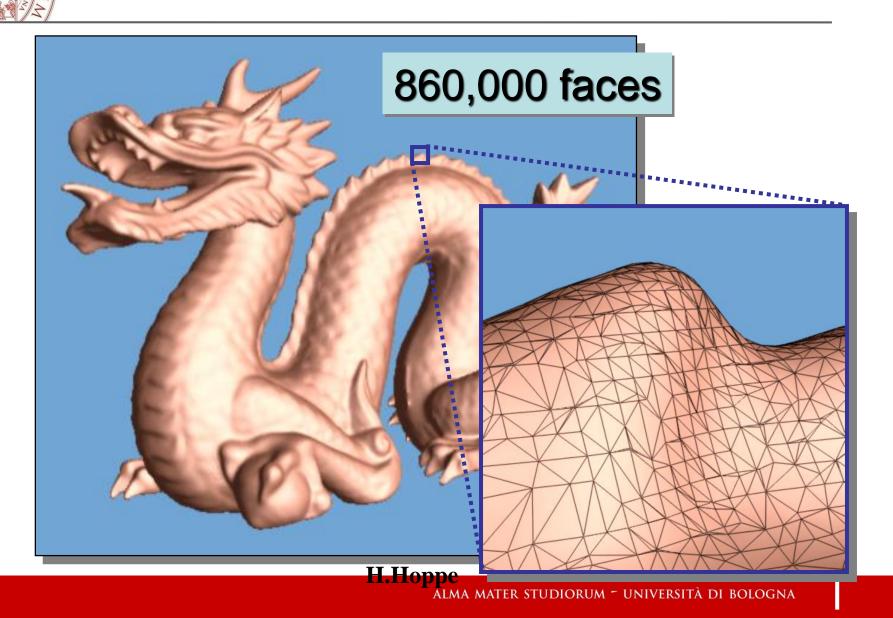


Geometry for Computer Graphics

Fondamenti di Computer Graphics 2018/2019 Serena Morigi <u>serena.morigi@unibo.it</u> http://www.dm.unibo.it/~morigi/

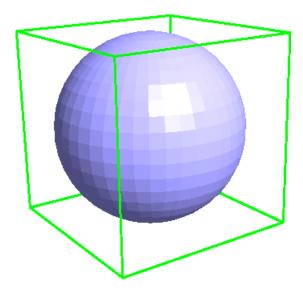
ALMA MATER STUDIORUM - UNIVERSITÀ DI BOLOGNA

IL PRESENTE MATERIALE È RISERVATO AL PERSONALE DELL'UNIVERSITÀ DI BOLOGNA E NON PUÒ ESSERE UTILIZZATO AI TERMINI DI LEGGE DA ALTRE PERSONE O PER FINI NON ISTITUZIONAL



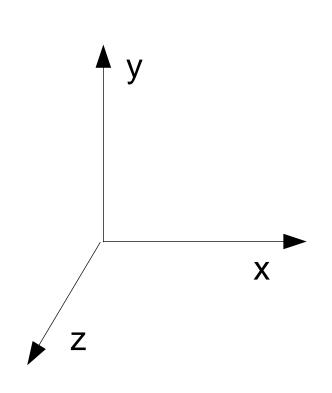
Geometric Objects and transformations

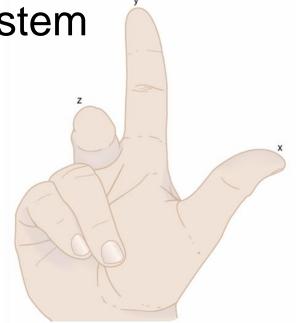
- We represent objects using mainly linear primitives:
 - points
 - lines, segments
 - planes, polygons
- Need to know how to transform objects, compute distances, change coordinate systems...



Coordinate Systems

Right handed coordinate system

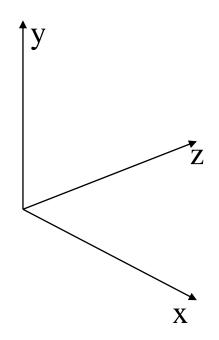




In CG we use the rule: z axis perpendicular to the screen

Coordinate Systems

Left handed coordinate system



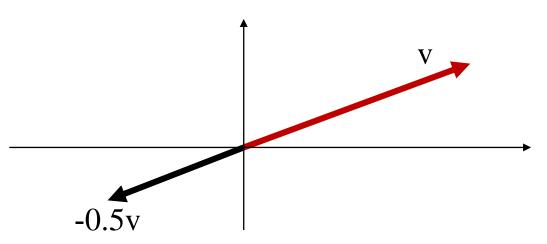
Scalars, Points and Vectors

- **Scalar** specifies *magnitude* (quantità)
- **Point** specifies *location* in space (or in the plane)
- Vector is a quantity with two attributes: magnitude and direction (direzione+verso). No location in space.

Points \neq Vectors

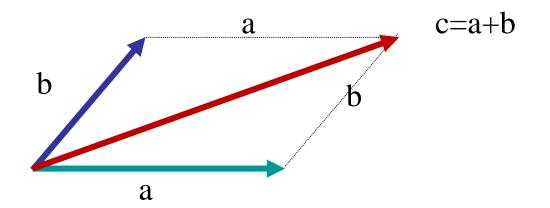
Linear/Vector Space

- Entities: VECTORS and SCALARS
- Operations:
 - Multiplication scalar vector
 - Vector sum



vector + vector = vector

Parallelogram rule



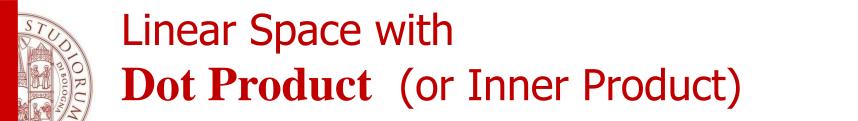
$$\mathbf{a} = \begin{bmatrix} a_x & a_y & a_z \end{bmatrix}$$
$$\mathbf{b} = \begin{bmatrix} b_x & b_y & b_z \end{bmatrix}$$
$$\mathbf{a} + \mathbf{b} = \begin{bmatrix} a_x + b_x & a_y + b_y & a_z + b_z \end{bmatrix}$$
$$\mathbf{a} - \mathbf{b} = \begin{bmatrix} a_x - b_x & a_y - b_y & a_z - b_z \end{bmatrix}$$
$$-\mathbf{a} = \begin{bmatrix} -a_x & -a_y & -a_z \end{bmatrix}$$
$$s\mathbf{a} = \begin{bmatrix} sa_x & sa_y & sa_z \end{bmatrix}$$

- In a vector space V, the maximum number of linearly independent vectors is fixed and is called the *dimension* of the space
- In an *n*-dimensional space, any set of n linearly independent vectors form a *basis* for the space
- Given a basis a₁, a₂,..., a_n, any vector v in V can be written as the *linear combination*

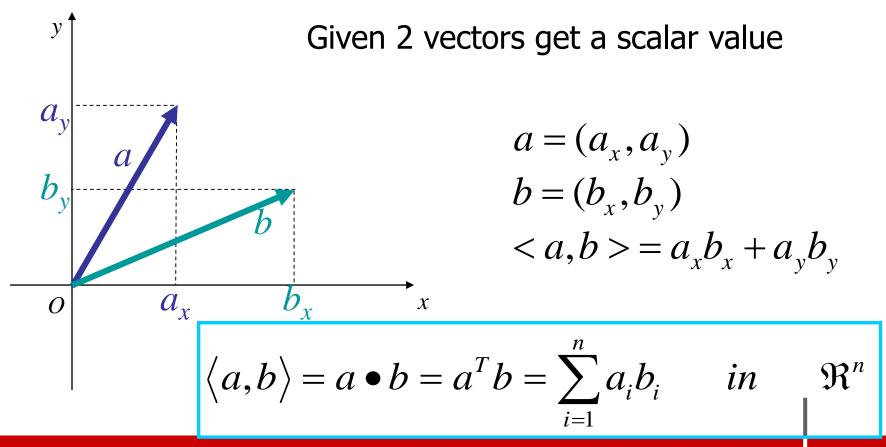
$$v = \alpha_1 a_1 + \alpha_2 a_2 + \dots + \alpha_n a_n$$

where the $\{\alpha_i\}$ are unique

In V=R³, the Euclidean vectors a_1, a_2, a_3 define a *coordinate system*



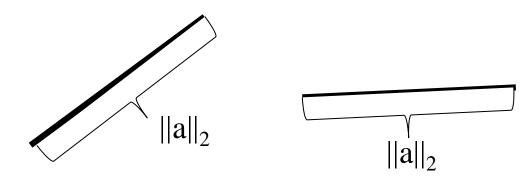
Dot product in coordinates x,y:



2-norm or Euclidean norm

$$\left\|a\right\|_{2} = \sqrt{\langle a, a \rangle} = \sqrt{a^{T}a} = \sqrt{\sum_{i=1}^{n} (a_{i})^{2}}$$

Euclidean norm is a notion of length preserved by rotations/translations/reflections of space.



