mesh that is not simple:

is the Euler Characteristic and g is the GENUS 

through the polyhedron.

For a simple, solid, connected mesh:

2V E T = − + =

2(1 )V E T g = − + = −

( )??cube



Euler’s formula for mesh 

with Boundaries

|B|  # of boundaries

Example:

Genus = 1-(4-5+2+1)/2
= 0

Triangle Meshes with v vertices have about 2v face and 3v edges

2(1 )V E T B g = − + + = −



.obj Mesh format file

• Popular file format

– VRML, Wavefront, etc.

• Ordered list of vertices

– Prefaced by “v” (Wavefront)

– Spatial coordinates x,y,z

– Index given by order

• List of polygons

– Prefaced by “f” (Wavefront)

– Ordered list of vertex indices

– Length = # of sides

– Orientation given by order

v x0 y0 z0

v x1 y1 z1

v x2 y2 z2

v x3 y3 z3

f 0 1 2

f 1 3 2

(x0,y0,z0)
(x1,y1,z1)

(x2,y2,z2)
(x3,y3,z3)



Other Attributes

• Vertex normals
– Prefixed w/ “vn” (Wavefront)

– Contains x,y,z of normal

– Not necessarily unit length

– Not necessarily in vertex order

– Indexed as with vertices

• Texture coordinates
– Prefixed with “vt” (Wavefront)

– Not necessarily in vertex order

– Contains u,v surface parameters

• Faces
– Uses “/” to separate indices

– Vertex “/” normal “/” texture

– Normal and texture optional

– Can eliminate normal with “//”

v x0 y0 z0

v x1 y1 z1

v x2 y2 z2

vn a0 b0 c0

vn a1 b1 c1

vn a2 b2 c2

vt u0 v0

vt u1 v1

vt u2 v2

(x0,y0,z0)

(a0,b0,c0)

(u0,v0)

(x1,y1,z1)

(a1,b1,c1)

(u1,v1)

(x2,y2,z2)

(a2,b2,c2)

(u2,v2)

f 0/0/0 1/1/1 2/2/2 f 0/0/0 1/0/1 2/0/2



Format file .obj (Wavefront)

v x,y,z        vertex

f v1 v2 v3    face

# comment

TRI/QUAD Face 

v1

v2

v4 v3

# .obj formato file:  tetraedral mesh

v 1.0 0.0 0.0

v 0.0 1.0 0.0

v 0.0 0.0 1.0

v 0.0 0.0 0.0

f 2 4 3 

f 4 2 1

f 1 2 3

f 1 3 4

Some applications support vertex colors, by putting 

red, green and blue values after x y and z.



Mesh: orientation

• Given by the order of the vertices in a 

face

• Every poly has counterclockwise 

outline

Mesh Orientation checking

• If the orientation for an edge is the 

same for both polys sharing it, then 

flip the poly outline

v0 v1

v2 v3

OK

KO

F v0 v1 v2

F v0 v2 v1

v1

v2

v0

v3

F v0 v1 v2

F v1 v3 v2



Definition
1-ring neighborhood   N(i)

Faces/vertices adjacent at vertex i

Valence of a vertex

Number of incident edges at a vertex

Common Mesh Operations

• Direct Access to the elements

• Ordered Access to the elements – From an initial elements 

walk through the mesh elements by adjacent elements (i.e. 

along edges, faces, …)

• Topological Relations – given a face, find out its edges and its 

vertices. Given a vertex which is the set of incidents elements.



• Edge Split

Adds a vertex to get four

triangles

• Edge collapse

Removes an edge

Removes a vertex

• Edge Flip

Flip an edge

– beware of valence three

Additional operations



Winged-Edge data structure

• vertex

– 1 pointer to one edge

• edge pointers to

– 2 endpoint vertices

– 2 faces that share edge

– 4 edges emanating from its endpoints

• face

– 1 pointer to one edge



Halfedge data structure

• vertex

– 1 pointer to halfedge

• halfedge pointers to

– 1 incident vertex

– 1 incident face

– 1, 2, or 3 halfedges (prec.,next.,opposite)

• face

– 1 halfedge (random)



Geometry Mesh 

Processing



Geometry Processing 

Pipeline

scan

process

print



Outline

▪ Reconstruction

▪ Simplification

▪ Parameterization 

▪ Remeshing

▪ Smoothing/Fairing

▪ Deformation/Editing

▪ Shape Analysis



Outline

▪ Reconstruction

▪ Simplification

▪ Parameterization 

▪ Remeshing

▪ Smoothing/Fairing

▪ Deformation/Editing

▪ Shape Analysis

Original

irregular

uniform adapted semi-regular



Outline

▪ Reconstrction

▪ Simplification

▪ Parameterization 

▪ Remeshing

▪ Smoothing/Fairing

▪ Deformation/Editing

▪ Shape Analysis

[Botsch and Sorkine]



Outline

▪ Reconstrction

▪ Simplification

▪ Parameterization 

▪ Remeshing

▪ Smoothing/Fairing

▪ Deformation/Editing

▪ Shape Analysis
• Identify/understand important semantic features

• segmentation, correspondence, symmetry detection, ...



