
Hierarchical Modeling

&

Digital Animation

[Au et al. 2008]

Types of animated objects

• Rigid objects animation

– A rigid object is one that is non-deformable

• Free-form deformation

• Articulated figure animation

– objects made of rigid sub-parts

Model and animate articulated figure

Animate articulated figure

Applications:
- Robotics
- 3D virtual actors CA,
- Where the dynamic behavior
of the objects is characterized
by relations between the
various constituent parts

of the model.

Articulated figure:

Rigid parts (BONES) connected

by joint

joint

Bones

/link

skeleton

Modeling articulated figures

through hierarchical modeling:

Represent parts of an object and the

connecting joints between the parties

Hierarchical modeling

of articulated figures

– Suppose you want to draw and animate a car

– We can design the body and 4 wheels

A complex object is a set of more elementary objects

in the hierarchical relationship among them.

+=

The children inherit the transformations

applied to the parent node

Invoking a transformation in OpenGL

modifies the current matrix Modelview that

automatically affects all primitives drawn

after that point

It’s quite natural to implement inheritance

transformations in OpenGL

glTranslatef(..);

Draw_chassis();

glTranslatef(...);

Draw_wheel()

glTranslatef(...);

Draw_wheel();

……

TRANSLATE TRANSLATE TRANSLATE TRANSLATE

Representation

tree

TRANSLATE

Tree representation

Joint

Link Node

Arc

To each LINK of the model we associate a NODE

To each JOINT of the model we associate a ARC

Root ARC represents a

global transformation

The children

inherit the

transformations

applied to the

parent node

• Arc (joint) contains:

– matrix Mpos transformation

to place a link related to the

link parent

– matrix Mart transformation

of articulation of the link

• Node (link) contains:

– Draw Function

– matrix Mloc transformation

of the link in a position

ready to be articulated

Tree representation

Node

(Link)

Arc

(Joint)

A part of an object can have more joints

Tree representation: arc and node

Position

Transformation

data
Model

geometry

Local

Transformation

transformations

of articulation

Node

Arc

Link

Example1: robot arm

Consider a robot arm with 3 parts:

Tree representation

• We can change the shape of the robot by changing only

the functions that draw the three parties.

• This makes it possible to write programs to draw the

separate components and to animate them.

• Draw an articulated figure requires a traversal of the

tree.

Visualizing the static model

display()

{

base();

glTranslatef(0.0, h1, 0.0);

lower_arm();

glTranslatef(0.0, h2, 0.0);

upper_arm();

}

Mpos

transformations

to place the link

related to the

parent node h1

h2

Control the movement

3 degrees of freedom (3 JOINT):

u - rotation of the base

f - rotation of the long arm

c - rotation of the short arm

Each joint determines a local transformation of the

component relative to the component to which it is

attached in the reference system of origin.

Visualizing the dynamic model

display()

{

glRotatef(u, 0.0, 1.0, 0.0);

base();

glTranslatef(0.0, h1, 0.0);

glRotatef(f, 0.0, 0.0, 1.0);

lower_arm();

glTranslatef(0.0, h2, 0.0);

glRotatef(c,0.0, 0.0, 1.0);

upper_arm();

}

Each rotation is centered at the origin

Ry(u)

Rz(f)

Rz(c)

Mart

Example 2: human body

Tree Representation

- Assign matrix M at each joint, it is specified

exactly how to draw the robot.

- Skeleton of a humanoid:

at least 22-24 bones (typically) reasonable: ~40

bones.

Mt MbMabd Mabs

Mbd Mbs

McsMcd

MgsMgd

The problem is how to traverse the tree

Typically preorder

This can be done in two ways:

1) Explicitly (stack-based)

using the stack to store attributes and matrices

2) Recursively (tree-based)

1) Traverse the tree:

Stack-Based

• Mechanism glPushMatrix and glPopMatrix to
traverse the tree.