Vector Magnitude

• The magnitude (length) of a vector a in R³ is:

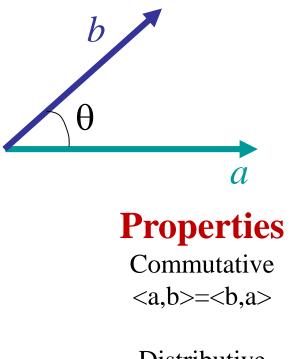
$$\|a\|_{2} = \sqrt{a_{x}^{2} + a_{y}^{2} + a_{z}^{2}}$$

- A vector with length=1.0 is called a *unit vector*
- We can also *normalize* a vector to make it a unit vector:

$$\overline{a}_{2}$$

Inner (dot) product

Angle between 2 vectors $\mathbf{a} \cdot \mathbf{b} = \|\mathbf{a}\| \|\mathbf{b}\| \cos \theta$ $\cos\theta = \left(\frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{a}\| \|\mathbf{b}\|}\right)$ $\theta = \cos^{-1} \left(\frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{a}\| \|\mathbf{b}\|} \right)$

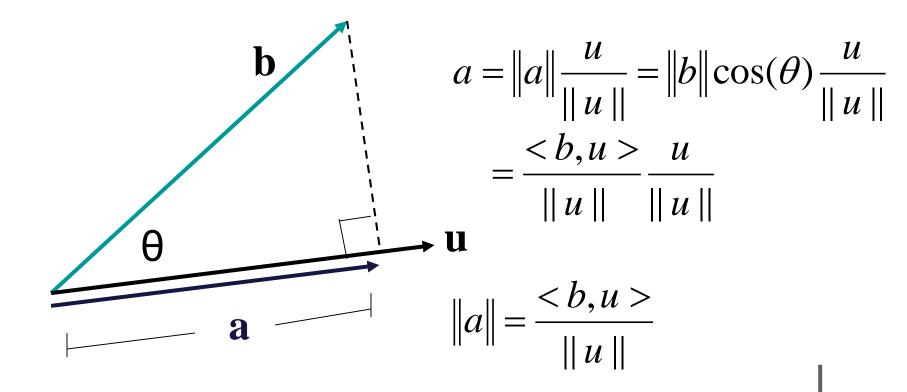


Distributive <a,b+c>=<a,b>+<a,c>

Bilinear, r scalar <a,*r* b+c>=*r*<a,b>+<a,c>

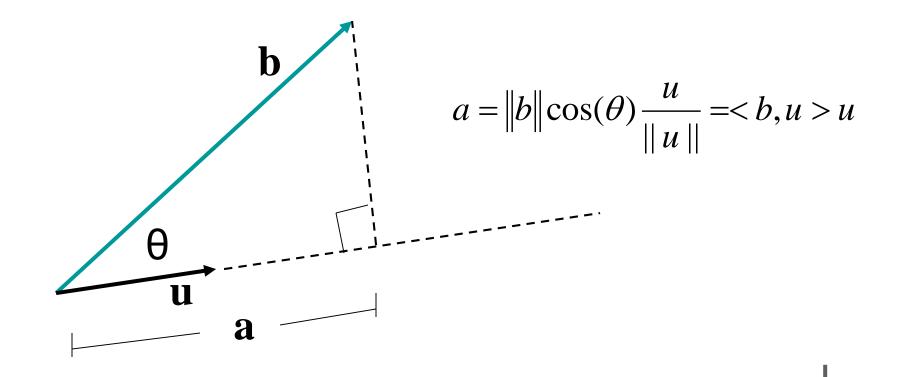
Vector Projection (orthogonal projection)

If ||u||≠1.0 then ||a|| is the length of the vector a which is the *projection* of b onto u



Vector Projection (orthogonal projection)

If ||u||=1.0 then <b,u> is the length of the vector a which is the *projection* of b onto u



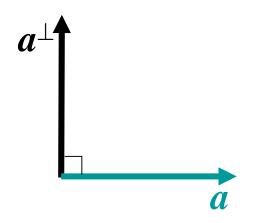
 The dot product is a scalar value that tells us something about the relationship between two vectors

- If $\mathbf{a} \cdot \mathbf{b} > 0$ then $\theta < 90^{\circ}$
- If $\mathbf{a} \cdot \mathbf{b} < 0$ then $\theta > 90^{\circ}$
- If $\mathbf{a} \cdot \mathbf{b} = 0$ then $\theta = 90^{\circ}$ (or one or more of the vectors is degenerate (0,0,0))

Dot Products with unit Vectors cos(x)0.5 0 x -0.5 $0 < a \cdot b < 1$ -1 $-\pi/2$ $\mathbf{a} \cdot \mathbf{b} = \mathbf{0}$ $\mathbf{a} \cdot \mathbf{b} = \mathbf{1}$ b a θ $-1 < a \cdot b < 0$ ∕∕a∙b $|\mathbf{a}| = |\mathbf{b}| = 1.0$ $\mathbf{a} \cdot \mathbf{b} = \cos(\theta)$ $\mathbf{a} \cdot \mathbf{b} = -1$

Perpendicular vectors

$$a = (a_x, a_y) \implies a^{\perp} = \pm (-a_y, a_x)$$

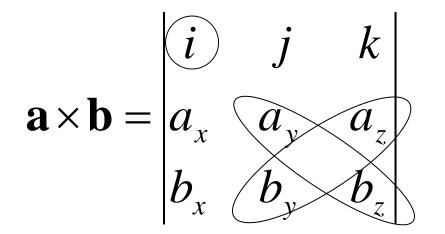


a × b is a vector perpendicular to both a and b, in the direction defined by the right hand rule

$$\|\mathbf{a} \times \mathbf{b}\| = \|\mathbf{a}\| \|\mathbf{b}\| \sin \theta$$

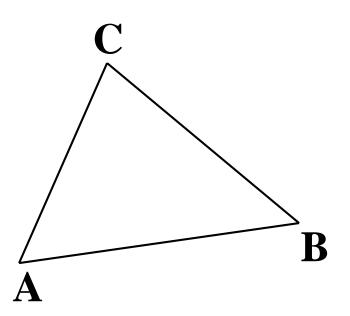
- $\|\mathbf{a} \times \mathbf{b}\| =$ Area of the parallelogram **ab**
- $\|\mathbf{a} \times \mathbf{b}\| = 0$ if **a** and **b** are parallel

Cross Product



$$\mathbf{a} \times \mathbf{b} = \begin{bmatrix} a_y b_z - a_z b_y & a_z b_x - a_x b_z & a_x b_y - a_y b_x \end{bmatrix}$$

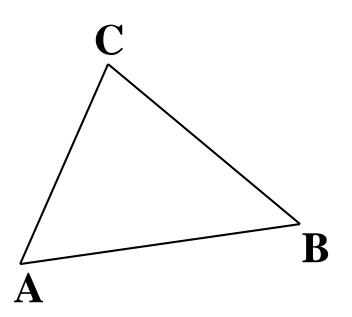
 Find the unit length normal of the triangle defined by 3D points A, B, and C



Example: Normal of a Triangle

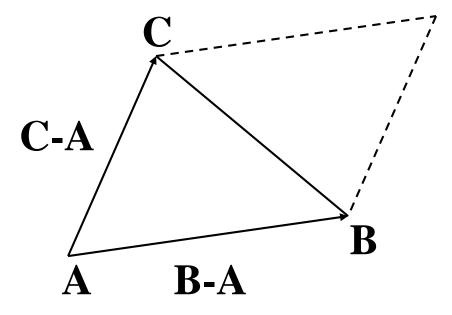
$$\mathbf{n}^* = (B - A) \times (C - A)$$
$$\mathbf{n} = \frac{\mathbf{n}^*}{\|\mathbf{n}^*\|} \qquad \mathbf{C}$$
$$\mathbf{C} - \mathbf{A} \qquad \mathbf{C}$$
$$\mathbf{A} \qquad \mathbf{B} - \mathbf{A}$$

Find the area of the triangle defined by 3D points A, B, and C

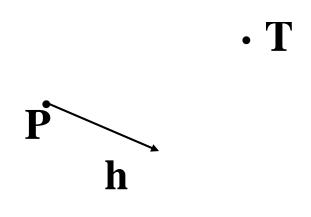


Example: Area of a Triangle

$$area = \frac{1}{2} \left\| (B-A) \times (C-A) \right\|$$



- An object is at position P with a unit length heading of h. We want to rotate it so that the heading is facing some target T.
- Find a unit axis a and an angle θ to rotate around.



