
Geometry for
Computer Graphics

Fondamenti di Computer Graphics 2018/2019

Serena Morigi

serena.morigi@unibo.it

http://www.dm.unibo.it/morigi/

mailto:morigi@dm.unibo.it

860,000 faces

H.Hoppe

https://www.youtube.com/watch?v=vgnZ4PcqV98

https://www.youtube.com/watch?v=vgnZ4PcqV98

Geometric Objects and

transformations

• We represent objects using

mainly linear primitives:

– points

– lines, segments

– planes, polygons

• Need to know how to

transform objects, compute

distances, change

coordinate systems…

Coordinate Systems

• Right handed coordinate system

x

y

z

In CG we use the rule:

z axis perpendicular to the

screen

Coordinate Systems

• Left handed coordinate system

y

z

x

Scalars, Points and Vectors

• Scalar specifies magnitude (quantità)

• Point specifies location in space (or in the plane)

• Vector is a quantity with two attributes:

magnitude and direction (direzione+verso).

No location in space.

Points Vectors

Linear/Vector Space

• Entities: VECTORS and SCALARS

• Operations:

– Multiplication scalar vector

– Vector sum

-0.5v

v

vector + vector = vector

Parallelogram rule

a

b

a

b

c=a+b

 zyx

zyx

zzyyxx

zzyyxx

zyx

zyx

sasasas

aaa

bababa

bababa

bbb

aaa

=

−−−=−

−−−=−

+++=+

=

=

a

a

ba

ba

b

a

Space Dimension

• In a vector space V, the maximum number of

linearly independent vectors is fixed and is called

the dimension of the space

• In an n-dimensional space, any set of n linearly

independent vectors form a basis for the space

• Given a basis a1, a2,…., an, any vector v in V can

be written as the linear combination

v=a1a1+ a2a2 +….+anan

where the {ai} are unique

In V=R3, the Euclidean vectors a1,a2,a3

define a coordinate system

Dot product in coordinates x,y:

(,)

(,)

,

x y

x y

x x y y

a a a

b b b

a b a b a b

=

=

 = +

1

,
n

T n

i i

i

a b a b a b a b in
=

= • = =

b

a

bx

by

ax

ay

x

y

O

Linear Space with

Dot Product (or Inner Product)

Given 2 vectors get a scalar value

()
2

2
1

,
n

T

i

i

a a a a a a
=

= = =

2-norm or Euclidean norm

||a||2
||a||2

Euclidean norm is a notion of length preserved by

rotations/translations/reflections of space.

Vector Magnitude

• The magnitude (length) of a vector a in R3 is:

• A vector with length=1.0 is called a unit vector

• We can also normalize a vector to make it a unit
vector:

2 2 2

2 x y za a a a= + +

2

a

a

Inner (dot) product

1

cos

cos

cos

 −

 =

=

=

a b a b

a b

a b

a b

a b

a

bAngle between 2 vectors

Properties
Commutative

<a,b>=<b,a>

Distributive

<a,b+c>=<a,b> + <a,c>

Bilinear, r scalar

<a,r b+c>=r<a,b>+<a,c>

cos()
|| || || ||

,

|| || || ||

,

|| ||

u u
a a b

u u

b u u

u u

b u
a

u

= =

=

=

• If ||u||≠1.0 then ||a|| is the length of the vector a

which is the projection of b onto u

b

u

a

θ

Vector Projection

(orthogonal projection)

Vector Projection

(orthogonal projection)

cos() ,
|| ||

u
a b b u u

u
= =

• If ||u||=1.0 then <b,u> is the length of the vector a

which is the projection of b onto u

b

u
a

θ

Dot Products with General Vectors

• The dot product is a scalar value that tells

us something about the relationship

between two vectors

– If a·b > 0 then θ < 90º

– If a·b < 0 then θ > 90º

– If a·b = 0 then θ = 90º (or one or more of the

vectors is degenerate (0,0,0))

