
Subdivision Curves  & 

Surfaces 

 Bridge the gap between discrete surfaces 

(polygonal meshes) and continuous surfaces (e.g. 

collection of spline patches) 

Geri’s Game (1989) : Pixar Animation Studios 

http://mrl.nyu.edu/~dzorin/sig99/derose/index.htm 



Sometimes need more than 

polygon meshes… 
• Traditional geometric modeling used NURBS   

• Problems with NURBS  

Must use many 

NURBS patches to 

model complex 

geometry 

 

When deforming a 

surface made of 

NURBS patches, 

cracks arise at the 

seams 

- A single NURBS patch has quadrilateral topology  



• Traditionally spline 

patches (NURBS) have 

been used in production 

for character animation. 

 

• Difficult to control spline 

patch density in character 

modelling.  

 
Subdivision in Character Animation   

Tony Derose, Michael Kass, Tien Troung 

(SIGGRAPH ’98) (Geri’s Game, Pixar 1998) 



 



Subdivision Curves 
• Bézier curves, spline e subdivision are based on an algorithm which takes a 

control polygon in input and constructs a smooth curve.  

• Approach Limit Curve through an Iterative Refinement Process. 

 

 

 

 

 

 

 

 

 

 

 

Refinement 1 Refinement 2 

Refinement ∞ 



Subdivision surfaces 

• Same approach works in 3D 

Raffinamento 



Example 

8 RANGE IMAGE, point cloud 98503  



Example 

 

PICZA PIX-30 

1 RANGE IMAGE, point cloud 13903  



Example 

 

PICZA PIX-30 

2 RANGE IMAGE, point coud 13166  



Goals of Subdivision Surfaces 

• Represent arbitrary topology surfaces 

• How do we represent curved surfaces in 
the computer? 

– Efficiency of Representation 

– Continuity 

– Affine Invariance 

– Efficiency of Rendering 

• How do they relate to splines/patches? 

• Why use subdivision rather than patches? 



Types of Subdivision 

• Interpolating Schemes 

– Limit Surfaces/Curve will pass through 

original set of data points. 

• Approximating Schemes 

– Limit Surface will not necessarily pass 

through the original set of data points. 



Refinement scheme 

A refinement process defines a sequence of control polygons 

 

 

 

 

Where for each k each control point is given by 

 

 

Linear combination of the control points 

of the control polygon at the previous step 
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Refinement scheme 

  Mask: 

 

• The number of CP can be either increased (eg. Chaikin’s 
curve) or decreased (eg. de Casteljau for Bézier curves) 

 

• Uniform Scheme:  

 the alfa values are independent on the refinement level k 

 

• Stationary Scheme: the mask is the same for each CP 
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Subdivision as Matrices 

Smask refinement matrix 
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Subdivision as Matrices 

• Subdivision can be expressed as a matrix Smask of 

weights w. 

– Smask is very sparse 

– Never Implement this way! 

– Allows for analysis 

• Curvature 

• Limit Surface 
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Example: de Casteljau’s algorithm 
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Chaiken’s Algorithm (1974) 
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Refinement 

scheme 

Limit Curve Surface 
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P3 
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Uniform –Non stationary 

Old control poly with n+1 CP  

New control poly with 2n CP. 



Chaiken’s Algorithm : 

Corner-cutting 

Esempio: 



Chaiken’s Algorithm : 

Corner-cutting 

 

CP presi 

Mod(n+1) 



Subdivision curves/surfaces 

• Convergence: given a subdivision operator 

and a control polygon, does the refinement 

process converge? 

 

• Continuity: the refinement process 

converges to a continuous curve/surface? 

 Which continuity order? 



Convergence to a quadratic 

uniform spline curve 
• The curve obtained by Chaikin ‘s subdivision 

scheme is a unform, quadratic spline 

II passo, … 

At the limit, the refined CPs converge to the spline 

curve 



Subdivision scheme for surfaces 

• INPUT: 

  control mesh of vertices, edges, faces. 