Example: Alignment to Target

$$\mathbf{a} = \frac{\mathbf{h} \times (T - P)}{\|\mathbf{h} \times (T - P)\|}$$
$$\mathbf{a} \qquad \theta = \cos^{-1} \left(\frac{\mathbf{h} \cdot (T - P)}{\|(T - P)\|} \right)$$

Vector Class (C++)

class Vector3 { public: Vector3() {x=0.0f; y=0.0f; z=0.0f;} Vector3(float x0,float y0,float z0) {x=x0; y=y0; z=z0;} void Set(float x0,float y0,float z0) {x=x0; y=y0; z=z0;} void Add(Vector3 &a) $\{x + = a.x; y + = a.y; z + = a.z;\}$ void Add(Vector3 &a,Vector3 &b) {x=a.x+b.x; y=a.y+b.y; z=a.z+b.z;} void Subtract(Vector3 &a) {x-=a.x; y-=a.y; z-=a.z;} void Subtract(Vector3 &a,Vector3 &b) {x=a.x-b.x; y=a.y-b.y; z=a.z-b.z;} void Negate() {x=-x; y=-y; z=-z;} void Negate(Vector3 &a) $\{x=-a.x; y=-a.y; z=-a.z;\}$ void Scale(float s) {x*=s; v*=s; z*=s;} void Scale(float s,Vector3 &a) {x=s*a.x; y=s*a.y; z=s*a.z;} {return x*a.x+y*a.y+z*a.z;} float Dot(Vector3 &a) void Cross(Vector3 &a, Vector3 &b) {x=a.y*b.z-a.z*b.y; y=a.z*b.x-a.x*b.z; z=a.x*b.y-a.y*b.x;} float Magnitude() {return sqrtf(x*x+y*y+z*z);} void Normalize() {Scale(1.0f/Magnitude());}

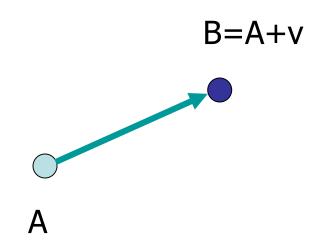
float x,y,z;

};

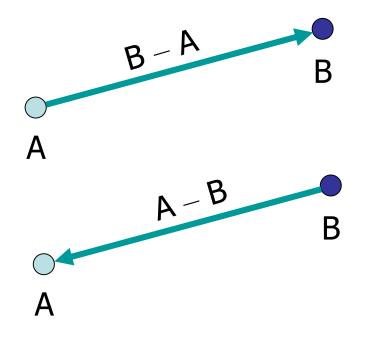
Affine Space

- In a linear space the concept of location is missing
- An affine space is an extension of a linear space which includes the Point
- New operations:
 - sum *point* + *vector*: defines a new point
 - difference *point-point*: defines a vector

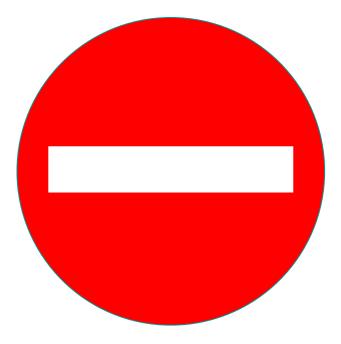
Point + vector = point



point - point = vector



point + point: not defined!!



- If we have a coordinate system with origin at point O
- We can define correspondence between points and vectors:

 $\begin{array}{ll} P & \rightarrow & v = P - O \\ v & \rightarrow & P = O + v \end{array}$

Affine Combination is a linear combination of points with coefficients that sum up to 1

$$P = a_1 P_1 + a_2 P_2 + \dots + a_n P_n$$

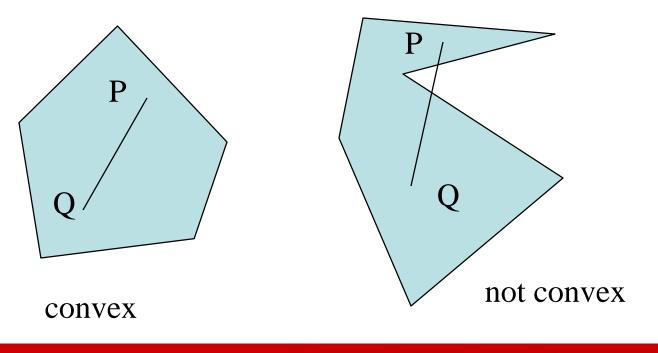
for some $a_1 + a_2 + \dots + a_n = 1$

The coefficients (a₁,a₂,...,a_n) are defined as **barycentric coordinates** of P in the affine space

Affine Combinations with coefficients (a₁,a₂,...,a_n) in [0,1] are called **convex combinations**

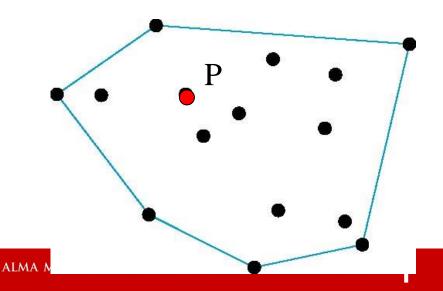
Convexity

 An object is *convex* iff for any two points in the object all points on the line segment between these points are also in the object



Convex hull

- Given a set of points P_1, P_2, \dots, P_n
- The set of all the points P which can be represented as a convex combinations is called convex hull (guscio convesso) of the set
- Smallest convex object containing P_1, P_2, \dots, P_n



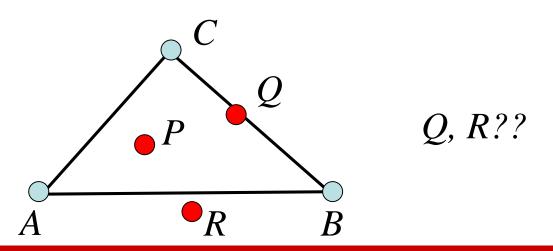
Barycentric coordinates (2D)

 Define a point's position relatively to some fixed points A,B,C

$$P = \alpha A + \beta B + \gamma C,$$

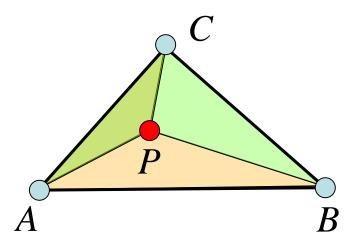
where *A*, *B*, *C* are not on one line, and α , β , $\gamma \in \mathbb{R}$.

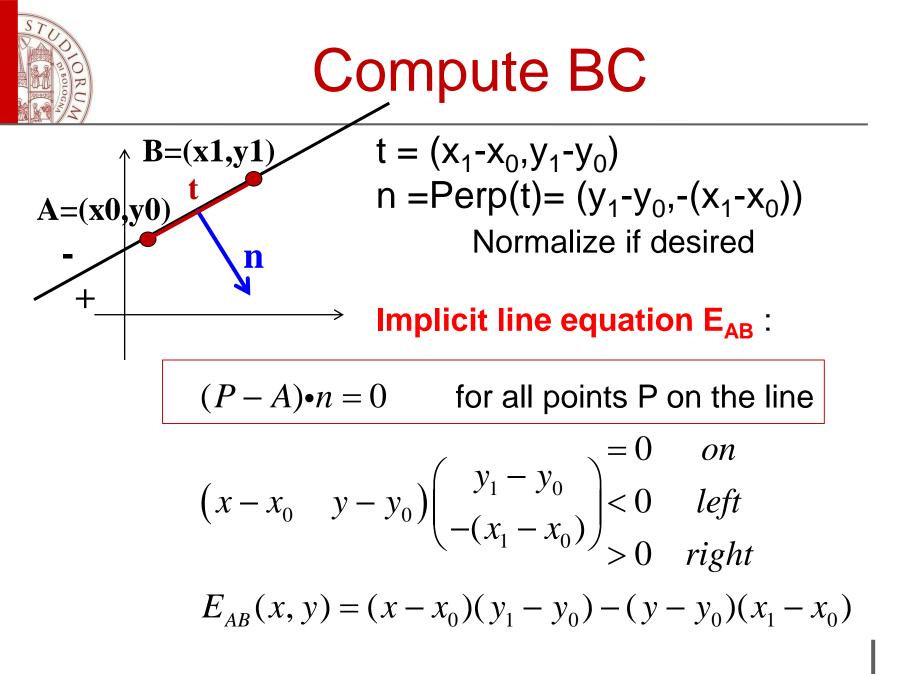
- (α, β, γ) are called Barycentric coordinates of *P* with respect to *A*, *B*, *C* (unique!)
- If *P* is inside the triangle, α , β , $\gamma \in [0, 1]$, $\alpha + \beta + \gamma = 1$



$$P = \frac{\left\langle P, B, C \right\rangle}{\left\langle A, B, C \right\rangle} A + \frac{\left\langle P, C, A \right\rangle}{\left\langle A, B, C \right\rangle} B + \frac{\left\langle P, A, B \right\rangle}{\left\langle A, B, C \right\rangle} C$$

 $\langle \cdot, \cdot, \cdot \rangle$ denotes the area of the triangle





Compute BC

$$area_{ABC} = \frac{1}{2} \left\| (B - A) \times (C - A) \right\|$$
$$= \frac{1}{2} ((x_1 - x_0)(y_2 - y_0) - (y_1 - y_0)(x_2 - x_0))$$

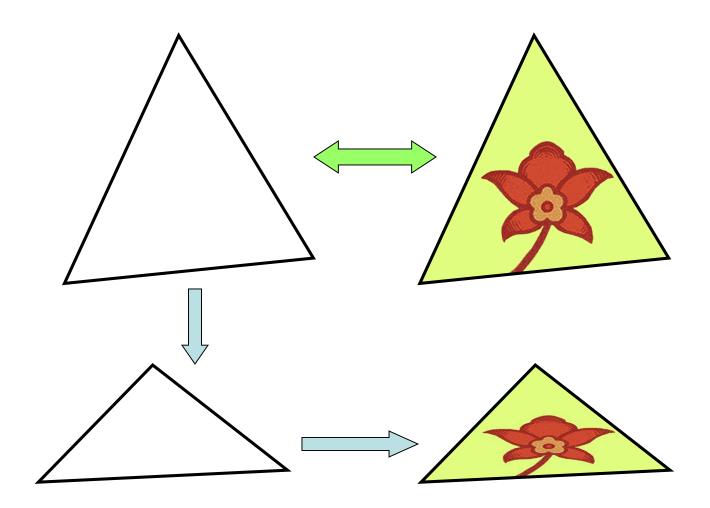
 $area_{ABC} = area_{APB} + area_{BPC} + area_{CPA}$

$$area_{APB} = \frac{1}{2} \| (P - A) \times (B - A) \| =$$

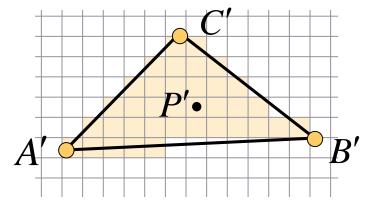
= $\frac{1}{2} ((x - x_0)(y_1 - y_0) - (y - y_0)(x_1 - x_0)) = \frac{1}{2} E_{AB}(x, y)$
$$area_{BPC} = \frac{1}{2} E_{BC}(x, y)$$