• Each call glPushMatrix duplicates the current model-
view matrix

• DOWNWARD crossing of an arc: Push
the transformation of arc concatenates
with the current transformation

• UPWARD crossing of an arc: Pop
to restore the original matrix saved

• Similar mechanism glPushAttrib and glPopAttrib

1) Traverse the tree:

Stack-Based
void drawHuman()
{
…
glPushMatrix();

glMultMatrixf(Mpos_braccioDx);
glPushMatrix();

glMultMatrixf(Mloc_braccioDx);
glCallList(braccioDx);

glPopMatrix();
glPushMatrix();

glMultMatrixf(Mpos_avBraccioDx);
glPushMatrix();

glMultMatrixf(Mloc_avBraccioDx);
glCallList(avambraccioDx);

glPopMatrix();
glPopMatrix();

glPopMatrix();
…

}

rootPos rootPos

Mp_brdx

rootPos

Mp_brdx

Ml_brdx
push push

pop

rootPos

Mp_brdx

push

pushMp_avdx

rootPos

Mp_brdx

Mp_avdx

Ml_avdx

2) Traverse the tree:

Tree-Based

Using a tree data structure to represent the

hierarchy we can draw the object with a traversal

algorithm independent of the model.

We create such a data structure for the recursive

traversal in depth-first

2) Traverse the tree:

Tree-Based

Each node has the following information:

1. A pointer to the draw () function that draws the object
2. A matrix M which combines the transformations of position and

articulation.
3. Pointers to the children / neighbors of the node.

typedef struct treenode

{

Glfloat M[16];

void (*draw)();

struct treenode *sibling; // right-sibling

struct treenode *child; // leftmost-child

}

Draw Procedure (display())

Recursive traversal of the tree:

void traverse (treenode * node)

{
if(node == NULL) return

glPushMatrix(); // downward

glMultMatrix(node->M); //static transformation of articulation

node->draw(); //local transformation and draw

if(node->child!= NULL)

traverse(node->child); //pointer to the children node

glPopMatrix(); // upward

if(node->sibling != NULL)

traverse(node->sibling);//pointer to the sibling node

}

Set-up of the tree (init())

…..
glLoadIdentity();
glTranslatef(0.0, TORSO_HEIGHT, 0.0);
glGetFloatv(GL_MODELVIEW_MATRIX,head_node.M);
head_node.draw = draw_head;
head_node.sibling = &braccioSx_node;
head_node.child = NULL;
..…
void draw_head()
{

glPushMatrix();
glTranslatef(0.0, 0.5*HEAD_HEIGHT,0.0);
glScalef(HEAD_RADIUS, HEAD_HEIGHT,HEAD_RADIUS);
gluSphere(h,1.0,10,10);
glPopMatrix();

}

Position

Transform.

Local

Transform.

Types of Animations

Building 3D models and their animation controls is a major

component of every animation pipeline.

Building the controls is called “rigging”.

▪ Physically-based/

procedural animation

▪ Data Driven

(Motion Capture)

▪ Keyframing

ball-bounce.gif

Physics-based Animation

Realistic but difficult to control..

Ideally suited for:

• Large volumes of objects – wind effects, liquids,
…

• Cloth animation/draping

Underlying mechanisms are usually:

• Particle systems

• Mass-spring systems

Typically solve ordinary or partial differential
equations using iterative methods with some
initial/ending boundary values and constraints on
conservation of mass/energy/angular momentum

Types of Dynamics

• Point (particle systems)

• Rigid Body simulation

• Deformable body/Physics Simulations

(include clothes, fluids, smoke, etc.)

Examples

Images from Fedkiw, Stam,

Jensen, SIGGRAPH 2001

Arnauld Lamorlette and Nick

Foster (PDI/DreamWorks),

SIGGRAPH 2002

Cloth Modeling

Tesi di Michele Falasconi

Visual Effects

Simulation

Images from Foster & Fedkiw

SIGGRAPH 2001

Images from Fedkiw, Stam, Jensen, SIGGRAPH 2001

Physically-based animation

Modeling a real movement with:

kinematics

Study of motion without considering the forces that have

caused.

Law of evolution: the equation of motion in time-

controlled functions of position, velocity or acceleration.

dynamics

simulation of rigid bodies. Using forces and moments to

control the movement of the characters.

Physical reaction of rigid bodies subjected to forces

(gravity, viscosity, friction, ..)

Ex: particle system (animate multiple objects)

• Collection of many small simple pointlike things

–Described by their current state: position,

velocity, age, color, etc.

• Particle motion influenced by external force fields and

internal forces between particles

• Particles created by generators or emitters

–With some randomness

• Particles often have lifetimes

• Particles are often independent

• Treat as points for dynamics, but rendered as anything

you want

What is a Particle System?

Particle Attributes

Position,

velocity,

accumulated forces,

mass

Shape (if any)

Display attributes (e.g. color, transparency)

Life expectancy (pseudo random).

