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Geometric Objects and 

transformations

• We represent objects using 

mainly linear primitives:

– points

– lines, segments

– planes, polygons

• Need to know how to 

transform objects, compute 

distances, change 

coordinate systems…



Coordinate Systems

• Right handed coordinate system

x

y

z

In CG we use the rule:  

z axis perpendicular to the 

screen



Coordinate Systems

• Left handed coordinate system

y

z

x



Scalars, Points and Vectors

• Scalar specifies magnitude (quantità)

• Point specifies location in space (or in the plane)

• Vector is a quantity with two attributes: 

magnitude and direction (direzione+verso). 

No location in space.

Points  Vectors



Linear/Vector Space 

• Entities: VECTORS and SCALARS

• Operations: 

– Multiplication   scalar  vector

– Vector sum
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vector + vector = vector

Parallelogram rule
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Space Dimension

• In a vector space V, the maximum number of 

linearly independent vectors is fixed and is called 

the dimension of the space

• In an n-dimensional space, any set of n linearly 

independent vectors form a basis for the space

• Given a basis a1, a2,…., an, any vector v in V can 

be written as the linear combination

v=a1a1+ a2a2 +….+anan

where the {ai} are unique

In V=R3, the Euclidean vectors a1,a2,a3

define a coordinate system



Dot product in coordinates x,y:
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Linear Space with

Dot Product (or Inner Product)

Given 2 vectors get a scalar value



( )
2

2
1

,
n

T

i

i

a a a a a a
=

= = = 

2-norm or Euclidean norm
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Euclidean norm is a notion of length preserved by

rotations/translations/reflections of space.



Vector Magnitude

• The magnitude (length) of a vector a in R3 is:

• A vector with length=1.0 is called a unit vector

• We can also normalize a vector to make it a unit 
vector:
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Inner (dot) product
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a

bAngle between 2 vectors

Properties
Commutative

<a,b>=<b,a>

Distributive

<a,b+c>=<a,b> + <a,c>

Bilinear, r scalar

<a,r b+c>=r<a,b>+<a,c>
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• If  ||u||≠1.0  then ||a|| is the length of the vector a

which is the projection of b onto u

b

u
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θ

Vector Projection 

(orthogonal projection)



Vector Projection 

(orthogonal projection)
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• If  ||u||=1.0  then <b,u> is the length of the vector a

which is the projection of b onto u
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Dot Products with General Vectors

• The dot product is a scalar value that tells 

us something about the relationship 

between two vectors

– If  a·b > 0 then  θ < 90º

– If a·b < 0  then  θ > 90º

– If  a·b = 0 then  θ = 90º (or one or more of the 

vectors is degenerate (0,0,0))



Dot Products with unit Vectors
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Perpendicular vectors
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Cross Product : Properties 
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Area of the parallelogram ab

if a and b are parallel

a

b

axb

is a vector perpendicular to both 

a and b, in the direction defined by 

the right hand rule

θ



Cross Product
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Example: Normal of a Triangle

• Find the unit length normal of the triangle 

defined by 3D points A, B, and C

A
B

C



Example: Normal of a Triangle
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Example: Area of a Triangle

• Find the area of the triangle defined by 3D 

points A, B, and C

A
B

C
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Example: Area of a Triangle



Example: Alignment to Target

• An object is at position P with a unit length 

heading of h. We want to rotate it so that the 

heading is facing some target T. 

• Find a unit axis a and an angle θ to rotate 

around.

•

•

P

h

T



•
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Example: Alignment to Target



Vector Class (C++)
class Vector3 {

public:

Vector3() {x=0.0f; y=0.0f; z=0.0f;}

Vector3(float x0,float y0,float z0) {x=x0; y=y0; z=z0;}

void Set(float x0,float y0,float z0) {x=x0; y=y0; z=z0;}

void Add(Vector3 &a) {x+=a.x; y+=a.y; z+=a.z;}

void Add(Vector3 &a,Vector3 &b) {x=a.x+b.x; y=a.y+b.y; z=a.z+b.z;}

void Subtract(Vector3 &a) {x-=a.x; y-=a.y; z-=a.z;}

void Subtract(Vector3 &a,Vector3 &b) {x=a.x-b.x; y=a.y-b.y; z=a.z-b.z;}

void Negate() {x=-x; y=-y; z=-z;}

void Negate(Vector3 &a) {x=-a.x; y=-a.y; z=-a.z;}

void Scale(float s) {x*=s; y*=s; z*=s;}

void Scale(float s,Vector3 &a) {x=s*a.x; y=s*a.y; z=s*a.z;}

float Dot(Vector3 &a) {return x*a.x+y*a.y+z*a.z;}

void Cross(Vector3 &a,Vector3 &b)