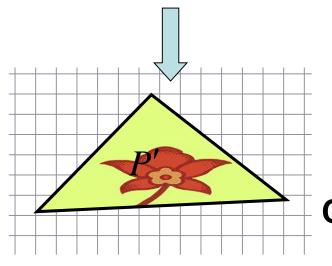
$$area_{CPA} = \frac{1}{2} E_{CA}(x, y)$$

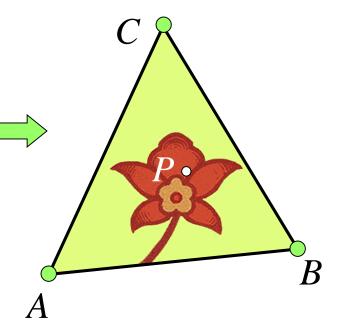
Example of usage: warping



Example of usage: warping







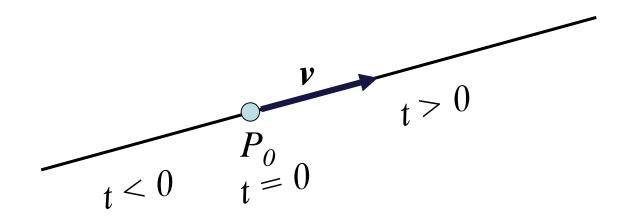
We take the barycentric coordinates α , β , γ of *P*' with respect to *A'*, *B'*, *C*'

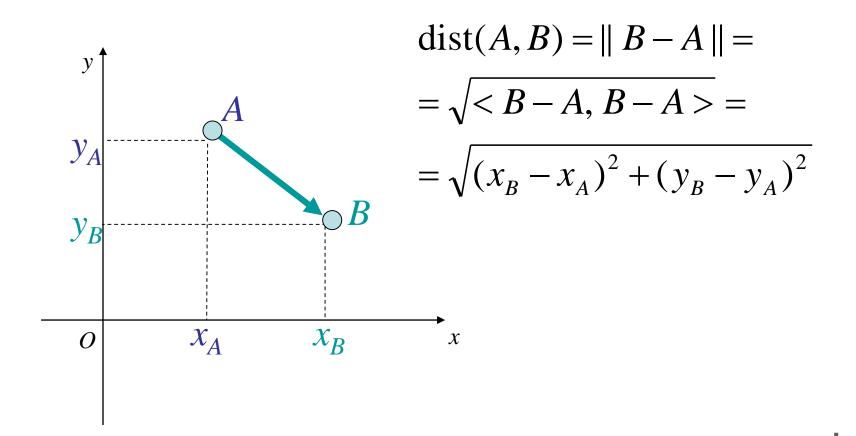
$$Color(P') = Color(\alpha A + \beta B + \gamma C)$$

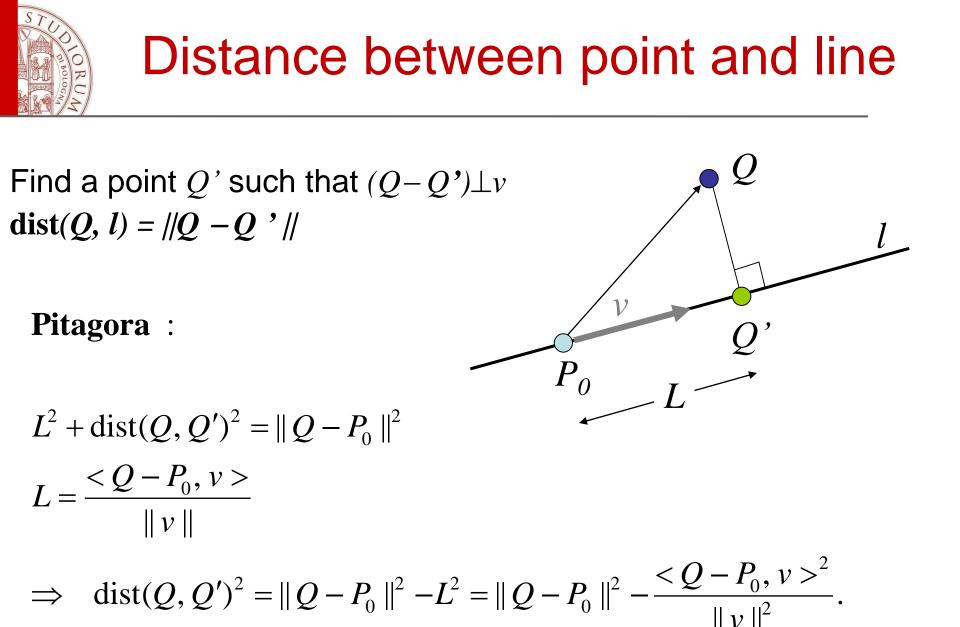
Parametric equation of a line

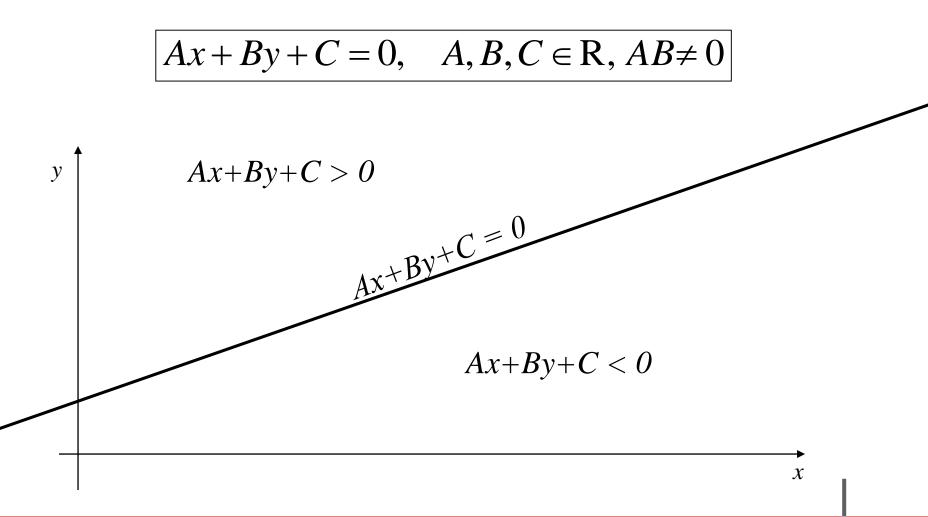
Set of all points that pass through P₀ in the direction of the vector v

$$\ell(t) = P_0 + tv, \quad t \in (-\infty, \infty)$$

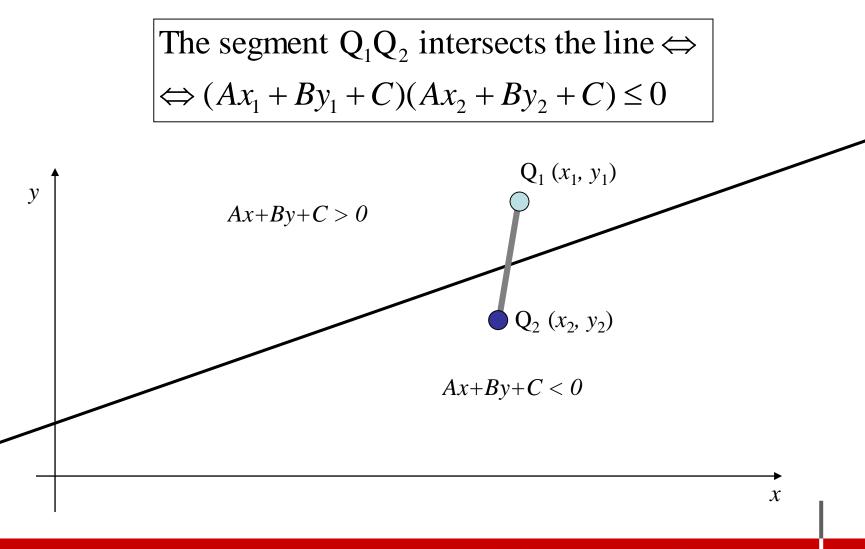






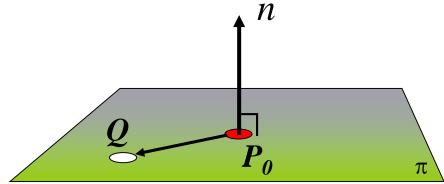


Line-segment intersection



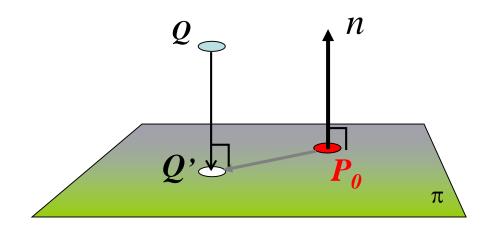
Representation of a plane in 3D space

- The plane π is defined by a normal *n* and one point in the plane (*P*₀).
- A point *Q* belongs to the plane $\Leftrightarrow \langle Q P_0, n \rangle = 0$
- The normal *n* is perpendicular to all vectors in the plane