Dot Products with unit Vectors

b

θ a

a·b = 0

0 < a·b < 1

a·b = -1

a·b = 1

-1 < a·b < 0

()cos

0.1

=

==

ba

ba
a·b

Perpendicular vectors

(,) (,)x y y xa a a a a a⊥= = −

a

a⊥

Cross Product : Properties

sin

0

 =

 =

 =

a b

a b a b

a b

a b

Area of the parallelogram ab

if a and b are parallel

a

b

axb

is a vector perpendicular to both

a and b, in the direction defined by

the right hand rule

θ

Cross Product

 xyyxzxxzyzzy

zyx

zyx

babababababa

bbb

aaa

kji

−−−=

=

ba

ba

Example: Normal of a Triangle

• Find the unit length normal of the triangle

defined by 3D points A, B, and C

A
B

C

Example: Normal of a Triangle

() ()B A C A

= − −

=

n

n
n

n

B-A

C-A

A
B

C

Example: Area of a Triangle

• Find the area of the triangle defined by 3D

points A, B, and C

A
B

C

() ()
1

2
area B A C A= − −

B-A

C-A

A
B

C

Example: Area of a Triangle

Example: Alignment to Target

• An object is at position P with a unit length

heading of h. We want to rotate it so that the

heading is facing some target T.

• Find a unit axis a and an angle θ to rotate

around.

•

•

P

h

T

•

•

P

h

TT-P

θ

a

()

()

()

()
1cos

T P

T P

T P

T P
 −

 −
=

 −

 −
=

 −

h
a

h

h

Example: Alignment to Target

Vector Class (C++)
class Vector3 {

public:

Vector3() {x=0.0f; y=0.0f; z=0.0f;}

Vector3(float x0,float y0,float z0) {x=x0; y=y0; z=z0;}

void Set(float x0,float y0,float z0) {x=x0; y=y0; z=z0;}

void Add(Vector3 &a) {x+=a.x; y+=a.y; z+=a.z;}

void Add(Vector3 &a,Vector3 &b) {x=a.x+b.x; y=a.y+b.y; z=a.z+b.z;}

void Subtract(Vector3 &a) {x-=a.x; y-=a.y; z-=a.z;}

void Subtract(Vector3 &a,Vector3 &b) {x=a.x-b.x; y=a.y-b.y; z=a.z-b.z;}

void Negate() {x=-x; y=-y; z=-z;}

void Negate(Vector3 &a) {x=-a.x; y=-a.y; z=-a.z;}

void Scale(float s) {x*=s; y*=s; z*=s;}

void Scale(float s,Vector3 &a) {x=s*a.x; y=s*a.y; z=s*a.z;}

float Dot(Vector3 &a) {return x*a.x+y*a.y+z*a.z;}

void Cross(Vector3 &a,Vector3 &b)

{x=a.y*b.z-a.z*b.y; y=a.z*b.x-a.x*b.z; z=a.x*b.y-a.y*b.x;}

float Magnitude() {return sqrtf(x*x+y*y+z*z);}

void Normalize() {Scale(1.0f/Magnitude());}

float x,y,z;

};

Affine Space

• In a linear space the concept of location is
missing

• An affine space is an extension of a linear
space which includes the Point

• New operations:

- sum point + vector: defines a new point

- difference point-point: defines a vector

Point + vector = point

A

B=A+v

point - point = vector

A

B

A

B

point + point: not defined!!

Map points to vectors

• If we have a coordinate system with

origin at point O

• We can define correspondence between

points and vectors:

P v P O

v P O v

→ = −

→ = +

Affine Combination

1 1 2 2

1 2

.....

..... 1

n n

n

P a P a P a P

for some a a a

= + + +

+ + + =

Affine Combination is a linear combination of
points with coefficients that sum up to 1

The coefficients (a1,a2,...,an) are defined as
barycentric coordinates of P in the affine space

Affine Combinations with coefficients (a1,a2,...,an) in
[0,1] are called convex combinations

Convexity

• An object is convex iff for any two points in

the object all points on the line segment

between these points are also in the object

P

Q Q

P

convex
not convex

Convex hull

nPPP ,.....,, 21

• Given a set of points

• The set of all the points P which can be represented

as a convex combinations is called convex hull

(guscio convesso) of the set

• Smallest convex object containing P1,P2,…..Pn

P

Barycentric coordinates (2D)
• Define a point’s position relatively to some fixed points

A,B,C

P = aA + B + C,
where A, B, C are not on one line, and a, , R.

• (a, ,) are called Barycentric coordinates of P with
respect to A, B, C (unique!)

• If P is inside the triangle, a, , [0, 1], a++ = 1

A B

C

P

R

Q
Q, R??