Array of source

Forces

Particle systems (Reeves 1983)

http://processing.org/learning/topics/simpleparticlesystem.html

http://processing.org/learning/topics/simpleparticlesystem.html

1. Generate new particles

2. Assign attributes to each particle

3. Terminate any particle with expired life span

4. Animate remaining particles

5. Change shading parameters

6. Render the particles

One frame of motion

2

2

d x
f m a m

dt
= =

• Basic governing equation

• We know f and m, want to solve for x

• Corresponds to system

of first order ODEs

• Let’s stack the pair (x,v) into a state vector X

d
x v

dt

d f
v

dt m


=


 =


Newtonian Mechanics

2

2
/

d x
f m

dt
=

X F(X,)
(,) /

x vd
X t

dtv f x v m

   
= → = =   
      

Now, Many Particles

• We have N point masses

–Let’s just stack all xs and vs in a big vector of length 6N

• fi denotes the force on particle i

- When particles don’t interact, fi only depends on xi and vi.

1 1

1 1(X,)

. .
(,)

. .

(X,)

(,)

N N

N N

x v

v f t

X F X t

x v

v f t

d
X F X t

dt

   
   
   
   

= =   
   
   
   
   

=

Numerical solution of ODEs

1

1

n n

n n n n

t time step

t t t

X X t F(X ,t)
+

+

 =

= + 

= + 

While (1) 

Compute force Fnat tn;

Compute pos. Xn+1,vel. Vn+1by solving (*)

Update particle positions X;

Update time tn+1=tn+Δt;

}

Discretize the time interval,

(*)

• A force changes the motion of the system

• For point masses, forces are vectors

–I.e., to get total force, take vector sum of everything

• Gravity

• Simple drag

• Particle interactions: particles mutually

attract and/or repel (es. spring forces)

• Internal Forces

• Wind forces

• User interaction

What is a Force?

External Forces

Forces that depend on the single particle

Gravity

g = 9.81 m/s2

Wind Fields
gf m=

windk vf =

Viscosity/

Dampening

vf ddrag k−=

v
dragf

Internal Forces

▪ The internal forces originate from deformations

▪ Deformations -> changes in potential energy

Stretch / Shear / Bending

▪ Derivative of the potential energy = force

i i

stretch shear bending

bendingstretch shear
i i

x x x x

E E E E

EE EE
m x

x x x x= =

= + +

  
= − = − + + 

    

inte rnal external i

i

E
m x f f f

x


= + = − +




External/Internal Forces

Forces that depend on two particles

Springs

||
)|(| 0

ba

ba
basa lk

xx

xx
xxf

−

−
−−−=

af

bf

||||

)()(

ba

ba

ba

baba
dk

xx

xx

xx

xxvv

−

−











−

−−
−

Generalizes to forces that depend on more particles

Clothes as particle system

▪ clothes=mesh

▪ Each vertex of the geometry of the

cloth is a particle with mass.

▪ Each particle is linked to 12

particles by bonds

elastic.

Clothes as particle system

Dynamic Simulation

The behavior of the tissue is described by the

position and velocity of the particles in each

frame of the animation.

Repeat

1. Update position of particle

2. Draw the mesh from particles (vertices)

(Tesi di Michele Falasconi)

FA Motion + cloth motion

Tesi di Michele Falasconi

Further reading:

• Witkin, Baraff, Kass: Physically-based Modeling Course

Notes, SIGGRAPH 2001

• William Reeves: Particle systems—a technique for

modeling a class of fuzzy objects, Proc. SIGGRAPH

1983 (The original paper on particle systems)

• particlesystems.org

• ParticleFX (Max Payne Particle Editor) You can

download it (for Windows) and easily create your own

particle systems.

http://www.pixar.com/companyinfo/research/pbm2001/
http://dl.acm.org/citation.cfm?doid=800059.801167

Motion Capture (MOCAP)

MOCAP is an effective 3D
animation tool for
realistically capturing
human motion

Andy Serkis in digital

Character “Gollum” in

“The lord of the rings”

https://www.youtube.com/watch?v=zQPfxcQKr0Q

https://www.youtube.com/watch?v=zQPfxcQKr0Q%20https://www.youtube.com/watch?v=zQPfxcQKr0Q%20https://www.youtube.com/watch?v=zQPfxcQKr0Q%20https://www.youtube.com/watch?v=zQPfxcQKr0Q%20https://www.youtube.com/watch?v=zQPfxcQKr0Q%20https://www.youtube.com/watch?v=zQPfxcQKr0Q