Outline

▪ Reconstruction

▪ Simplification

▪ Parameterization 

▪ Remeshing

▪ Smoothing/Fairing

▪ Deformation/Editing



Mesh Optimization

PROBLEM:  

the number of required polys to efficiently represent a 

complex object is huge and redundant.

SOLUTION: optimize the mesh preserving its topology

• Produce approximations with fewer triangles

– should be as similar as possible to original

– want computationally efficient process

• Speed up Rendering 

• Less storage

• Easier processing



Applications

70000 faces H.Hoppe

Oversampled 3D scan data



Applications

• Level of detail hierarchies

Vertices: 81457

Faces:162910

Vertices 60K Vertices:17K Vertices: 400



Applications
Adaptation to hardware capabilities

Kobbelt,Botsch,2008



What makes a “good” mesh?

• Good approximation of original shape!

• Keep only elements that contribute information 

about shape

• Add additional information where, e.g., curvature 

is large



What else 

makes a “good” triangle mesh?
• Another rule: triangle shape

“GOOD” “BAD”

• E.g., all angles close to 60 degrees

• More sophisticated condition: Delaunay

• Can help w/ numerical accuracy/stability

• Tradeoffs w/ good geometric approximation*

*See Shewchuk, “What is a Good Linear Element”



What else 

constitutes a good mesh?
• Another rule: regular vertex degree

E.g., valence 6 for triangle meshes (equilateral)

• Why? Better polygon shape, important for (e.g.) subdivision:

• FACT: Can’t have perfect valence everywhere! 



Mesh Optimization

Most common kinds of optimization methods:

1) Vertex clustering decimation

2) Incremental Decimation

PROBLEM STATEMENT: 

Given: 3D model M = (V, E,F)

Point samples V={Pi},  Mesh connectivity F={Tj}

Find: 3D model M’ = (V’, F’) such that

– # V’ << #V

– ||M – M’|| < ε



Incremental mesh Decimation 

(data reduction)
ALGORITHM: 

Input M (original model)

For each geometric item (edge/face)

– rank all geometric item with some cost metric

– sort for increasing cost

Repeat

• contract minimum cost geometric item by 

decimation

• update geometric item list of costs

until (no further reduction possible)

Output M’ (simplified model)



Decimation Operators:

vertex remove

Remove of the vertex

▪ Remove associated triangles

▪ Triangulate the hole



Decimation Operators:

edge collapse
Edge collapse: (v1,v2)      v (based on appropriate rule like average)

removes:

• 1 vertex

• 3 edges

• 2 triangles

V’

Vertex split: 

Dual of edge 

collapse, adds 2 

triangles 

v2v1

Edge collapse

Vertex Split

v



Quadric Error Metric
Garland & Heckbert, SIGGRAPH 97  (DirectX) 

• Based on point-to-plane distance

• The set of planes at a vertex is initialized to be the 

planes of the triangles that meet at that vertex.

v



Quadric Error Metric

• The error of the vertex v with respect to the set 

of planes is the sum of squared distances from 

vertex to planes:

Signed distance to plane:
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Quadric Error Metric

• Compute Q(p) for each triangle (distance to plane p)

• Set Q at each vertex to sum of Qs from incident 

triangles

Error metric rewritten as a quadratic form:

symmetric 4x4 matrix Q 

multiplied twice by a vector
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Using Quadrics

• Approximate error of edge collapses

– Each vertex v has associated quadric Q

– Error of collapsing v1 and v2 to v3 is 

v3
TQ1v3 + v3

TQ2 v3 

– Quadric for new vertex v3 is Q3=Q1+Q2

 0, 1,2i i iv Q v i= =

2v1v



Using Quadrics

Find optimal location v3 after collapse:

• How do we find a critical point (min/max/saddle)?

• Set derivative to zero!

