Blender Game Engine (BGE)

The BGE is one of the most interesting parts of Blender. It allows the creation of simple
games without, if wanted, having to program. BGE uses logical blocks to control the
movement and the display objects. These blocks are divided into the following:

e Sensors — detect events (e.g., what key or button mouse is used);

e Controllers — combine the inputs in order to activate a response;

e Actuators — start a task upon receiving a positive response from the controllers.

e Open Blender;

e Change the cube’s location to (5, 5, 0.5);

e Change the cube’s dimension to (1, 1, 1)

e Change the diffuse colour of the material to blue;

e Change the Engine menu to Blender Game (Info Window);
e Change the Blender layout to Game Logic.

Controlled Navigation

e With the cube selected, press the button Add Sensor and select the Keyboard
sensor;

e Press the left button mouse above the empty field in front of the Key area and,
then, press the key - (this sets the right arrow to this sensor and when pressed
it will activated a positive response);

e Change the name of this sensor to “Right Arrow”;

e Press the button Add Controller and select the And controller;

e Change the name of this controller to “And_RA”,

e Press the button Add Actuator and select the Motion actuator;

e Change to 0.1 the value of the X axes, in the Loc area (each time that the key >
be used, the cube will jump 0.1 unities of Blender);

e Change the name of the actuator to “Mov +X”;

e Link the dots between the blocks (from one dot, press the left button mouse
and, keeping the button down, move the mouse till the other dot);

e In the properties window, icon Render, press the Start button, in the panel
Embedded Player (or P Key), and verify that when pressing the - Key the cube
goes right;

e Return to the Logic Editor, pressing ESCAPE key;

e Apply to the cube the following movements, controlled by the keys ¢ (Loc X=-
0.1), M (Rot Z=2°) and {, (Rot Z=-2°).

Automatic and realistic navigation

e Change the visualization to camera view;

e Change the camera to the location (13, -15, 10), rotated (602, 0°, 35°);

¢ Inthe icon Object Data, Lens panel, change the Focal Length to 25;

e Add a plane, with green as diffuse colour and 16x16 as dimension, to (0, 0, 0.1);
e Apply to the plane 3 subdivisions and remove the faces as figurel;

Figure 1: game’s 3D plane.

Add a cone in the position (0, -7, 0.5), with dimension (1, 1, 1);

With the cone selected, press Add Sensor button and choose the Always;

Press the Add Actuators button and select the Steering actuator;

Put the name of the cube in the field Target Object ;

Link the blocks and verify (P Key) that the cone moves towards the cube,
passing over the plane’s hole, as it doesn’t exist;

Select the cone and in the icon Physics (properties windows), panel Physics,
change its physics type to Dynamic;

In the Steering actuator, deselect the Lock Z Velocity button);

Verify (P key) that the cone falls into the plane’s hole;

For the cone go around obstacles like the plane’s hole, it should be used some
kind of artificial intelligence. To accomplish that, Blender has the technique
called navigation mesh. Any element to become intelligent should be located
within the navigation mesh.

o Select the plane and in the icon Scene (properties window), Navigation
Mesh panel, press the button Build Navigation Mesh;

o Select the cone and, in the Steering actuator, sets the Behavior field
with the value Path Following and the Navigation Mesh field with the
name of the created navigation mesh;

o Verify (P key) that the cone search the cube without falling in the hole;

o In Editing Mode, select one edge of the plane and made an extrusion in
the XX axes. Apply to the created edge a translation in ZZ axes and
made another extrusion in the XX axes;

o Inthe Object Mode, put the cube on the top of the created ramp;

o Verify (P key) that the cone doesn’t climb the ramp because the
navigation mesh doesn’t exist there;

o Select the plane and in the icon Scene (properties window), Navigation
Mesh panel, change the Max Slope field to 75°;

o Press the Build Navigation Mesh button and verify that the navigation
mesh goes into the ramp;

o Select the cone and, in the Steering actuator, set the Navigation Mesh
field with the name of the created navigation mesh;

o Verify (P key) that the cone could now climb the ramp, in spite of the
movement don’t be fully correct (the cone enters inside of the ramp);

o Select the cone and, in the Steering actuator, activate the field N;

o In the icon Render (properties window), press the Start button in the
Standalone Player panel and see that the movement’s cone was better;

o Return to the Logic Editor, pressing the ESCAPE key.