Facial mocap

https://www.youtube.com/watch?v=piJ4Zke7EUw

https://www.youtube.com/watch?v=piJ4Zke7EUw%20https://www.youtube.com/watch?v=piJ4Zke7EUw%20https://www.youtube.com/watch?v=piJ4Zke7EUw%20https://www.youtube.com/watch?v=piJ4Zke7EUw%20https://www.youtube.com/watch?v=piJ4Zke7EUw%20https://www.youtube.com/watch?v=piJ4Zke7EUw%20https://www.youtube.com/watch?v=piJ4Zke7EUw%20https://www.youtube.com/watch?v=piJ4Zke7EUw

The MOCAP Pipeline

• Calibration

• Capture

– Sampling reference points in time

• 3D Position Reconstruction

– Convert them in JOINT ANGLES

• Fitting to the Skeleton
– Use the joints to control the virtual model

(IK)

• Post Processing

Mocap: technologies

Optical Magnetic Mechanical

Costa-Sousa, M., 2004

Infra Red LEDs

Magnetic Transmitter

Potentiometers

1) Technology: electromagnetic

Provide the data directly:

Position / orientation sensors on the object

Sensors transmit data to CPU

Cable or wireless

Cons:

Specialized equipment

Limitations in the motion

Expensive

Magnetic field distortions

Real time systems:

fast

2) Technology:Optical

Vicon

MotionAnalysis

More convenient for the user

No restriction in motion

Cheaper

More complex processing

Image processing

identify markers

Computer vision techniques

get marker positions

Optical Mocup: pipeline

Y

Z

X

…Camera 1

Camera n

Z

Y

X

Camera
calibration Capture

Image
acquisition

Matching &
tracking

Post-
processing

obtain the location of

each camera in WCS

Fitting to the Skeleton

Give the skeleton that represents the

virtual character, assign the motion of

each marker acquired

Utopia approach: 1 marker --- 1 joint

• Markers on both sides of each joint

• Joint Displacement

• Use Rotation Angles Only

Post Processing

• Motion Editing

– Cut, Copy, Paste

• Motion Warping

– Speed up or Slow Down

– Rotate, Scale or Translate

• Motion Signal Processing

– Smoother Motions

Motion Capture

Stefano Marchesini Univ. Bologna

Keyframe Animation

• Basic idea:

-specify important events only, computer fills in the rest via

interpolation/approximation

Generating Hand-Drawn

Animation
• Senior artist draws keyframes

• Assistant draws inbetweens

Keyframe
• Keyframe:

describe the motion of objects over time starting from a

set of key positions of the object

• Key and inbetween:

- Define the key frame,

- Compute the inbetween (frames) to get motion continuity

Keyframe : ALGORITHM

– assign values ​​to the parameters characterizing the
model for each key frame

– Inbetweening: interpolate values ​​to obtain the
intermediate frames. For position values use linear
interpolation, cubic spline curve.

The curve parameterization controls the speed of animation

ACM © 1987 “Principles of traditional animation applied to 3D computer
animation”

Parameters for Keyframe

What exactly are we interpolating?
Position, orientation, material properties (color /

texture), brightness, shape (for non-rigid objects)

How to get the values ​​of the parameters?

- Set by the animator;

- Captured (mocap)

- Procedural

The quality of the motion depends heavily on the

skill of the animator

Animating an articulated figure

Animate the skeleton, consisting of:

Rigid parts BONES (LINK)

connected by JOINT

Ends of the chain joint and link

are called END-EFFECTOR

Animating an articulated figure

The evaluation of the hierarchical model, by means of tree
traversal, produces the figure in a position that reflects a
determined setting of the parameters of the joint.
The set of parameters is called the pose. A pose is
specified by a vector containing a value for each joint.

To animate an articulated figure, by changing its pose, we can modify
the joint as function of time.

t1 t2

qi q ti ()

t1 t2

DOF in human model

1 DOF: knee 2 DOF: wrist 3 DOF: arm

Each joint can have up to 6 DOFs

3 translation, 3 rotation q=(x,y,z,m,f,F).

Robert C. Duvall, Duke University. License CC BY-NC-SA Human skeleton has 70 DOF

How to define KEYFRAME?

How to change the parameters over time to

achieve the desired motion?

There are two ways to modify a pose of an articulated figure:
direct and inverse kinematics

Direct Kinematics (FK)
The animator has complete control over the entire chain
but must assign (turn) manually each joint.