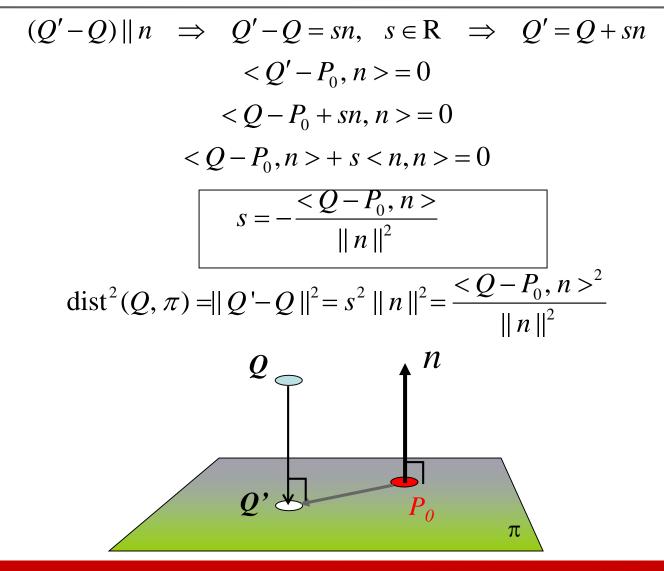


Project the point onto the plane in the direction of the normal:

dist(
$$Q, \pi$$
) = $||Q' - Q||$



Distance between point and plane



Implicit representation of planes in 3D

- (*x*, *y*, *z*) are coordinates of a point on the plane
- (*A*, *B*, *C*) are the coordinates of a normal vector to the plane

$$Ax + By + Cz + D = 0$$
, $A, B, C, D \in \mathbb{R}$, $ABC \neq 0$

$$Ax+By+Cz+D > 0$$
$$Ax+By+Cz+D = 0$$

$$Ax+By+Cz+D < 0$$

Coordinate Frame (Sistemi di riferimento)

 A frame is defined by the quadruple F=(Po,v1,v2,v3)

where

- Po is a point (origin)
- [v1,v2,v3] is a vector basis (orthonormal)
- In a frame F the coordinates (a₁, a₂, a₃) uniquely describe the point:

$$P = P_0 + a_1 v_1 + a_2 v_2 + a_3 v_3$$

- Representing both vectors and points using three scalar values is ambiguous..
- We consider a coordinate system which allows for a unique representation for points and vectors
- A vector is represented as

 $w = a_1 v_1 + a_2 v_2 + a_3 v_3$

• A **point** is represented as

$$P = P_0 + a_1 v_1 + a_2 v_2 + a_3 v_3$$

- Assume
 - 1*P=P and 0*P=0 (zero vector)
- A vector is then given by $w = a_1v_1 + a_2v_2 + a_3v_3 + 0 \cdot P_0$
- A **point** is then given by

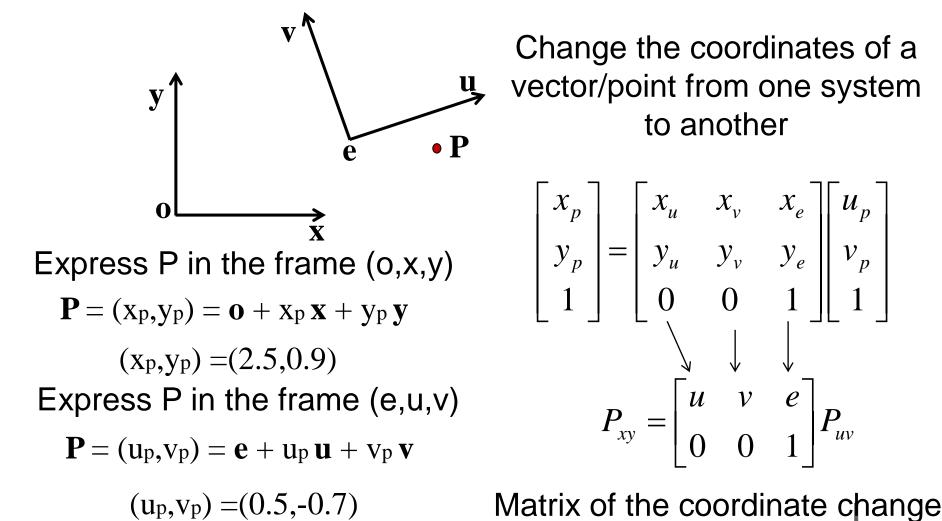
$$P = a_1 v_1 + a_2 v_2 + a_3 v_3 + 1 \cdot P_0$$

Homogeneous Coordinates

- Add an extra dimension, each point has an extra value, 0 or 1
- Every point/vector is defined by 4 coordinates. In vector form:

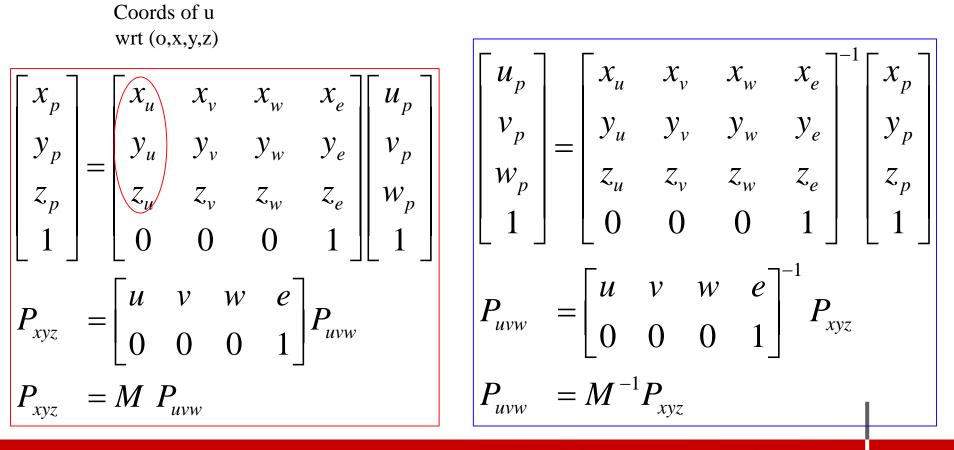
Point coordinates:
$$\begin{bmatrix} a_1 & a_2 & a_3 & 1 \end{bmatrix}^T$$

Vector coordinates: $\begin{bmatrix} a_1 & a_2 & a_3 & 0 \end{bmatrix}^T$



Change of reference systems (frames) in 3D

Given the reference systems (frames) (o,x,y,z) and (e,u,v,w) represent P:

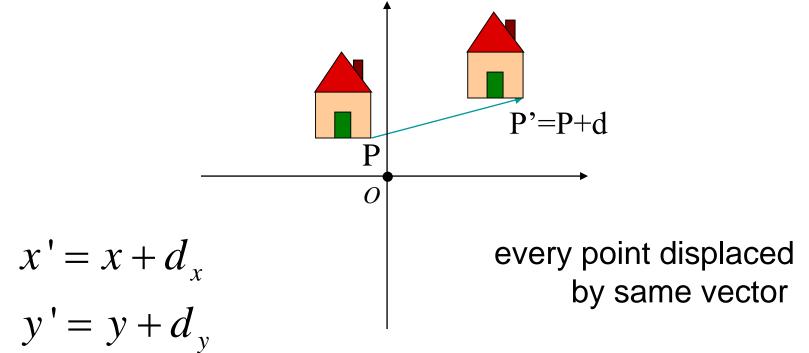


Geometric Transformations

- Transform the object coords in order to obtain a similar object which differs for position, orientation and size
- Modify the geometry but not the topology of the objects
- Transformations are used:
 - Position objects in a scene (modeling)
 - Change the shape of objects
 - Create multiple copies of objects
 - Projection for virtual cameras
 - Animations

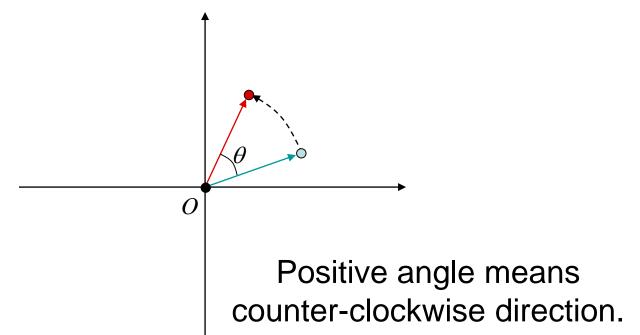
2D Translation

- Move (translate, displace) a point P to a new location
- Displacement determined by a vector d=(dx,dy)