{x=a.y*b.z-a.z*b.y; y=a.z*b.x-a.x*b.z; z=a.x*b.y-a.y*b.x;}

float Magnitude() {return sqrtf(x*x+y*y+z*z);}

void Normalize() {Scale(1.0f/Magnitude());}

float x,y,z;

};



Affine Space

• In a linear space the concept of location is 
missing

• An affine space is an extension of a linear 
space which includes the Point

• New operations: 

- sum point + vector: defines a new point

- difference point-point: defines a vector



Point + vector = point

A

B=A+v



point - point = vector

A

B

A

B



point + point: not defined!!



Map points to vectors

• If we have a coordinate system with 

origin at point O

• We can define correspondence between 

points and vectors:

P v P O

v P O v

→ = −

→ = +



Affine Combination

1 1 2 2
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for some a a a
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Affine Combination is a linear combination of 
points with coefficients that sum up to 1

The coefficients (a1,a2,...,an) are defined as
barycentric coordinates of P in the affine space

Affine Combinations with coefficients (a1,a2,...,an) in
[0,1] are called convex combinations



Convexity

• An object is convex iff for any two points in 

the object all points on the line segment 

between these points are also in the object

P

Q Q

P

convex
not convex



Convex hull

nPPP ,.....,, 21

• Given a set of points

• The set of all the points  P which can be represented 

as a convex combinations is called convex hull 

(guscio convesso) of the set

• Smallest convex object containing P1,P2,…..Pn

P



Barycentric coordinates (2D)
• Define a point’s position relatively to some fixed points

A,B,C

P = aA + B + C, 
where A, B, C are not on one line, and a, ,   R. 

• (a, , ) are called Barycentric coordinates of P with 
respect to A, B, C (unique!)

• If P is inside the triangle, a, ,   [0, 1], a++ = 1

A B

C

P

R

Q
Q, R??



Barycentric coordinates (2D)
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P
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, , denotes the area of the triangle
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Compute BC

n

A=(x0,y0)

B=(x1,y1)

t

t = (x1-x0,y1-y0)

n =Perp(t)= (y1-y0,-(x1-x0))  

Normalize if desired

Implicit line equation EAB :

for all points P on the line

( ) 1 0

0 0

1 0

0 1 0 0 1 0

( ) 0

0

0
( )

0

( , ) ( )( ) ( )( )AB

P A n

on
y y

x x y y left
x x

right

E x y x x y y y y x x

− =

=
− 

− −  
− − 



= − − − − −

+

-



Compute BC
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Example of usage: warping 



Example of usage: warping 

A

TARGET

A
B

C

B

C

We take the barycentric coordinates

a, ,  of P’ with respect to A’, B’, C’

Color(P’) = Color(a A +  B +  C)

P

P

P



Parametric equation of a line

• Set of all points that pass through P0 in the 

direction of the vector v

),(,0 −+= tvtP(t)

P0

v



Distance between two points
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Distance between point and line
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Implicit equation of a line in 2D

0,R,,,0 =++ BACBACByAx

x

y Ax+By+C > 0

Ax+By+C < 0



Line-segment intersection

x

y
Ax+By+C > 0

Ax+By+C < 0

Q1 (x1, y1)

Q2  (x2, y2)

0))((
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Representation of a plane in 3D 

space

• The plane  is defined by a normal n and one point 

in the plane (P0).

• A point Q belongs to the plane   <Q – P0 , n> = 0

• The normal n is perpendicular to all vectors in the 

plane
n

P0

Q




Distance between point and plane

• Project the point onto the plane in the 

direction of the normal:

dist(Q, ) = ||Q’ – Q||

n

P0
Q’



Q



Distance between point and plane
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Implicit representation of planes in 

3D

0,R,,,,0 =+++ CBADCBADCzByAx

• (x, y, z) are coordinates of a point on the plane

• (A, B, C) are the coordinates of a normal vector 

to the plane

Ax+By+Cz+D > 0

Ax+By+Cz+D < 0

Ax+By+Cz+D = 0



Coordinate Frame 
(Sistemi di riferimento)

3322110 vavavaPP +++=

• A frame is defined by the quadruple

F=(Po,v1,v2,v3) 

where 

– Po is a point (origin)

– [v1,v2,v3] is a vector basis (orthonormal)

• In a frame F the coordinates (a1, a2, a3) uniquely describe

the point:



Homogeneous Coordinates

332211 vavavaw ++=

• Representing both vectors and points using 

three scalar values is ambiguous..