Inverse Kinematics (IK)
The animator controls only the last term of the chain (end-
effector) and delegates to the software responsible for
placing the remaining joints to reach the final pose.

How to generate the Inbetween?

By Interpolation!

• In order to “move things”, we need both

translation and rotation

• Interpolating the translation is easy, but

what about rotations?

• Finding the most natural and compact way

to represent rotation and orientations

Representation and Interpolation of

orientation
• orientation = rotation matrix 4x4

• How about interpolating each entry of the

rotation matrix?

Given the matrices Mi and Mi+1 at time ti,and ti+1

compute M(t) for t in [ti, ti+1] such that

M(ti)=Mi and M(ti+1)=Mi+1

• M(t) is an intermediate orientation given by
interpolating Mi and Mi+1

Interpolation: KO!

Example: M0 identity and M1 is 90o around x

Is the resulting matrix a rotational matrix?

1 0 0 1 0 0 1 0 0

Interpolate (0 1 0 , 0 0 1) 0 0.5 0.5

0 0 1 0 1 0 0 0.5 0.5

     
     

=
     
     − −     

NO:
RRT is not the identity matrix.
The interpolated matrix might no longer be orthonormal,

leading to nonsense for the in-between rotations

X

Y

Z

X-axis

rotation

Y-axis rotation

Z-axis rotation

Fixed Angle Representation

Angles used to rotate about fixed global axes.

Orientations are specified by a set of 3 ordered parameters that represent 3

ordered rotations about fixed axes, i.e. first about x, then y, then z

Fixed Angle Representation

(qx, qy, qz) = RzRyRx

– Rotate qx wrt x

– Rotate qy wrt y

– Rotate qz wrt z

Many possible orderings, don’t have to use

all 3 axes

– (y, z, x), (x, z, y), (z, y, x)…

Gimbal Lock

Problem occurs when two of the axes of rotation

line up on top of each other. This is called

“Gimbal Lock”

• A 90 degree rotation about the y axis essentially

makes the first axis of rotation align with the third.

• Incremental changes in x,z produce the same

results – you’ve lost a degree of freedom

X

Y

Z

yaw

roll

pitch

Euler Angles

A general rotation is a combination of three elementary

rotations: around the x-axis (x-roll), around the y-axis (y-roll)

and around the z-axis (z-roll).

Same as fixed angles, except now the axes move with

the object (Local)

Roll

Pitch

Yaw

Euler angle vs. fixed angle

• Rz(90)Ry(60)Rx(30) = Ex(30)Ey(60)Ez(90)

• Euler angle rotations about moving axes

written in reverse order are the same as the

fixed axis rotations

Z

Y

X

Gimbal Lock (again!)

• When two rotational axis of an object point in the same

direction, the rotation ends up losing one degree of

freedom

• Rotation by 90o causes a loss of a degree of freedom

x

y

z

q1

y

z

q1

/2

q1

x’

y

z

q3

q1

x’
x x

http://www.fho-emden.de/~hoffmann/gimbal09082002.pdf

Quaternion

v
θ

Rotation axis → v=(ax, ay, az) /* unit vector */
angle → theta (radianti)
Then

w = cos (theta/2)
x = ax * sin (theta/2)
y = ay * sin (theta/2)
z = az * sin (theta/2)

Example  )0,0,1)(2/sin(),2/cos(=q Rotate  around x axes

 vq ,0= Represent a v vector

Quaternion q

Given

Any orientation can be represented by a 4-tuple of real

numbers: q=[w,x,y,z] or, better, by a pair consisting of the

real value and the 3D vector

cos(), (sin())
2 2

q v
q q 

=  
 

Given a quaternion

then
Rotation axes v= (ax, ay, az)
Angle → theta (radianti)

theta= 2 * acos(w)

ax= x / scale
ay= y / scale
az= z / scale

where scale = x2 + y2 + z2

If scale =0 → no rotation

Thus:

Set the rotation axes to an arbitrary

unit vector and rotation angle 0.

 zyxwq ,,,= q v

Quaternion Math

To rotate a vector, v using quaternion math

– represent the vector as [0,v]

– represent the rotation as a quaternion, q

() () () ()

()

, , ,

1

cos 2 ,sin 2 , ,
x y z

q Rot x y z

v Rot v q v q

q
q q

−

= =   

 = =  

 1 1 2 2 1 2 1 2 1 2 2 1 1 2

1 2 2 2 2 2

1

[s ,] [s ,] s s , s

[1,(0,0,0)]

1
q () [s,]

[1,(0,0,0)]

v v v v v s v v v

v q s x y z
q

q q

−

−

 = −  + + 

=  − = + + +

 =

Quaternions are
non commutative

multiplicative identity

same angle, same vector, opposite direction

Interpolation between quaternions:

Lerping vs. Slerping

0q q
1

()tq ()tq

keyframes lerp slerp

Solution: Spherical linear interpolation (slerp):
interpolate the circular arcs.