• matrix Q is positive-definite  → min

3

11 12 13 14

12 11 23 24

3

13 23 33 34

14 24 34 44

3 3 3min : 0T
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Using Quadrics

Find optimal location v3 after collapse:

11 12 13 14

12 11 23 24

3 3 3

13 23 33 34
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Incremental mesh Decimation 

(with Quadric Error Metric)
ALGORITHM: INPUT: the original model

• Compute the Q matrices for all the initial vertices

For each edge

• Compute the optimal contraction target  v for each edge 

(v1,v2). The error vT(Q1+Q2) v of this target vertex 

becomes the cost of collapsing that edge.

Sort for increasing cost

Repeat

• Edge collapse the minimum cost edge (vi,vj) 

(decimation) to get new vertex v

• add Qi and Qj to get quadric Qv at v

• update cost of edges touching v

until (no further reduction possible)



Results: Quadric Visualization

Original

1k tris 100 tris

Quadrics

• Ellipsoids: iso-error surfaces

• Smaller ellipsoid = greater error



Progressive Mesh Algorithm 
(Hoppe 1996)

Finest mesh  Mn
Coarsest 

mesh M0

Edge collapse
Edge collapse

Vertex split Vertex split

f1
f2

Mf Mc

Vertex split: aggiunta di un vertice

Edge collapse

Reversible :

store

edge collapses 

in a ordered list



Progressive  Mesh (Hoppe)

• Store edge collapses in a ordered list (decreasing edge 

collapsing (ecol) cost) 

• Iteratively process a decimation of minimum cost and 

recompute the list of costs for neighbors

• An edge collapse is ok only if it does not change the mesh 

topology

13,546 500 152 150 faces

M0M1M175

ecol0ecoliecoln-1

Mn



Applications

Mesh simplification applied to ..

❑ LOD Approximation

❑ Progressive Transmission

❑ Mesh compression

❑ Selective Refinement



LOD Approximation

Create meshes at different Level of Detail (LOD)



LOD Approximation

Need Multiresolution Models 
• Context dictates required detail

– LOD should vary with context

10,108 polys 1,383 polys 474 polys 46 polys

Courtesy IBM



Overhead

Example: obj with 10000T viewer near the object, if the object is far away  

(covers10x5 pixels) use a simplified model with 100 T

need high detail near the viewer
need less detail far away



LOD

• LOD of parametric surfaces: 

Bézier patches, spline and subdivision have a natural 
LOD on discrete parametric domain.Different LODs are 
given by the resolution of the tessellation

• LOD of meshes:

ALGORITHM:

– Generation: Given a model, build a set of 

approximations can be produced by any simplification 

system

– Selection: at run time, simply select which to render

– Switching: Inter-frame switching from a LOD to the 
next



LOD switching
• Discrete geometry LOD

– Switch from a LOD at frame i to the next LOD at frame i+1

– Causes popping

• Blend LOD

– Transition from LOD 1 to LOD2 in FB. If LOD1 is the current 

LOD then draw LOD1 in z-buffer and color buffer with alpha =1 

(opacity)

– Draw LOD2 in FB with alpha =0 (trasparency)

– LOD2 appears incrementing alpha from 0 to 1

– When LOD2 is visualized (alpha =1) LOD1 start to disappear 

(alpha decreases to 0)

– Inbetween both LODs are rendered overlapped

– No popping, it works in hardware 



LOD selection

Evaluate a criterium based on point of view and 

object position, choose a suitable LOD

• Range-based

– Distance from point of view

– Each LOD is associated with a distance range 

(LOD0 more detailed associated with [0,r1])

LOD0 LOD1 LOD2

r1 r2 r3



LOD selection

Polygon at 

double distance

•Projected area based

–Projected Area from bounding volume of the object (eg.sphere)

–Sphere center c radius r, camera at v, direction vector d, 

–n distance camera-near plane

La dimensione è dimezzata al raddoppiare della distanza

2

( )

projection  area

nr
p

d c v
=

 −
Radius projected sphere

Projection

plane

v



3D Data (Mesh) Compression

Different needs:

Lossy…

o Lossless?

Games Virtual malls

Medical Engineering Topography



Mesh compression

…01101101100010…

Not only the number of polys is 

reduced, also the storage for 

each LOD model is compressed.

M0 (Original) + vertex split records



Progressive transmission

The user waits for the entire transmission time in order to visualize the 

entire object, 

Single-rate…

or Progressive?