• We consider a coordinate  system which 

allows for a unique representation for points 

and vectors

• A vector is represented as

• A point is represented as

3322110 vavavaPP +++=



0332211 0 Pvavavaw +++=

• Assume 

1*P=P    and     0*P=0   (zero vector)

• A vector is then given by

• A point is then given by

0332211 1 PvavavaP +++=

Homogeneous Coordinates



 Taaa 0321

• Add an extra dimension, each point has an extra 

value, 0 or 1

• Every point/vector is defined by 4 coordinates. In 

vector form:

Point coordinates:

Vector coordinates:

 Taaa 1321

Homogeneous Coordinates



Change of reference systems

(frames) in 2D

y

o
x

v

e

u

P

P = (xp,yp) = o + xp x + yp y 

(xp,yp) =(2.5,0.9)

Express P in the frame (o,x,y)

Express P in the frame (e,u,v)

P = (up,vp) = e + up u + vp v 

(up,vp) =(0.5,-0.7)

1 0 0 1 1

p u v e p

p u v e p

x x x x u

y y y y v

     
     =
     
          

Change the coordinates of a 

vector/point from one system

to another

0 0 1
xy uv

u v e
P P

 
=  
 

Matrix of the coordinate change



1 0 0 0 1 1

0 0 0 1

p u v w e p

p u v w e p

p u v w e p

xyz uvw

xyz uvw

x x x x x u

y y y y y v

z z z z z w

u v w e
P P

P M P

     
     
     =
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=

Given the reference systems (frames) (o,x,y,z) and 

(e,u,v,w) represent P:

1

1

1

1 0 0 0 1 1

0 0 0 1

p u v w e p

p u v w e p

p u v w e p

uvw xyz

uvw xyz

u x x x x x

v y y y y y

w z z z z z

u v w e
P P

P M P
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−

−

     
     
     =
     
     
     

 
=  
 

=

Change of reference systems

(frames) in 3D

Coords of u 

wrt (o,x,y,z)



Geometric Transformations

• Transform the object coords in order to obtain a 

similar object which differs for position, 

orientation and size

• Modify the geometry but not the topology of the 

objects

• Transformations are used: 
– Position objects in a scene (modeling)

– Change the shape of objects

– Create multiple copies of objects

– Projection for virtual cameras

– Animations



2D Translation

'

'

x

y

x x d

y y d

= +

= +

• Move (translate, displace) a point P to a new location 

• Displacement determined by a vector d=(dx,dy)

every point displaced

by same vector

O

P
P’=P+d



2D Rotation

• Rotation about the origin by angle 

O



Positive angle means

counter-clockwise direction.



2D Rotation

• Rotation about the origin by angle 

O



Positive angle means

counter-clockwise direction.



Rotation in 2D –

matrix representation











cossin

sincos

cossin

sincos

)(

yxy

yxx

y

x

y

x

PRP

+=

−=
















 −
=













=

• Multiply P=(x, y) by 

the rotation matrix:

O

 P (x, y)

P’ = R (P)



2D Scale

ysyy

xsxx

y

x

sy

sx

y

x

PSP

*

*

0

0

)(

=

=

















=













=• Uniform sx=sy

• Non uniform sx≠sy

• About the origin  

O

00
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syosx

sysx

sysx • the object will shrink

• the object will grow by a factor of s in each 

dimension

• the object will be reflected across all two 

dimensions, leading to an object that is ‘inside out’



2-D Shear (Horizontal)

Shear factor s (positive for the figure below)
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Hij i coord. will change, j coord. will deform

Horizontal displacement proportional to vertical position



2-D Shear (Vertical)
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Shear factor s (negative for the figure below)



How are Invertible Linear

Transformations Represented?

x' = ax + by

y' = dx + ey

x'

y'

a    b

d    e
=

x

y

p'   =  M p    

An invertible  linear transformation is represented by a 

non-singular matrix M 

Each non-singular matrix defines a linear transformation

L(p + q) = L(p) + L(q)