() ()0 1 0 1lerp , , () 1t t t tq q q q q= = − +

linearly interpolated (lerp) intermediate points are not

uniformly spaced when projected onto the circle

=>

move with constant angular velocity along the great circle

between the two points

()
()() ()

()

()

0 1

0 1

1
0 1

sin 1 sin
slerp , , () ,

sin

where cos

t t
t t

q q
q q q

q q

 



 −

− +
= =

=

Keyframe with quaternions

• Each key represented as a rotation matrix

• Convert a sequence of matrices in a

sequence of quaternions

• Interpolation between quaternion keys

• Convert the quaternion sequence inbetween

in sequence of rotation matrices

Rotations in Reality

• It’s easiest to express rotations in Euler angles or
Axis/angle

• We can convert to/from any of these representations

• Choose the best representation for the task

– input: Euler angles

– interpolation: quaternions

– composing rotations: quaternions

Rotate using q1 and then using q2 is like rotation using q2.q1
1 1 1 1

2 1 1 2 2 1 1 2

1

2 1 2 1

() () ()

 () ()

q q P q q q q P q q

q q P q q

− − − −

−

    =    

=    

Euler Angle

glRotatef(angleX, 1, 0, 0)
glRotatef(angleY, 0, 1, 0)
glRotatef(angleZ, 0, 0, 1)
// translate

Quaternion

// convert Euler in quaternion
// multiply quaternions
// convert resulting quaternion in
// axis/angle
glRotate(theta, ax, ay, az)
// translate

),(),(),(),,(xyzzyx θxRθyRθzRθθθE =

Convert
→ Quaternion to Matrix (rotation)

()zyxwq ,,,=





















−−+−

−−−+

+−−−

=

1000

02212222

02222122

02222221

22

22

22

yxxwyzywxz

xwyzzxzwxy

ywxzzwxyyy

M

Convert
→ Matrix (rotation) to Quaternion

w

MM
z

w

MM
y

w

MM
x

MMMMw

444

2

1

011020021221

33221100

−
=

−
=

−
=

+++=

Direct kinematics

Describes the position of each part of the articulated

structure by assigning values ​​to the parameters (joint angle)

for each key position and interpolating the joint between the

key positions.

Inverse Kinematics

Specifies the position of the terminal part of the structure. The

animator does not indicate how each separate part of the

structure must move, all joint angles are then calculated so

that the end effector be positioned as required.

Inverse Kinematics

(q1 … qn) (x,y,z,qx,qy,qz)

K-1

Example: 2-Link Structure

between |l1-l2| and l1+l2

Forward Kinematics

Forward Kinematics

Inverse Kinematics

Inverse Kinematics

),(

),(

1
2

1
1

yxf

yxf

−

−

=

=

q

q

Inverse Kinematics

Problems with IK

Inverse Kinematics (IK)

• Analytical Solutions

• Iterative Methods
(optimization-based methods)

• Incremental Constructions
(matrix inversion techniques)

Summary

Skeleton and skinned mesh

• Embed a skeleton into a detailed character

mesh

Rigging

Skeleton (Rigging) –
authoring of a rig , defining

the skeleton

Animation

Skinning
“paint” of (weighted) links

between vertices and bones

Skinned mesh

• A skinned mesh is a mesh animated by a bone system

(Skeleton of an articulated figure)

• The movement of the skeleton imposes a movement of

the skinned mesh

PROBLEM1: Bind the skeleton to the mesh

• Attempt 1: assign each vertex to closest bone

PROBLEM 2: Provide a natural way to deform the mesh

vertices along with the bones!

Linear blend Skinning

Attempt 2: assign each vertex to multiple bones, compute

world coordinates as convex combination

-Weights: influence of each bone on the vertex

-Leads to smoother deformations of the skin

▪ Moving the skeleton, each joint produces a movement to
the vertex, the final vertex position is an average of the
computed positions

Thank you!