The user sees a first  grasp of the object very early during the transmission.
T  r  a  n s  m  i s  s i o n   

Coarse mesh +Database edge-collapse (compresses)
APPLY REVERSIBLE DECIMATIONS



Selective Refinement

• We may need varying 

LOD over surface:

– large surface, oblique 

view (eg. on terrain)
• high detail near the viewer
• less detail far away

– single LOD will be 

inappropriate
• either excessively detailed 

in the distance (wasteful)
• or insufficiently detailed 

near viewer (visual 
artifacts)



Selective Refinement for 

territorial models
▪ Find a base mesh

▪ Subdivide recursively 

the base mesh to 

approximate the original 

mesh

The closer part of the terrain is rendered to higher 

resolution



Outline

▪ Reconstruction

▪ Simplification

▪ Parameterization 

▪ Remeshing

▪ Smoothing/Fairing

▪ Deformation/Editing

▪ Shape Analysis



• surface

• parameter domain

• mapping and

Parameterization

A parameterization is a bijective mapping between a surface

and a parameter domain

u

v



Mesh Parameterization

3D space (x,y,z)
2D parameter domain

boundary

boundary

u

v



Applications - Texture mapping



Applications - Remeshing

Pierre Alliez



Desirable Properties

T
f

• Bijective function f (1-1 and onto): No triangles fold over.

• Minimal “distortion”

– Preserve 3D angles (conformal)

– Preserve 3D lengths (isometric)

– Preserve 3D areas (equiareal)

– No “stretch”

• Efficiently computable



Definitions

f

• f is isometric (length preserving), if the length of

any arc on S is the same as that of its pre-image on Ω.

• f is conformal (angle preserving), if the angle of

intersection of every pair of intersecting arcs on S* is the same 

as that of the corresponding preimages on Ω.

• f is equiareal (area preserving) if every part of Ω

is mapped onto a part of S* with the same area

T



Distortion is (almost) Inevitable

• Theorema Egregium (C. F. Gauß) 

“A general surface cannot be parameterized 

without distortion.”

• no distortion = conformal + equiareal = isometric

• requires surface to be developable

– planes

– cones

– cylinders



Genus=0, with boundary

objects with disk topology



Cutting

• Introduce cuts on the mesh



Mario Botsch, Bielefeld Graphics & Geometry

UNFOLDING the word



Barycentric mapping theorem (Tutte)

Given a triangulated surface homeomorphic to a disk, if the

(u,v) coordinates at the boundary vertices lie on a convex

polygon, and if the coordinates of the internal vertices

are a convex combination of their neighbors, then the

(u,v) coordinates form a valid parametrization (without self-

intersection).

v1, v2, …, vn ;          vn+1, …, vN

inner vertices boundary vertices 

Convex combination maps
(Tutte-Floater)

Eck, DeRose, Duchamp, Hoppe, Lounsbery, Stuetzle: Multiresolution Analysis of Arbitrary Meshes, SIGGRAPH, 1995



Triangle Mesh Parameterization
Convex combination maps (Tutte-Floater)

• Works for meshes equivalent to a disk

• Algorithm:

– First, we map the 3D boundary to a 2D convex polygon

– Then we compute the inner vertices positions 

{ (v1 ,u1), (v2 ,u2), …, (vn ,un)} { (vn+1 ,un+1), …, (vN ,uN)}

(V,U) inner vertices (VB,UB) boundary vertices 

xi = (vi , ui)

coordinates of 

parameter 

points



Compute the inner vertices

• We constrain each inner vertex to be a weighted 

average of its neighbors:

• with weights

,

( )

1, 2, ,i i j j

j N i

x x ,   i n


= =

,

, ,

,

( )

0   if  ( , ) are not neighbors

0 if ( , ) (neighbors)

,

1

i j

i i i j

j i

i j

j N i

i j

i j E

 










 



= −

 =







i,j

xi
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Linear systems of equations

unknown param
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solve the linear system :
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Linear system of equations

• matrix   L   is

– sparse

– diagonally dominant

– nonsingular

• A unique solution always exists 

• Important: the solution is legal (bijective)

• The system is sparse, thus fast numerical solution is 

possible

• Numerical problems (because the vertices in the middle 

might get very dense…)

i i i

B B

x ( u ,v )

LU U and LV V

= 

= =

• solve system twice



Choice of Weights

The weights are given by 

, , ,

1
(cot cot )

2
i j i j i j

iA
  = +

• Uniform /Barycentric (Tutte)

• Discrete 

harmonic

• Mean value
, ,

,

1
(tan( ) tan( ))