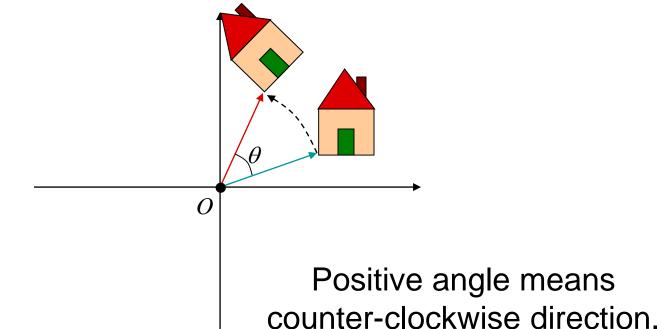
2D Rotation

• Rotation about the origin by angle θ



2D Rotation

• Rotation about the origin by angle θ



Rotation in 2D – matrix representation

• Multiply P=(x, y) by the rotation matrix: $P' = R_{\theta}(P)$ P(x, y) $P' = R_{\theta}(P)$ 0 $\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$

$$x' = x\cos\theta - y\sin\theta$$
$$y' = x\sin\theta + y\cos\theta$$

2D Scale

- Uniform sx=sy
- Non uniform sx≠sy
- About the origin

 $0 \leq sx, sy < 1$

sx, *sy* > 1

$$P' = S(P)$$

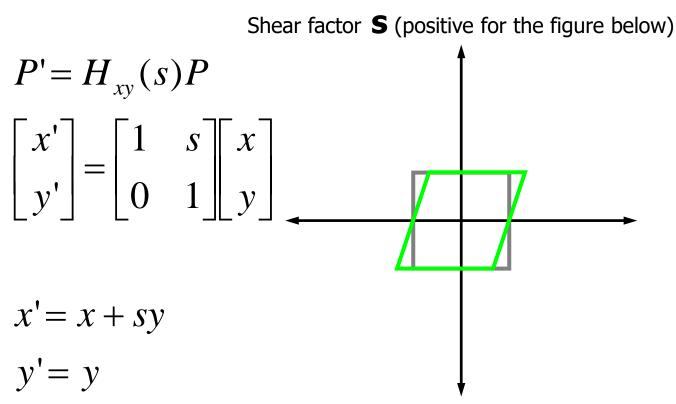
$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} sx & 0 \\ 0 & sy \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

$$x' = sx * x$$
$$y' = sy * y$$

- the object will shrink
 - the object will grow by a factor of s in each dimension

sx < 0 o sy < 0 • the object will be *reflected* across all two dimensions, leading to an object that is 'inside out'

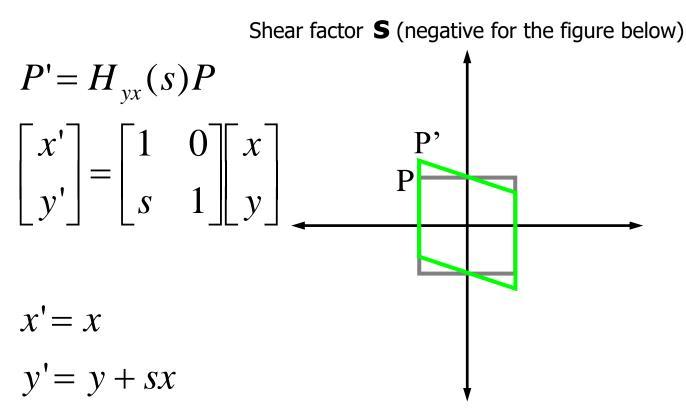
2-D Shear (Horizontal)



Horizontal displacement proportional to vertical position

 H_{ij} i coord. will change, j coord. will deform

2-D Shear (Vertical)



How are Invertible Linear Transformations Represented?

$$x' = ax + by$$

$$y' = dx + ey$$

An invertible linear transformation is represented by a non-singular matrix M

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b \\ d & e \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$
$$p' = M p$$

Each non-singular matrix defines a linear transformation L(p + q) = L(p) + L(q) L(ap) = a L(p)

How are <u>Affine</u> Transformations Represented?

$$x' = ax + by + c$$
$$y' = dx + ey + f$$

Compose linear transformation and translation

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} a & b \\ d & e \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} c \\ f \end{pmatrix}$$

p' = M p + t

Affine Transformations in Homogeneous Coordinates

Translations can be encoded in the matrix

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

$$p' = M p$$

$$x' = ax + by + c$$
$$y' = dx + ey + f$$

Affine Transformations in Homogeneous Coordinates

Scale

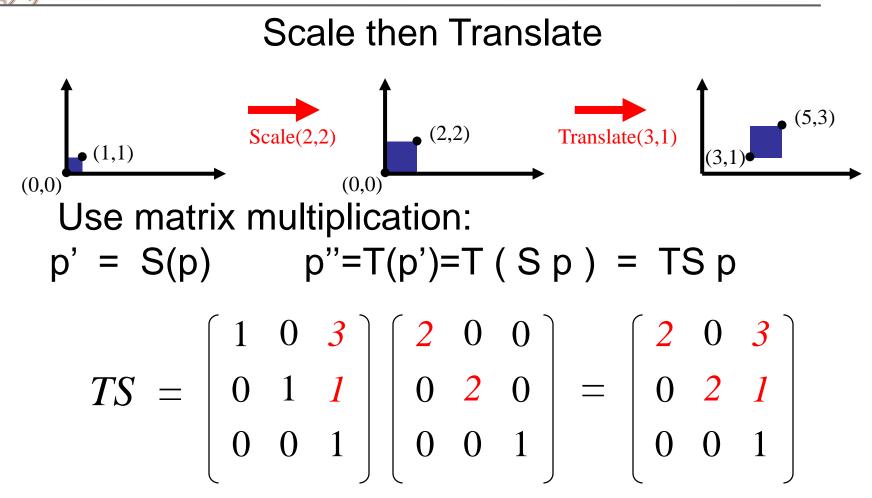
Translation

Rotation

$$\begin{bmatrix} x'\\y'\\1 \end{bmatrix} = \begin{bmatrix} sx & 0 & 0\\0 & sy & 0\\0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x\\y\\1 \end{bmatrix}$$
$$\begin{bmatrix} x'\\y'\\1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & d_x\\0 & 1 & d_y\\0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x\\y\\1 \end{bmatrix}$$
$$\begin{bmatrix} x'\\y'\\1 \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0\\\sin(\theta) & \cos(\theta) & 0\\0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x\\y\\1 \end{bmatrix}$$

If **M** transforms **P** into **P'**, then

$$\mathbf{M}^{-1}$$
 transforms **P'** back to **P**
 $MM^{-1} = I$
 $P' = MP \quad -> \quad P = M^{-1}P'$
 $T^{-1}(d) = T(-d)$
 $S^{-1}(s) = S(1/s_x, 1/s_y)$
 $R^{-1}(\mathcal{G}) = R^T(\mathcal{G}) = R(-\mathcal{G})$



Multiple Transformations

 v is transformed in v' by means of sequence of transformations:

$$\mathbf{v}' = \mathbf{M}_4 \cdot \left(\mathbf{M}_3 \cdot \left(\mathbf{M}_2 \cdot \left(\mathbf{M}_1 \cdot \mathbf{v} \right) \right) \right)$$

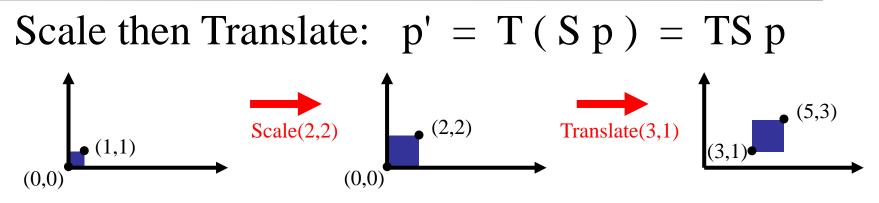
Because matrix algebra obeys the associative law, we can regroup this as:

$$\mathbf{v}' = \left(\mathbf{M}_4 \cdot \mathbf{M}_3 \cdot \mathbf{M}_2 \cdot \mathbf{M}_1\right) \cdot \mathbf{v}$$

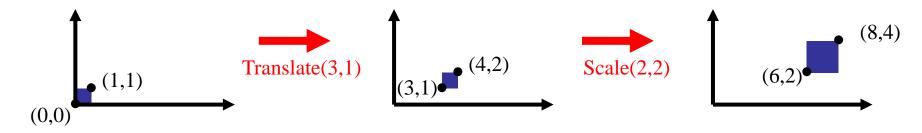
• This allows us to *concatenate* them into a single matrix: $\mathbf{M}_{total} = \mathbf{M}_4 \cdot \mathbf{M}_3 \cdot \mathbf{M}_2 \cdot \mathbf{M}_1$

$$\mathbf{v'} = \mathbf{M}_{total} \cdot \mathbf{v}$$

Caution: matrix multiplication is NOT commutative! So the order of multiplications is important!