L(ap) = a L(p)



How are Affine Transformations 

Represented?

x' = ax + by + c

y' = dx + ey + f

x'

y'

a    b

d    e

c

f
=

x

y
+

p'   =      M p    +   t

Compose linear transformation and translation



Affine Transformations in 

Homogeneous Coordinates

x'

y'

1
=

x

y

1

a

d

0

b

e

0

c

f

1

Translations can be encoded in the matrix

p'   =      M p

x' = ax + by + c

y' = dx + ey + f

M affine matrix



Affine Transformations in 

Homogeneous Coordinates

' 0 0

' 0 0

1 0 0 1 1

' 1 0

' 0 1

1 0 0 1 1

' cos( ) sin( ) 0

' sin( ) cos( ) 0

1 0 0 1 1

x

y

x sx x

y sy y

x d x

y d y

x x

y y
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−     
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Scale

Translation

Rotation



Inverses

1

' 1 '

1

1

1

( ) ( )

( ) (1/ ,1/ )

( ) ( ) ( )

x y

T

MM I

P MP P M P

T d T d

S s S s s

R R R  

−

−

−

−

−

=

= −  =

= −

=

= = −

If M transforms P into P’, then  

M-1 transforms P′ back to P



How are transforms combined?

(0,0)

(1,1)
(2,2)

(0,0)

(5,3)

(3,1)
Scale(2,2) Translate(3,1)

TS  =

2

0

0

2

0

0

1

0

0

1

3

1

2

0

0

2

3

1=

Scale then Translate

Use matrix multiplication:  

p’  =  S(p)         p’’=T(p’)=T ( S p )  =  TS p

0 0 1 0 0 1 0 0 1



Multiple Transformations

• v is transformed in v’ by means of sequence of 
transformations:

• Because matrix algebra obeys the associative law, we 
can regroup this as:

• This allows us to concatenate them into a single matrix:

• Caution: matrix multiplication is NOT commutative! So 
the order of multiplications is important!

( )( )( )vMMMMv = 1234

( ) vMMMMv = 1234

vMv

MMMMM

=

=

total

total 1234



Non-commutative Composition

Scale then Translate:   p'  =  T ( S p )  =  TS p

Translate then Scale:   p'  =  S ( T p )  =  ST p

(0,0)

(1,1)
(4,2)

(3,1)

(8,4)

(6,2)

(0,0)

(1,1)
(2,2)

(0,0)

(5,3)

(3,1)
Scale(2,2) Translate(3,1)

Translate(3,1) Scale(2,2)



TS  =

2

0

0

0

2

0

0

0

1

1

0

0

0

1

0

3

1

1

ST  =

2

0

0

2

0

0

1

0

0

1

3

1

Non-commutative Composition

Scale then Translate:   p'  =  T ( S p )  =  TS p

2

0

0

0

2

0

3

1

1

2

0

0

2

6

2

=

=

Translate then Scale:   p'  =  S ( T p )  =  ST p

0 0 1 0 0 1 0 0 1



Pivot Transformations

scaling around a point (dx,dy) that is not the origin 

' 1 0 0 0 1 0

' 0 1 0 0 0 1

1 0 0 1 0 0 1 0 0 1 1

rotation around  a point (dx,dy) that is not the or

x

y

x dx s dx x

y dy s dy y

−         
         = − 
         
                  

igin

' 1 0 cos( ) sin( ) 0 1 0

' 0 1 sin( ) cos( ) 0 0 1

1 0 0 1 0 0 1 0 0 1 1

x dx dx x

y dy dy y

 

 

− −         
         = − 
         
                  

Translate to the origin, scale, translate to the initial position

Translate to the origin, rotate, translate to the initial position



3D Translate

'P P= + d
'

'

'

x

y

z

x x d

y y d

z z d

     
     = +
     
          

'

'

'

x

y

z

x x d

y y d

z z d

= +

= +

= +



Homogeneous Transformations

• Affine  3D Transformations in homogeneous 

coordinates. In a general matrix form:

1 1 1 1

2 2 2 2

3 3 3 3

1 1 1 1

2 2 2 2

3 3 3 3

'

'

'

1     0 0   0   1

'

'
'

'

1 0 0 0 1 1

x a x b y c z d

y a x b y c z d

z a x b y c z d

x y z

x a b c d x

y a b c d y
P P

z a b c d z

= + + +

= + + +

= + + +

= + + +

     
     
     =  = 
     
     
     

M



3D Translate (tx, ty, tz)

in homogeneous coordinates

• Now translations 

can be encoded in the matrix!