• ITERATE SUBDIVISION OPERATOR: 

 refine the control mesh by increasing the 
number of vertices 

– Refine the mesh  

– Smooth the mesh moving vertices  

 

• At limit, the vertices of the control mesh 
converge to a limit smooth surface 



Loop Subdivisions 

• Works on triangular meshes 

• Is an Approximating Scheme 

• Guaranteed to be smooth everywhere except 

at extraordinary vertices (valence ≠6). 
 

• Two refinement rules: 

– Odd rule: add new control points 

– Even rule: modify the existing control points  

 



Loop Subdivision Mask:  

valence n 
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Modify vertices from  

previous step 



Loop Subdivision Boundaries 

• Subdivision Mask for Boundary Conditions 
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What About Continuity and Curvature.. 

• Subdivision mask weights w are derived from splines, 
such as B-Splines. 
– Subdivision surfaces converge to spline surfaces with C2 

continuity everywhere.** 

– Too lengthy to cover here, but there is lots of literature. 

 

Subdivision Methods for Geometric Design 

Joe Warren, Henrik Weimer. (2002) 

 

**Math works out except at “Extraordinary Vertices”.  
Most Subdivision Schemes have and “ideal” valence for 
which it can be shown that the limit surface will converge 
to a spline surface. 



Ordinary and Extraordinary 

Loop Subdivision 

Valence 6 

Catmull-Clark Subdivision 

Valence 4 

•Subdividing a mesh does not add extraordinary vertices. 

•Subdividing a mesh does not remove extraordinary vertices. 

How should extraordinary vertices be handled? 

•Make up rules for extraordinary vertices that keep the surface 

“smooth”. 



Doo-Sabin subdivision surfaces 

 Extend Chaikin’s algorithm to generate 

uniform bi-quadratic spline surfaces 

 

 

 

 

Face point: average of the  4 vertices 

 

Edge point: average of the edge 

adjacent to the vertex 

 

For each Vertex of a face generate a 

new point P as average of the 4 

points: 

 (Face, Edge,Edge,Vertex)  

 



Doo-Sabin subdivision surfaces 

 - For each face: 
Connect the new points P 

generated for each 

vertex of the face 



Doo-Sabin subdivision surfaces 

• For each vertex, connect the new cp P with the new points 

in adjacent faces 

 

 

 

 
 

• For each edge, connect the new CP generated for the faces 

sharing the edge 

• The new generated polygons define the new control mesh 



Example: 

Doo-Sabin (’78) 

 subdivision surfaces 

All vertices has valence  4 

Triangular Faces 

converge to 

 extraordinary points 

Generate limit surfaces C1,  

C0 in extraordinary points 

This process generates one new face at each original 

vertex, n new faces along each original edge, and n x 

n new faces at each original face.  

I subd. step 



Catmull-Clark Subdivision (1978) 
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We get uniform bi-cubic spline surafces 



Catmull Clark subdivision surfaces 

• Initial mesh: 

 

 

 

 

 

• Compute the face point as 

mean of the vertices of the 

face 



Catmull Clark subdivision surfaces 

• Compute the edge point as 

average of 4 points: the 2 

vertices of the edge, the 2 

new face points of the 

adjacent faces 

 

 

• Update the  vertex point: 



Catmull Clark subdivision surfaces 

• New refined mesh: 

    - connect the new face 
points to the new edge 
points,  

   - connect the vertex point to 
the edge points 

 

• After the first refinement 
all the polygons are 

quadrilaterals 



Example: Catmull-Clark SS  

•The vertices of the original mesh maintain the same valence 

•Extraordinary vertices have valence ≠ 4 

 

 

 

 

 

• Generate limit surface C2, C1 at extraordinary points 

•Each patch of 4x4 CPs with rectangular topology (valence 4) 

 represents a uniform bi-cubic spline surface 



Modeling with Catmull-Clark 

• Subdivision produces smooth continuous surfaces.   

• How can “sharpness” and creases be controlled in a 

modeling environment?  

ANSWER: Define new subdivision rules for “creased” 

edges and vertices. 