Barycentric coordinates (2D)

A B

C

P

, , , , , ,

, , , , , ,

, , denotes the area of the triangle

P B C P C A P A B
P A B C

A B C A B C A B C
= + +

Compute BC

n

A=(x0,y0)

B=(x1,y1)

t

t = (x1-x0,y1-y0)

n =Perp(t)= (y1-y0,-(x1-x0))

Normalize if desired

Implicit line equation EAB :

for all points P on the line

() 1 0

0 0

1 0

0 1 0 0 1 0

() 0

0

0
()

0

(,) ()() ()()AB

P A n

on
y y

x x y y left
x x

right

E x y x x y y y y x x

− =

=
−

− −
− −

= − − − − −

+

-

Compute BC

A B

C

P

() ()

() ()

1 0 2 0 1 0 2 0

0 1 0 0 1 0

1

2

1
(()(y) ()())

2

1

2

1 1
(()(y) ()()) (,)

2 2

1
(,)

2

1
(,)

2

ABC

ABC APB BPC CPA

APB

AB

BPC BC

CPA CA

area B A C A

x x y y y x x

area area area area

area P A B A

x x y y y x x E x y

area E x y

area E x y

= − −

= − − − − −

= + +

= − − =

= − − − − − =

=

=

Example of usage: warping

Example of usage: warping

A

TARGET

A
B

C

B

C

We take the barycentric coordinates

a, , of P’ with respect to A’, B’, C’

Color(P’) = Color(a A + B + C)

P

P

P

Parametric equation of a line

• Set of all points that pass through P0 in the

direction of the vector v

),(,0 −+= tvtP(t)

P0

v

Distance between two points

22)()(

,

||||),(dist

ABAB yyxx

ABAB

ABBA

−+−=

=−−=

=−=

B

A

xB

yB

xA

yA

x

y

O

Distance between point and line

2 2 2

0

0

2
2 2 2 2 0

0 0 2

 :

dist(,) || ||

,

|| ||

,
dist(,) || || || || .

|| ||

L Q Q Q P

Q P v
L

v

Q P v
Q Q Q P L Q P

v

+ = −

 −
=

 −
 = − − = − −

Pitagora

Find a point Q’ such that (Q− Q’)⊥v

dist(Q, l) = ||Q − Q ’ ||

P0

v

Q

Q’

l

L

Implicit equation of a line in 2D

0,R,,,0 =++ BACBACByAx

x

y Ax+By+C > 0

Ax+By+C < 0

Line-segment intersection

x

y
Ax+By+C > 0

Ax+By+C < 0

Q1 (x1, y1)

Q2 (x2, y2)

0))((

linetheintersectsQQsegmentThe

2211

21

++++

CByAxCByAx

Representation of a plane in 3D

space

• The plane is defined by a normal n and one point

in the plane (P0).

• A point Q belongs to the plane <Q – P0 , n> = 0

• The normal n is perpendicular to all vectors in the

plane
n

P0

Q

Distance between point and plane

• Project the point onto the plane in the

direction of the normal:

dist(Q,) = ||Q’ – Q||

n

P0
Q’

Q

Distance between point and plane

0

0

0

0

2

2
2 2 2 2 0

2

() || , R

, 0

, 0

, , 0

,

|| ||

,
dist (,) || ' || || ||

|| ||

Q Q n Q Q sn s Q Q sn

Q P n

Q P sn n

Q P n s n n

Q P n
s

n

Q P n
Q Q Q s n

n

 − − = = +

 − =

 − + =

 − + =

 −
= −

 −
= − = =

n

P0
Q’

Q

Implicit representation of planes in

3D

0,R,,,,0 =+++ CBADCBADCzByAx

• (x, y, z) are coordinates of a point on the plane

• (A, B, C) are the coordinates of a normal vector

to the plane

Ax+By+Cz+D > 0

Ax+By+Cz+D < 0

Ax+By+Cz+D = 0

Coordinate Frame
(Sistemi di riferimento)

3322110 vavavaPP +++=

• A frame is defined by the quadruple

F=(Po,v1,v2,v3)

where

– Po is a point (origin)

– [v1,v2,v3] is a vector basis (orthonormal)

• In a frame F the coordinates (a1, a2, a3) uniquely describe

the point:

Homogeneous Coordinates

332211 vavavaw ++=

• Representing both vectors and points using

three scalar values is ambiguous..