Playing with collisions

Select the blue cube, change its physics type to Dynamic and verify (P key) that
the cube changes its actuation (try put it in the middle of the ramp);

Add another cube, with dimension (1, 1, 1), in the position (-7, 5, 0.5);

Verify, in the icon Physics (properties window), panel Physics, that its physics
type is Static;

Verify (P key) that it’s impossible either to change its location using another
element nor passing through it (used to create limits to the game);

Add a red sphere, with dimension (1, 1, 1), in the position (2, 5, 0.5);

Change its physics type to No Collision;

Verify (P key) that the blue cube passes through the sphere;

Change the sphere physics type to Dynamic;

Verify (P key) that the blue cube can’t pass through the sphere (just push it);
With the sphere selected, press the Add Sensor button and choose the
Collision sensor;

Click in the field M/P and in the front area select the blue material. This makes
that only the elements that have the chosen material of this sensor, when
touched the sphere, triggered a positive response;

Press the Add Actuators button and select the Edit Object actuator;

In this actuator, change it to End Object option;

Link the blocks and verify (P key) that the sphere disappear when the blue cube
touch it;

Copy the sphere (SHIFT + D keys) and put it in another position, align with the
previous sphere in the XX axe;

Verify (P key) that the blue cube made both the spheres disappear, proving that
the copy of an element, copy also the associated blocks that the origin had.

Properties

Properties are some kind of variables that keep information that could be used
during the game. BGE has two types of properties, the basic ones (created
when the button Add Game Property is pressed) and the ones linked to a text
element (created when the button Add Text Game Property is pressed). This
last type allow the users see on the screen the value kept by the property;

One example for the property linked to a text element could be the following:

o Create the text element “0” (just the number 0), aligned with the view,

with the name “Count” and put it on the right corner of the frame;

Press Add Text Game Property button (panel Properties — Logic Editor);

Change the type of the property to Integer;

Select both, the red sphere and the text element;

Add a Property actuator to the text element (“Count”);

Change the field Mode to Add;

Set the property Text to the Property field (the one that was linked to

the text element);

o Put +1 in the field Value (adds 1 to the property Count that was
initialized with 0, when the text was created);

0O O O O O O

Link the And controller of the red sphere to the actuator created above;
Verify (P key) that the counter in the right corner of the frame is
incremented when the blue cube touched the red sphere used above;
Join the last red sphere to the selected elements and link its And
controller to the actuator of the text element;

Verify (P key) that the text in the right corner of the frame has the
information of how many red spheres are touched by the blue cube.

e Na example for the use of the basic properties could be the following:

O

©)
@)
@)

O O O O O

o O

Add to the game a plane with dimension 30x30, name “Test” and in the
position (0, 0, -2);

Press the Add Game Property button (panel Properties — Logic Editor);
Change the name of the property to “life” and its type to Integer;
Change the value of the property to 1;

Press the button E (allows to see the value of the property in the
debug mode);

In the Info window, select the Game option and activate the button
Show Debug Properties;

Add a Collision sensor and a Property actuator to the “Test” plane;
Change the actuator field Mode to Add;

Set the field Property with the property “life”;

Put -1 in the field Value (subtract 1 to the value of the life property);
Link the blocks and verify (P key) that when the blue cube touch the
“Test” plane the property “life” pass from 1 to O;

With the “Test” plane selected, add a Property sensor;

Put in the field Property the property “life”;

Set to 0 the field Value (will activate a positive response when the
property “life” was equal to 0);

Add a Game actuator and change the Game field to Quit Game;

Link the blocks and verify (P key) that when the value of the property
“life” become 0 the game ends.

e The plane “Test” only serves to optimize the game and must be invisible. thus:

@)
@)

o

Select the plane;

In the icon Physics (properties window), panel Physics, press the
Invisible button;

Verify (P key) that the plane is not rendered.