Translate then Scale: p' = S(Tp) = STp



Scale then Translate:
$$p' = T(Sp) = TSp$$

 $TS = \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 3 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{bmatrix}$

Translate then Scale: p' = S(Tp) = STp $ST = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 6 \\ 0 & 2 & 2 \\ 0 & 0 & 1 \end{bmatrix}$

Pivot Transformations

scaling around a point (dx,dy) that is not the origin

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & dx \\ 0 & 1 & dy \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & -dx \\ 0 & 1 & -dy \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Translate to the origin, scale, translate to the initial position

rotation around a point (dx,dy) that is not the origin

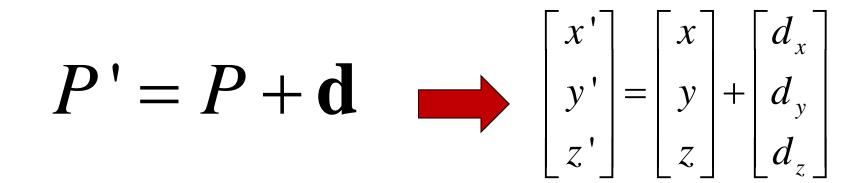
$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & dx \\ 0 & 1 & dy \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos(\vartheta) & -\sin(\vartheta) & 0 \\ \sin(\vartheta) & \cos(\vartheta) & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & -dx \\ 0 & 1 & -dy \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Translate to the origin, rotate, translate to the initial position

3D Translate

$$x' = x + d_x$$
$$y' = y + d_y$$

$$z' = z + d_z$$



Homogeneous Transformations

• Affine 3D Transformations in homogeneous coordinates. In a general matrix form:

$$x' = a_1 x + b_1 y + c_1 z + d_1$$

$$y' = a_2 x + b_2 y + c_2 z + d_2$$

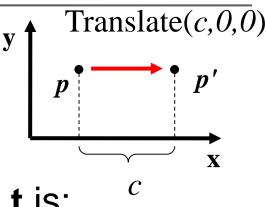
$$z' = a_3 x + b_3 y + c_3 z + d_3$$

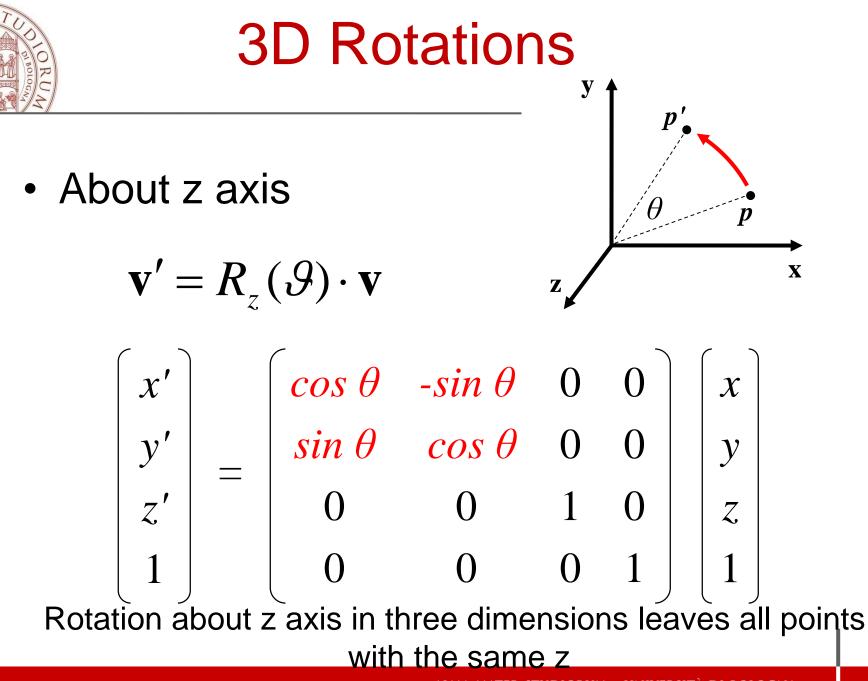
$$1 = 0x + 0y + 0z + 0$$

3D Translate (*tx, ty, tz*) in homogeneous coordinates

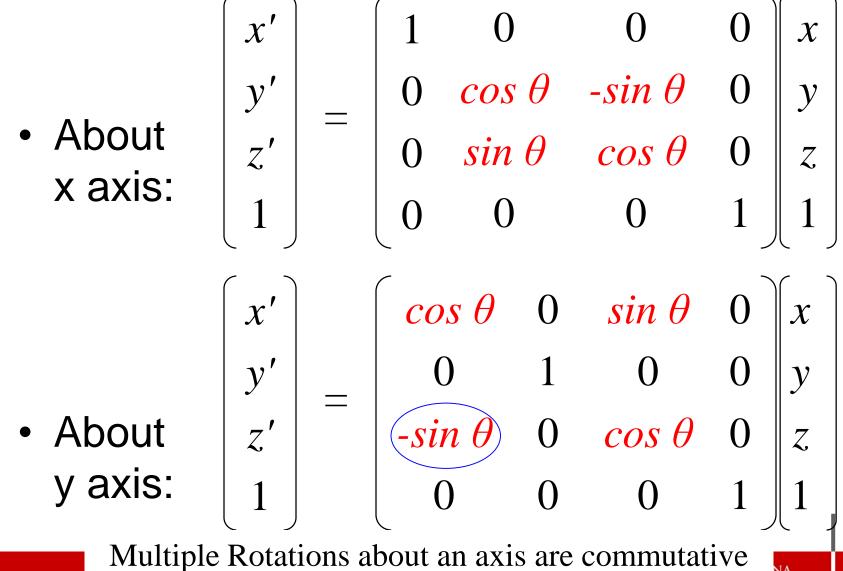
- Now translations can be encoded in the matrix!
- A 4x4 translation matrix that
 translates an object by the vector t is:

$$\begin{pmatrix} x' \\ y' \\ z' \\ 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & t_x \\ 0 & 1 & 0 & t_y \\ 0 & 0 & 1 & t_z \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}$$

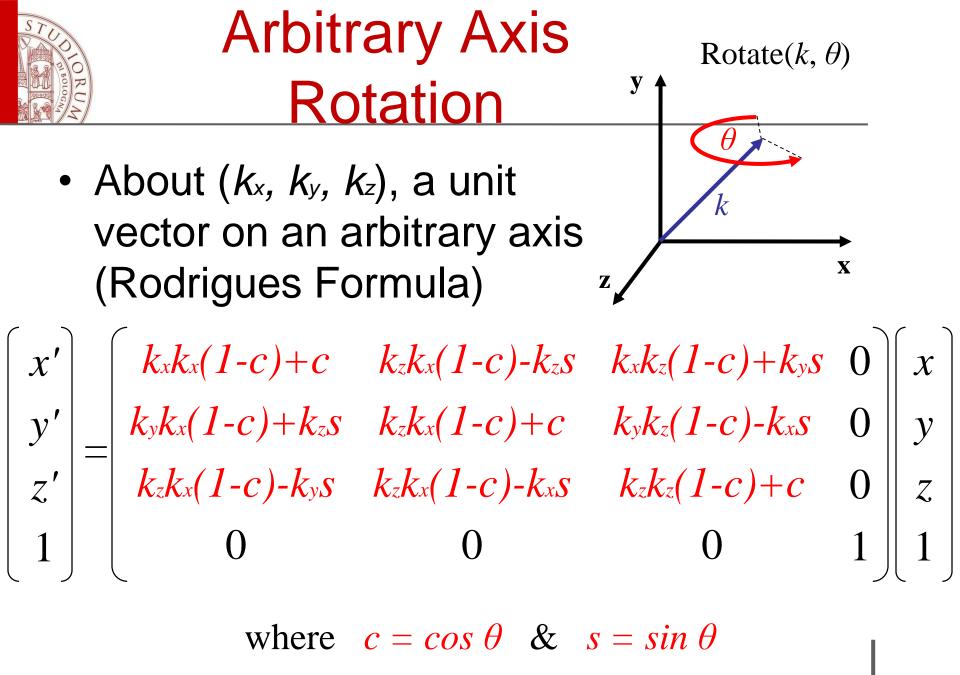




3D Rotations



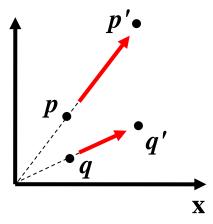
NA



DI BOLOGNA

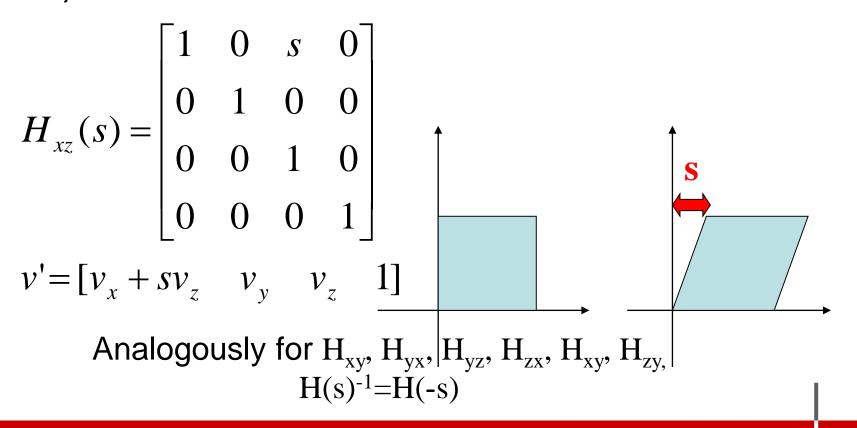
Scale (*sx*, *sy*, *sz*)

- The uniform scaling matrix scales an entire object by scale factor s=sx=sy=sz
- The non-uniform scaling matrix scales independently along the x, y, and z axes



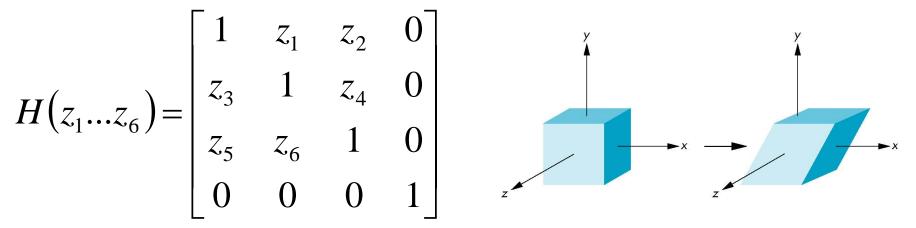
Shear Transformations

- Modify 2 or 3 vectors coords proportionally to the value of the other coords;
- H_{ii} i coord. will change, j coord. will deform