• We consider a coordinate system which

allows for a unique representation for points

and vectors

• A vector is represented as

• A point is represented as

3322110 vavavaPP +++=

0332211 0 Pvavavaw +++=

• Assume

1*P=P and 0*P=0 (zero vector)

• A vector is then given by

• A point is then given by

0332211 1 PvavavaP +++=

Homogeneous Coordinates

 Taaa 0321

• Add an extra dimension, each point has an extra

value, 0 or 1

• Every point/vector is defined by 4 coordinates. In

vector form:

Point coordinates:

Vector coordinates:

 Taaa 1321

Homogeneous Coordinates

Change of reference systems

(frames) in 2D

y

o
x

v

e

u

P

P = (xp,yp) = o + xp x + yp y

(xp,yp) =(2.5,0.9)

Express P in the frame (o,x,y)

Express P in the frame (e,u,v)

P = (up,vp) = e + up u + vp v

(up,vp) =(0.5,-0.7)

1 0 0 1 1

p u v e p

p u v e p

x x x x u

y y y y v

 =

Change the coordinates of a

vector/point from one system

to another

0 0 1
xy uv

u v e
P P

=

Matrix of the coordinate change

1 0 0 0 1 1

0 0 0 1

p u v w e p

p u v w e p

p u v w e p

xyz uvw

xyz uvw

x x x x x u

y y y y y v

z z z z z w

u v w e
P P

P M P

 =

=

=

Given the reference systems (frames) (o,x,y,z) and

(e,u,v,w) represent P:

1

1

1

1 0 0 0 1 1

0 0 0 1

p u v w e p

p u v w e p

p u v w e p

uvw xyz

uvw xyz

u x x x x x

v y y y y y

w z z z z z

u v w e
P P

P M P

−

−

−

 =

=

=

Change of reference systems

(frames) in 3D

Coords of u

wrt (o,x,y,z)

Geometric Transformations

• Transform the object coords in order to obtain a

similar object which differs for position,

orientation and size

• Modify the geometry but not the topology of the

objects

• Transformations are used:
– Position objects in a scene (modeling)

– Change the shape of objects

– Create multiple copies of objects

– Projection for virtual cameras

– Animations

2D Translation

'

'

x

y

x x d

y y d

= +

= +

• Move (translate, displace) a point P to a new location

• Displacement determined by a vector d=(dx,dy)

every point displaced

by same vector

O

P
P’=P+d

2D Rotation

• Rotation about the origin by angle

O

Positive angle means

counter-clockwise direction.

2D Rotation

• Rotation about the origin by angle

O

Positive angle means

counter-clockwise direction.

Rotation in 2D –

matrix representation

cossin

sincos

cossin

sincos

)(

yxy

yxx

y

x

y

x

PRP

+=

−=

 −
=

=

• Multiply P=(x, y) by

the rotation matrix:

O

 P (x, y)

P’ = R (P)

2D Scale

ysyy

xsxx

y

x

sy

sx

y

x

PSP

*

*

0

0

)(

=

=

=

=• Uniform sx=sy

• Non uniform sx≠sy

• About the origin

O

00

1,

1,0

syosx

sysx

sysx • the object will shrink

• the object will grow by a factor of s in each

dimension

• the object will be reflected across all two

dimensions, leading to an object that is ‘inside out’

2-D Shear (Horizontal)

Shear factor s (positive for the figure below)

yy

syxx

y

xs

y

x

PsHP xy

=

+=

=

=

'

'

10

1

'

'

)('

Hij i coord. will change, j coord. will deform

Horizontal displacement proportional to vertical position

2-D Shear (Vertical)

sxyy

xx

y

x

sy

x

PsHP yx

+=

=

=

=

'

'

1

01

'

'

)('

P’

P

Shear factor s (negative for the figure below)

How are Invertible Linear

Transformations Represented?

x' = ax + by

y' = dx + ey

x'

y'

a b

d e
=

x

y

p' = M p

An invertible linear transformation is represented by a

non-singular matrix M

Each non-singular matrix defines a linear transformation

L(p + q) = L(p) + L(q)

L(ap) = a L(p)

How are Affine Transformations

Represented?