Using different cameras in the game (First camera Shooter)

e Usually the games has several cameras to show the scenes from different
points of view. One example of how to do this is the following:

o

Add a camera, named “CamGo”, in the same position of the blue cube
and rotated (90°, 0°, 90°);

Select the camera and, then, the blue cube;

Create a parent relation by pressing the keys CTRL + P and choose the
option Object (when the cube moves the camera moves accordingly —
to create this type of relations always must be selected first the sons
and only then the father);

O O O O O

Select only the camera and add a Mouse sensor;

Change the field Mouse Event to Right Button;

Add a Scene actuator and change the field Mode to Set Camera;

Put in the field Camera Object the name of the created camera;

Link the blocks and verify (P key) that when the right button of the
mouse was pressed the view of the game changes;

Do the same procedure to return to the previous camera when press
the left button mouse.

Screen Menu

e The games usually start with a main menu and then go to the game scene,
when pressed a button or a key. It is called Screen Menu. A menu of this kind
can be made as follows:

o

O O O O O O

Create a new scene, called “Menulntro” (button + in the Scene area —
Info window, followed by the option New);

Change the Engine to Blender Game;

Add a new camera, located in (10, -10, 7) and rotated (60°, 0°, 35°);
Change the visualization to camera view;

Add a plane, align to view, in the position (2, 1, 0);

Add a Mouse sensor to the created plane;

Change the Mouse Event field to Mouse Over (activate a positive
response when the mouse cursor passes over the plane);

Add a Scene actuator, set the Mode field with Set Scene and in the
Scene field put the name of the other scene;

Link the blocks and verify (P key) that the mouse cursor doesn’t appear;
In the icon Render, properties window, panel Display, activate the
option Mouse Cursor;

Verify (P key) that now the mouse cursor appears and when passes over
the plane the scene is changed;

This way is not common in a game, so add a Mouse sensor to the plane;
Link the previous sensor to the controller AND that is linked to the other
Mouse sensor;

Verify (P key) that the scene only changes when the mouse cursor is
over the plane and the left button mouse is pressed.

Actuator Action

e |t can be use in games any type of animation (made with keyframes, ShapeKeys
or based on armatures). An example of this can be done as follows:

@)
@)
@)

Change the layout to Animation and select the scene Menulntro;
Change the visualization to Camera View and Select the plane;

Set the frame of the Timeline window to 1 and create a keyframe (I key
— option Scaling, if in the 3D View window) with the plane as it is;

Set the frame to 24, scale the plane 5 unities in the XX axe (area
transform in the panel properties — N key) and mark a keyframe;

Set the frame to 48, scale the plane 1 unity in the XX axe (area
transform in the panel properties — N key) and mark a keyframe;

©)
©)

Change the layout to Game Logic;

With the plane selected, add an Action actuator;

Put in the area below the Play the name of the created action and set
the field Start Frame to 1 and End Frame to 48;

Link the action actuator to the Mouse Over sensor;

Verify the result when the mouse cursor passes over the plane (P key).

Creating the executable

e Inorder to create the game's executable, it must be active the export project to
executable addon. If it is not active, it must be the following:

In the Info window, select the option File - User Preferences;
Select the panel Addons;

Press the Game Engine button;

Activate the addon Game Engine: Save As Game Engine Runtime;
Close the User Preferences window.

e Having activated the export project to executable addon, the creation of the
game’s executable is made as follows:

o

@)
@)

In the Info window, select the option File = Export - Save as Game
Engine Runtime;

Select the directory where you want to put the game’s files and the
name of the executable;

Press the Save as Game Engine Runtime button;

Verify if the directory was created and play the game.

Using de scripts

e In most cases, when creating a game, specific operations must be programed.
In BGE this is done by scripts that use the Python language. An example of its
use can be done as follows:

How to move the pawn on the board?

Spacebar =) Run Script
Pressed ? RollDice

=h» PosPl=

= PosP1 +Dice

Dice >0 Run Scri
pt
? $ ChangePosition

=, Dice=0

o

Open the file “FCG_05_BGE_Tabuleiro.blend”;

To obtain a smooth movement for the pawn, add an empty element
(add = Empty =>Plain Axes) to the scene in the position (0.0, 10.0, 0.5);
Select the game board and in the icon Scene (properties window), panel
Navigation Mesh, press the button Build Navigation Mesh. Thus the
pawn never leave the board;

With the pawn selected, add an Always sensor;

Press the Add Actuators button and select the Steering actuator;

In the Behavior field choose Path Following, in the TargetObject field
put the name of the empty element, in the Navigation Mesh field put
the name of the navigation mesh created, set the Dist field with value 0
(goes to the exact position of the Empty element) and activate the
button Visualize;