1. Tag Edges sharp edges. 

2. If an edge is sharp, apply new 

sharp subdivision rules. 

3. Otherwise subdivide with 

normal rules. 

CC surfaces in Toy story 2 and Geri’s game 



Sharp edges… 

n=0 

n=infinity 

n=1 

n=3 n=2 

1. Tag Edges as “sharp” or “not-sharp” 

• n = 0 – “not sharp” 

• n > 0 – sharp 

During Subdivision,  

2. if an edge is “sharp”, use sharp subdivision 

rules.  Newly created edges, are assigned 

a sharpness of n-1. 

3. If an edge is “not-sharp”, use normal 

smooth subdivision rules. 

 
IDEA: Edges with a sharpness of “n” do 

not get subdivided smoothly for “n” 

iterations of the algorithm. 



Sharp Rules (CC) 
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Subdivision rendering 

 

All the shown surfaces are 

piecewise flat approximations of 

the corresponding limit surfaces 



Refinement vs Exact Evaluation 

• Refinement of a coarse mesh only approximates  

 the smooth limit surface 

– this produces a huge amount of faces that have 

to be stored, manipulated and rendered  by the 

graphics pipeline 

– Their use in real-time  interactive graphics 

applications is even more computational demanding 

and slows down the entire rendering process 

 

 



Refinement vs Exact Evaluation 

• Exact evaluation (Stam for CC): 

 

provides a direct way to render a 

subdivision surface by exact evaluation of 

the limit surface in a suitable parametric 

space associated to each primitive  
  

 

 

Both schemes offer a natural 

parallelization 

 
STAM J.: Exact evaluation of Catmull-Clark subdivision surfaces at arbitrary parameter 

values. In SIGGRAPH ’98 



Exact CC Subdivision Surfaces inside a 

CAD system 
[Think3 & Univ.of Bologna, New Interactive Technologies for 

CAD- EUROSTARS Project 2010-2012] 

• Design and development of a software 

module for subdivision surfaces inside 
thinkdesign geometric kernel considering 

the following issues: 

 –Algorithm for exact evaluation (use Jos 

Stam algorithm to have an F(u,v))  

 –B-rep representation for solids made of 

subd surfaces.  
 A mesh is converted to a B-rep solid where each face 

corresponds to a mesh face. Each face is evaluated as a 

Catmull-Clark surface with the original mesh as control 

points. 

 –Tool to create and edit subd shapes.  

 

 

 





Patch-based Geometry Shader 

Tesselation in GPU 

Vertex 

Processing 

Geometry 

processing 

 
Tessellation 

Pixel 

Processing 

 Given an input multi-sided patch, the 

geometry shader tessellates the main face of 

the patch and directly invokes the rasterizer 

for rendering 

- Data from the control mesh is collected into vertex and patch 

streams, and passed to the GPU for the evaluation and 

rendering steps. 

- Subdivision kernel (Geometry shader): each patch is either 

refined by the CC scheme at a given depth d, or exactly 

evaluated.  



Displacement Mapping 
• Bump mapping provides normals to simulate an alterated 

geometry ( problems with shadows, silhouettes) 

• Displacemente mapping: alterate the geometry of the 

surface 

• Use height field to perturb a point on the surface along the 

normal vector. 



Displacement Mapping for 

subdivision surfaces 

subdivision 

Let p be a point on surface and n its normal, then the point 
on the displaced surface is given by 
   
   s = p + dn 
with d scalar value that represnets the displacement of the 
point p 

Define a displacement map (height field) for each triangle 

of a coarse mesh. 
 



1. From a coarse mesh M0 apply a subdivision scheme to get a smooth 

 surface  M1 

2. Apply a displacement  along normal vector  at each vertex of  M1  



Displacement Mapping for 

subdivision surfaces 

 

Initial control mesh 

 
displaced subdivision 

surface 

scalar displacements 

Refined Surface 

 (Loop) 

s=p+dn 
p point on the limit syrface 

n   normal 

d   displacement 

s point on the displ. Subd. Surf. 

  