x' = ax + by + c

y' = dx + ey + f

x'

y'

a b

d e

c

f
=

x

y
+

p' = M p + t

Compose linear transformation and translation

Affine Transformations in

Homogeneous Coordinates

x'

y'

1
=

x

y

1

a

d

0

b

e

0

c

f

1

Translations can be encoded in the matrix

p' = M p

x' = ax + by + c

y' = dx + ey + f

M affine matrix

Affine Transformations in

Homogeneous Coordinates

' 0 0

' 0 0

1 0 0 1 1

' 1 0

' 0 1

1 0 0 1 1

' cos() sin() 0

' sin() cos() 0

1 0 0 1 1

x

y

x sx x

y sy y

x d x

y d y

x x

y y

 =

 =

−
 =

Scale

Translation

Rotation

Inverses

1

' 1 '

1

1

1

() ()

() (1/ ,1/)

() () ()

x y

T

MM I

P MP P M P

T d T d

S s S s s

R R R

−

−

−

−

−

=

= − =

= −

=

= = −

If M transforms P into P’, then

M-1 transforms P′ back to P

How are transforms combined?

(0,0)

(1,1)
(2,2)

(0,0)

(5,3)

(3,1)
Scale(2,2) Translate(3,1)

TS =

2

0

0

2

0

0

1

0

0

1

3

1

2

0

0

2

3

1=

Scale then Translate

Use matrix multiplication:

p’ = S(p) p’’=T(p’)=T (S p) = TS p

0 0 1 0 0 1 0 0 1

Multiple Transformations

• v is transformed in v’ by means of sequence of
transformations:

• Because matrix algebra obeys the associative law, we
can regroup this as:

• This allows us to concatenate them into a single matrix:

• Caution: matrix multiplication is NOT commutative! So
the order of multiplications is important!

()()()vMMMMv = 1234

() vMMMMv = 1234

vMv

MMMMM

=

=

total

total 1234

Non-commutative Composition

Scale then Translate: p' = T (S p) = TS p

Translate then Scale: p' = S (T p) = ST p

(0,0)

(1,1)
(4,2)

(3,1)

(8,4)

(6,2)

(0,0)

(1,1)
(2,2)

(0,0)

(5,3)

(3,1)
Scale(2,2) Translate(3,1)

Translate(3,1) Scale(2,2)

TS =

2

0

0

0

2

0

0

0

1

1

0

0

0

1

0

3

1

1

ST =

2

0

0

2

0

0

1

0

0

1

3

1

Non-commutative Composition

Scale then Translate: p' = T (S p) = TS p

2

0

0

0

2

0

3

1

1

2

0

0

2

6

2

=

=

Translate then Scale: p' = S (T p) = ST p

0 0 1 0 0 1 0 0 1

Pivot Transformations

scaling around a point (dx,dy) that is not the origin

' 1 0 0 0 1 0

' 0 1 0 0 0 1

1 0 0 1 0 0 1 0 0 1 1

rotation around a point (dx,dy) that is not the or

x

y

x dx s dx x

y dy s dy y

−
 = −

igin

' 1 0 cos() sin() 0 1 0

' 0 1 sin() cos() 0 0 1

1 0 0 1 0 0 1 0 0 1 1

x dx dx x

y dy dy y

− −
 = −

Translate to the origin, scale, translate to the initial position

Translate to the origin, rotate, translate to the initial position

3D Translate

'P P= + d
'

'

'

x

y

z

x x d

y y d

z z d

 = +

'

'

'

x

y

z

x x d

y y d

z z d

= +

= +

= +

Homogeneous Transformations

• Affine 3D Transformations in homogeneous

coordinates. In a general matrix form:

1 1 1 1

2 2 2 2

3 3 3 3

1 1 1 1

2 2 2 2

3 3 3 3

'

'

'

1 0 0 0 1

'

'
'

'

1 0 0 0 1 1

x a x b y c z d

y a x b y c z d

z a x b y c z d

x y z

x a b c d x

y a b c d y
P P

z a b c d z

= + + +

= + + +

= + + +

= + + +

 = =

M

3D Translate (tx, ty, tz)

in homogeneous coordinates

• Now translations

can be encoded in the matrix!