Link the sensor to the actuator;

Select the Empty element and in the panel Properties, of the Logic
Editor, press the Add Game Property button;

Change the name of the property to “Dice”, the type of the property to

Integer and press the button E (to allow the visualization of property’s
values in the debug mode);

In the Info window, choose the option Game and activate the button
Show Debug Properties;

o

A widely used function in the games is the assignment of a random
value to a variable (for example, to simulate a dice). As the BGE has no
predefined blocks to do this, it must be used a script (a little program).
Thus,

= |n the Text Editor window, press the New button and write the
following:
import random (to be able to use the random library)
from bge import logic (to be able to use the script with BGE blocks)
cont=logic.getCurrentController() (to obtain game’s information)
own=cont.owner (to obtain object’s information to use in the script)
rand=random.randint(1, 2) (Generate random value between 1 e 2)
own|'Dice']=rand (set the property Dice with the random value)
= Change the script name to “RollDice”;
= With the Empty selected, add a Keyboard sensor;
= Press the left mouse button on the empty field in front of the
area Key and, then, press the SPACEBAR key;
= Enable sending only a positive response to the controller, even if
the key be hold down continuously, by pressing the Tap area;
= Add a Python controller and in the field in front of the word
Script put “RollDice”;
= Link the blocks;
= Verify (P key) that when the SPACEBAR was pressed the
property “Dice” change its value to 1 or 2.

One of the ways to put the pawn to walk on the squares of the board is
made as follows:

= Select the Empty element;
= In the panel Properties of the Logic Editor, press the Add Game
Property button;
= Change the property’s name to “PosP1”;
» Change the property’s type to Integer and press the button &;
* In the Text Editor window, press the + button and write the
following:
from bge import logic (to be able to use the script with BGE blocks)
cont=logic.getCurrentController() (to obtain game’s information)

own=cont.owner (to obtain object’s information to use in the script)

if own['PosP1']<=6: (Define the initial pawn movement)
own.position = [0.0, -own['PosP1'1*2.0+10.0, 0.5]
elif own['PosP1']>=7: (Define the final pawn movement)

own.position = [-(own['PosP1']-6)*2.0, -2.0, 0.5]

= Change the script name to “ChangePosition”;

= With the Empty selected, add a Property sensor;

= Put Greater Than in the field Evaluation Type;

= Put “Dice” in the Property field;

= Put 0 in the Value field (a positive response is triggered when
the property “Dice” is 0);

= Add a Python controller and in the field in front of the word
Script put “ChangePosition”;

= Link the blocks;

= Add a And controller and link it to the sensor Property (Dice>0);

= Add a Property actuator;

= Change the field Mode to Add;

= Putin the field Property the property “PosP1”;

= Put the property “Dice” in the field Value (sum the value of the
property “Dice” to the property “PosP1”);

= Link the created actuator to the previous And controller;

= Add a new actuator Property;

= Put Assign to the field Mode;

= Put “Dice” in the Property field;

* Put0in the field Value (sets that value to the property “Dice”);

= Link the created actuator to the And controller where the
previous actuator was linked;

= Verify (P key) that when the SPACEBAR is pressed the pawn
moves accordingly on the board;

= |tis important to note that the formulas used to move the pawn
depends on the position of the squares of the board;
= |tis important to note that the order of the blocks is essential. In
this case, if the block that sets the property “Dice” to 0 was first
then the one that adds the “Dice” property to the “PosP1”
property, the pawn never move.
o During a board game, tend to be places where one has to retreat,
advance, answer a question, got to the start or finish position or take
any other action. So, the treatment, for example, the situation of going

back when the pawn arrive to the yellow square on the board, can be
done as the following:

How to go back 3 squares?

PosP1=
— =PosP1-3
PosP1=4
?
Run Scrip
ChangePosition

= With the Empty selected, add a Property sensor;

= Putin the Property field the property “PosP1”;

= Set the Value field with 4;

» Link the created sensor to the “ChangePosition” Pyton
controller;

= Add a Property actuator;

= Change the field Mode to Add;

= Putin the field Property the property “PosP1”;

= Put-3in the field Value (go back 3 squares);

= Link the last created sensor to the actuator;

= Verify (P key) that the pawn go back three squares when arrive
to the yellow square.