Shear Transformations

• A *shear transformation* matrix looks something like this:



- With pure shears, only one of the constants is non-zero
- A shear can also be interpreted as a non-uniform scale along a rotated set of axes
- Shears are sometimes used in computer graphics for simple deformations or cartoon-like effects

Generalized 4 x 4 transformation matrix in homogeneous coordinates

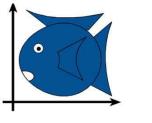
$P' = \mathbf{M} \cdot P$

$\begin{bmatrix} x \end{bmatrix}$		a_1	b_1	<i>C</i> ₁	d_1		$\begin{bmatrix} x \end{bmatrix}$
у'		a_2	b_2 b_3	<i>C</i> ₂	d_2 d_3		У
<i>z</i> '	_	a_3	b_3	<i>C</i> ₃	d_3	•	Z
1		0	0	0	1		1

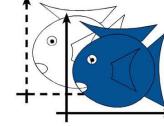
Linear Transformations Translations Perspective Projection

Rigid-Body / Euclidean Transformations

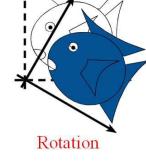
- Move the objects leaving shape and dimension unchanged
- Preserves distances
- Preserves angles

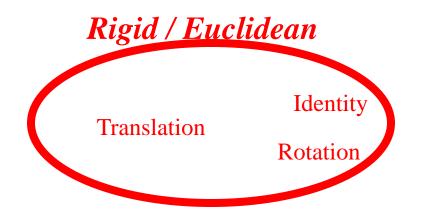


Identity

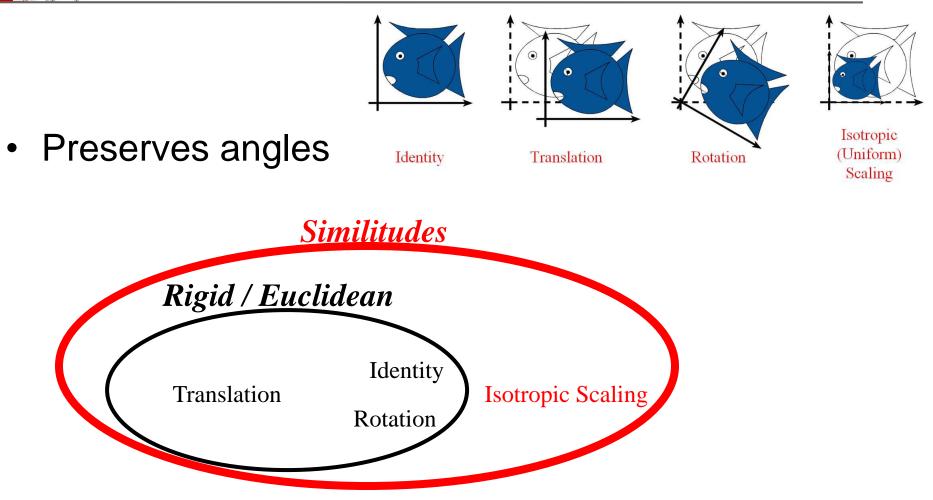


Translation

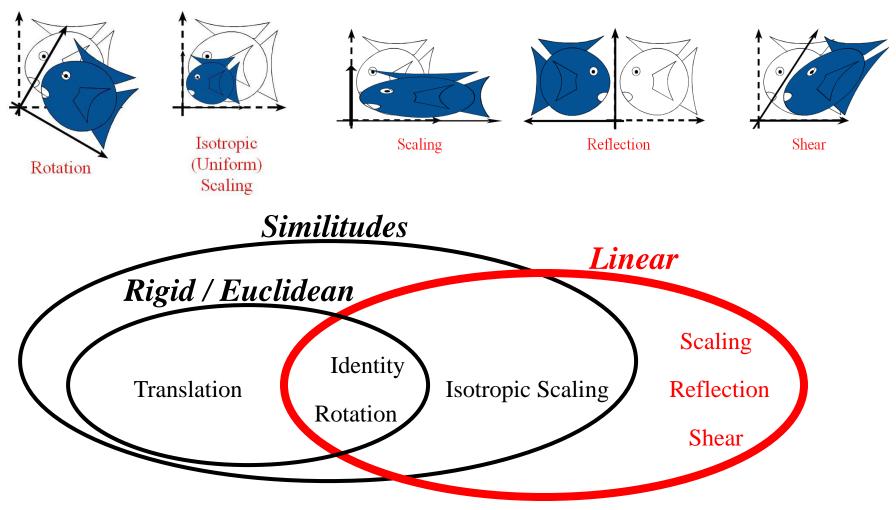




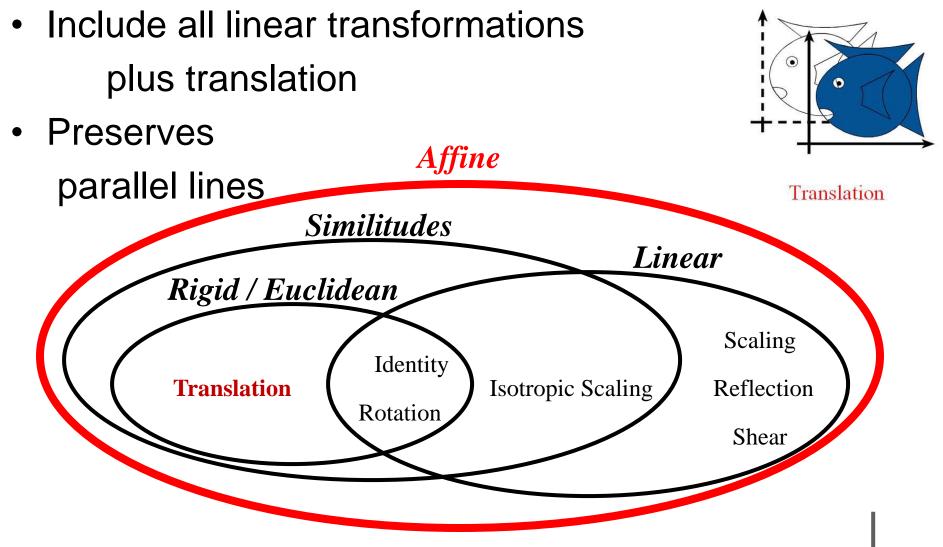
Similitudes / Similarity Transforms

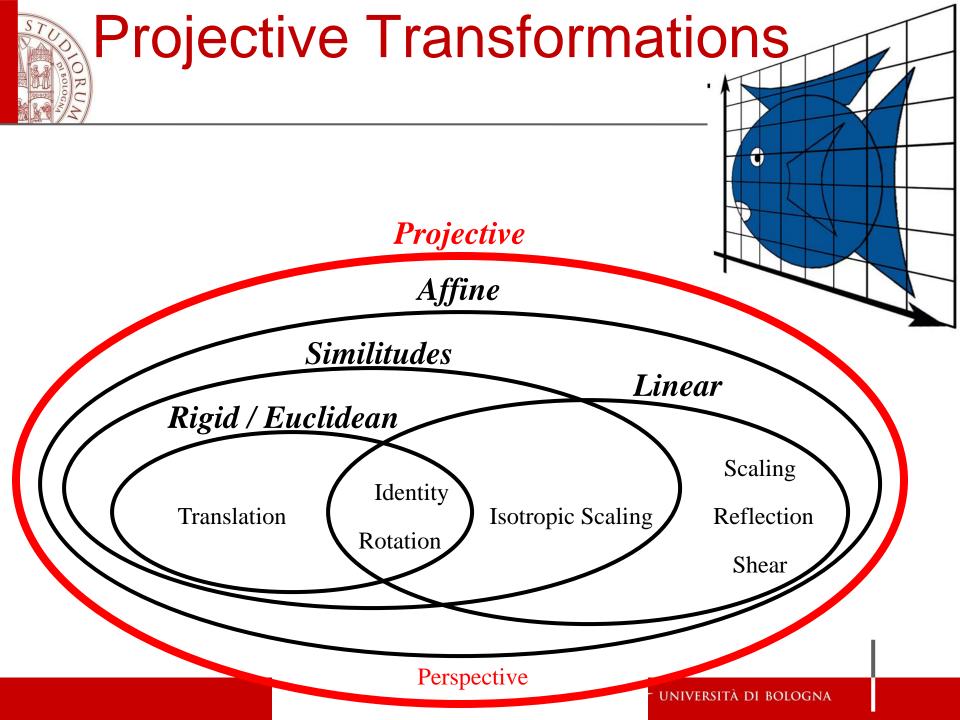


Linear Transformations



Affine Transformations





Туре	Rigid Body:	Linear	Affine	Projective	
Preserves	Rotation & translation	General 3x3 matrix	Linear + translation	4x4 matrix with last row ≠(0,0,0,1)	
Lengths	Yes	No	No	No	
Angles	Yes	No	No	No	
Parallelness	Yes	Yes Yes		No	
Straight lines	Yes	Yes	Yes	Yes	

Serena Morigi

Dipartimento di Matematica

serena.morigi@unibo.it

http://www.dm.unibo.it/~morigi