• A 4x4 translation matrix that

translates an object by the vector t is:

x'

y'

z'

0

=

x

y

z

1

1

0

0

0

0

1

0

0

0

0

1

0

tx

ty

tz

1

Translate(c,0,0)

x

y

p p'

c

x'

y'

z'

1

• About z axis

x'

y'

z'

1

=

x

y

z

1

cos θ

sin θ

0

0

-sin θ

cos θ

0

0

0

0

1

0

0

0

0

1

x

y

z

p

p'

θ

3D Rotations

vv =)(zR

Rotation about z axis in three dimensions leaves all points

with the same z

• About

x axis:

• About

y axis:

x'

y'

z'

1

=

x

y

z

1

0

cos θ

sin θ

0

0

-sin θ

cos θ

0

1

0

0

0

0

0

0

1

x'

y'

z'

1

=

x

y

z

1

cos θ

0

-sin θ

0

sin θ

0

cos θ

0

0

1

0

0

0

0

0

1

3D Rotations

Multiple Rotations about an axis are commutative

Arbitrary Axis

Rotation

• About (kx, ky, kz), a unit

vector on an arbitrary axis

(Rodrigues Formula)

x'

y'

z'

1

=

x

y

z

1

kxkx(1-c)+c

kykx(1-c)+kzs

kzkx(1-c)-kys

0

0

0

0

1

kzkx(1-c)-kzs

kzkx(1-c)+c

kzkx(1-c)-kxs

0

kxkz(1-c)+kys

kykz(1-c)-kxs

kzkz(1-c)+c

0

where c = cos θ & s = sin θ

Rotate(k, θ)

x

y

z

θ

k

Scale (sx, sy, sz)

• The uniform scaling matrix scales an

entire object by scale factor s=sx=sy=sz

• The non-uniform scaling matrix scales

independently along the x, y, and z

axes

x'

y'

z'

1

=

x

y

z

1

sx

0

0

0

0

sy

0

0

0

0

sz

0

0

0

0

1

Scale(s,s,s)

x

p

p'

q
q'

y

'

'

'

x

y

z

x s x

y s y

z s z

=

=

=

Shear Transformations

• Modify 2 or 3 vectors coords proportionally to the value

of the other coords;

• Hij i coord. will change, j coord. will deform

]1['

1000

0100

0010

001

)(

zyzx

xz

vvsvvv

s

sH

+=

=
s

Analogously for Hxy, Hyx, Hyz, Hzx, Hxy, Hzy,

H(s)-1=H(-s)

Shear Transformations

• A shear transformation matrix looks something like this:

• With pure shears, only one of the constants is non-zero

• A shear can also be interpreted as a non-uniform scale
along a rotated set of axes

• Shears are sometimes used in computer graphics for
simple deformations or cartoon-like effects

()

=

1000

01

01

01

...
65

43

21

61
zz

zz

zz

zzH

Generalized 4 x 4 transformation matrix in

homogeneous coordinates

1 1 1 1

2 2 2 2

3 3 3 3

'

'

'

'

1 0 0 0 1 1

P P

x a b c d x

y a b c d y

z a b c d z

=

 =

M

Linear Transformations

Translations

Perspective Projection

Rigid-Body / Euclidean

Transformations

• Move the objects leaving shape and dimension unchanged

• Preserves distances

• Preserves angles

Translation
Rotation

Rigid / Euclidean

Identity

Similitudes / Similarity Transforms

• Preserves angles

Translation
Rotation

Rigid / Euclidean

Similitudes

Isotropic Scaling
Identity

Linear Transformations

Translation
Rotation

Rigid / Euclidean
Linear

Similitudes

Isotropic Scaling
Identity

Scaling

Shear

Reflection

Courtesy of Prof. Fredo Durand

Affine Transformations

• Include all linear transformations

plus translation

• Preserves

parallel lines

Translation
Rotation

Rigid / Euclidean
Linear

Similitudes

Isotropic Scaling

Scaling

Shear

Reflection
Identity

Affine

Projective Transformations

Translation
Rotation

Rigid / Euclidean
Linear

Affine

Projective

Similitudes

Isotropic Scaling

Scaling

Shear

Reflection

Perspective

Identity

Properties of Transformations

Serena Morigi
Dipartimento di Matematica

serena.morigi@unibo.it

http://www.dm.unibo.it/morigi

mailto:serena.morigi@unibo.it