• A 4x4 translation matrix that 

translates an object by the vector t is:

x'

y'

z'

0

=

x

y

z

1

1

0

0

0

0

1

0

0

0

0

1

0

tx

ty

tz

1

Translate(c,0,0)

x

y

p p'

c

x'

y'

z'

1



• About z axis

x'

y'

z'

1

=

x

y

z

1

cos θ

sin θ

0

0

-sin θ

cos θ

0

0

0

0

1

0

0

0

0

1

x

y

z

p

p'

θ

3D Rotations

vv = )(zR

Rotation about z axis in three dimensions leaves all points

with the same z



• About 

x axis:

• About 

y axis:

x'

y'

z'

1

=

x

y

z

1

0

cos θ

sin θ

0

0

-sin θ

cos θ

0

1

0

0

0

0

0

0

1

x'

y'

z'

1

=

x

y

z

1

cos θ

0

-sin θ

0

sin θ

0

cos θ

0

0

1

0

0

0

0

0

1

3D Rotations

Multiple Rotations about an axis are commutative



Arbitrary Axis 

Rotation

• About (kx, ky, kz), a unit 

vector on an arbitrary axis

(Rodrigues Formula)

x'

y'

z'

1

=

x

y

z

1

kxkx(1-c)+c

kykx(1-c)+kzs

kzkx(1-c)-kys

0

0

0

0

1

kzkx(1-c)-kzs

kzkx(1-c)+c

kzkx(1-c)-kxs

0

kxkz(1-c)+kys

kykz(1-c)-kxs

kzkz(1-c)+c

0

where   c = cos θ &   s = sin θ

Rotate(k, θ)

x

y

z

θ

k



Scale (sx, sy, sz)

• The uniform scaling matrix scales an 

entire object by scale factor s=sx=sy=sz

• The non-uniform scaling matrix scales 

independently along the x, y, and z

axes

x'

y'

z'

1

=

x

y

z

1

sx

0

0

0

0

sy

0

0

0

0

sz

0

0

0

0

1

Scale(s,s,s)

x

p

p'

q
q'

y

'

'

'

x

y

z

x s x

y s y

z s z

=

=

=



Shear Transformations

• Modify  2 or 3 vectors coords proportionally to the value 

of the other coords;

• Hij i coord. will change, j coord. will deform
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zyzx
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Analogously for Hxy, Hyx, Hyz, Hzx, Hxy, Hzy,

H(s)-1=H(-s)



Shear Transformations

• A shear transformation matrix looks something like this:

• With pure shears, only one of the constants is non-zero

• A shear can also be interpreted as a non-uniform scale 
along a rotated set of axes

• Shears are sometimes used in computer graphics for 
simple deformations or cartoon-like effects
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Generalized 4 x 4 transformation matrix in 

homogeneous coordinates 

1 1 1 1

2 2 2 2

3 3 3 3

'

'

'

'

1 0 0 0 1 1

P P

x a b c d x

y a b c d y

z a b c d z

= 

     
     
     = 
     
     
     

M

Linear Transformations

Translations

Perspective Projection



Rigid-Body / Euclidean 

Transformations

• Move the objects leaving shape and dimension unchanged

• Preserves distances

• Preserves angles

Translation
Rotation

Rigid / Euclidean

Identity



Similitudes / Similarity Transforms

• Preserves angles

Translation
Rotation

Rigid / Euclidean

Similitudes

Isotropic Scaling
Identity



Linear Transformations

Translation
Rotation

Rigid / Euclidean
Linear

Similitudes

Isotropic Scaling
Identity

Scaling

Shear

Reflection

Courtesy of Prof. Fredo Durand 



Affine Transformations

• Include all linear transformations

plus translation

• Preserves

parallel lines

Translation
Rotation

Rigid / Euclidean
Linear

Similitudes

Isotropic Scaling

Scaling

Shear

Reflection
Identity

Affine



Projective Transformations

Translation
Rotation

Rigid / Euclidean
Linear

Affine

Projective

Similitudes

Isotropic Scaling

Scaling

Shear

Reflection

Perspective

Identity



Properties of Transformations
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