2 2

i j i j

i j

i jX X

 
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−

,

1
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Discrete Laplacian

di valence of vertex i

normalization
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,
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



Convex Combination Maps

• Comparison

Original

mesh

Barycentric Discrete 

Harmonic

mean 

value



Texture mapping applications

Texture map

Tutte Shape-preserving Conformal



Stretch 

minimization 
(S. Yoshizawa , 2004)

Iterative algorithm to correct the weights

• Initialize: 

convex map

• STEP k:

– Update λi,j w.r.t. stretch σj in Xj

– Solve the new LS

• Stopping when the global stretch 
energy stops decreases



Texture Atlas Generation

Split model into number of patches (atlas)

– because higher genus models cannot be mapped

onto plane and/or

– because distortion will be too high eventually

Levy, Petitjean, Ray, Maillot: Least Squares Conformal Maps for Automatic Texture Atlas Generation, SIGGRAPH, 2002



Constrained Parameterizations

Levy: Constraint Texture Mapping, SIGGRAPH, 2001



Outline

▪ Recnstruction

▪ Simplification

▪ Parameterization 

▪ Remeshing

▪ Smoothing/Fairing

▪ Deformation/Editing

▪ Shape Analysis



Surface fairing

0

( , , )

X X E

X x y z

= +

=

= +



Mesh Fairing 

Fairness: low variation in curvature.

Move vertices to achieve - Mesh topology stays the same.

M a piecewise linear 

approximation of M, 

X is a surface 

parameterization 

of S

X is the  vertex set

of M

M M



Surface Fairing

• A surface smoothing method, named 

fairing, removes undesirable noise and 

uneven edges from discrete surfaces. 

• Extend the low-pass filter in image processing

▪ Idea: a low pass filter corresponds to diffusion 
flow. 



0 noisy image
u

u u
t


=  =


( )

t
u( t ) G u= 

2
0 2t =

[heat equation = Gaussian filter  Witkin-Koenderink ‘83-84]

Image Denoising by 

linear diffusion flow



Diffusion Flow on Meshes

s

X
X

t


= 


s

X
HN X

t


= − = 



1) Mean Curvature Flow (MCF)

(X)s

X
H

t


= 



2) Surface Diffusion Flow

0 0

0( ) ,   S t

X
X f X X X

t
 =


=  + − =



3) MCF  + data fidelity



Noisy mesh

and its curvature 

map

SDF 

igea 268K faces

MCF



Discrete diffusion flow on mesh

• Considering a uniform discretization of the time interval 

[0, T], T > 0, and using a temporal time step t, 

• the approximation of an evolving surface at the n-th time 

step is denoted by a spatial position vector Xn

• (connectivity matrix) represents the 

discrete Laplace-Beltrami operator 

In matrix vector form

1n nX X X

t t

+ −




M X L X 

V VN N
L R






Discrete diffusion flow on mesh

• Considering a uniform discretization of the time interval 

[0, T], T > 0, and using a temporal time step t, the 

approximation of an evolving surface at the n-th time 

step by MCF

• Given the position vector Xn we get Xn+1  by applying 

explicit schemes:

• or implicit schemes

where L represents the discrete Laplace-Beltrami operator 

1n n n nX X L Xt+ = +

1( )n n nI L X Xt +− =

s

X
X

t


= 





Initial Mesh umbrella operator Fujiwara operator

Desbrun et al., Siggraph 1999 Desbrun et al., Siggraph 1999

Laplace Beltrami operator applied to

the coordinate function X = (x,y,z)



Discrete Laplacian

Note that since the Laplacian measures the 

difference between a vertex and the average 

values of its neighbors, we expect that is 

equal to zero on constant functions c, so:

0Lc =



Results of applying umbrella weights on the left and

cotangent weights on the right.



Material
Level Set Methods and Dynamic 

Implicit Surfaces

Stanley Osher & Ronald Fedkiw

Series: Applied Mathematical Sciences, 

Vol. 153 Springer, 2003

ISBN-10: 0-387-95482-1

ISBN-13: 978-0-387-95482-0 

Polygon Mesh Processing

Mario Botsch, Leif Kobbelt

Mark Pauly, Pierre Alliez, Bruno Levy

A K Peters, Ltd.

Natick, Massachusetts 2008

ISBN 978-1-56881-426-1



Serena Morigi
Dipartimento di Matematica

serena.morigi@unibo.it

http://www.dm.unibo.it/morigi

mailto:serena.morigi@unibo.it

