

Introduzione all'ambiente MATLAB Parte I

ALMA MATER STUDIORUM ~ UNIVERSITÀ DI BOLOGNA

Sito ufficiale di MATHWORKS:

http://www.mathworks.it/help/index.html

Tutorial in italiano

http://guide.supereva.it/manuali/matlab

Tutorial in inglese: MATLAB primer

http://math.ucsd.edu/~driver/21d-s99/matlab-primer.html

- MATLAB e le sue potenzialità
 - Funzionalità di MATLAB
 - Ambiente di sviluppo MATLAB
- II manuale o Help
- Le variabili e lo spazio di lavoro
- Operatori MATLAB
 - Operatori di base, operatori logici, operatori relazionali
 - Vettori e Matrici

- Operazioni tra matrici
 - Matrici speciali
- Operatori su elementi
- Operazioni aritmetiche su vettori-matrici
 - Variabili complesse
- Grafica in MATLAB

Ci sono software gratuiti open source alternativi a MATLAB, in particulare **GNU Octave, FreeMat, e Scilab che sono compatibili** con MATLAB (ma non nell'ambiente MATLAB desktop).

MATLAB (MATrix LABoratory) è un ambiente interattivo ad alto livello che consente di costruire e gestire facilmente matrici e, come casi particolari, vettori e scalari.

La struttura dati di base è la matrice: ciò significa che durante l'elaborazione ogni quantità viene trattata dall'ambiente di calcolo come una matrice di dimensione **nxm**.

Un vettore è una matrice **1xn**, uno scalare è gestito come una matrice **1x1**

Il pacchetto però non è utilizzato solo per gestire matrici, ma è un'ottima piattaforma di sperimentazione e verifica per il calcolo numerico in genere.

Il calcolo simbolico in MATLAB è basato sul software Maple.

Funzionalità di MATLAB

MATLAB fornisce un ambiente di calcolo, visualizzazione e programmazione scientifica, in cui è possibile:

calcolare direttamente espressioni matematiche;

>> ((tan(pi/5)+2)*exp(2.3)-0.01)/log(2)

ans =

39.2197

- utilizzare il semplice ambiente di programmazione per costruire i propri algoritmi (Parte II);
- sfruttare algoritmi di base già implementati
 - built-in function -
- >> mean([1.5 2.5 3.5])

ans =

2.5000

- Matematica e calcolo
- Sviluppo di procedure e applicazioni
- Modellistica, simulazione e prototipizzazione
- Analisi di dati, esplorazione e visualizzazione
- Disegno industriale e scientifico
- Costruzione di interfacce utente
- TOOLBOX vari

Con il comando **demos** è possibile vederne alcuni esempi.

ALMA MATER STUDIORUM ~ UNIVERSITÀ DI BOLOGNA

MATLAB ha anche un linguaggio proprio per programmare.

E' un linguaggio interpretato e non compilato: questo significa che le istruzioni vengono tradotte in linguaggio macchina (il linguaggio "capito" dal processore) e subito eseguite una per volta.

Utilizzando C, Fortran, C++, la traduzione da linguaggio ad alto livello a linguaggio macchina avviene invece nel processo di compilazione, in cui tutto il programma viene tradotto in linguaggio macchina e poi eseguito.

- Per lanciare MATLAB da ambiente Windows basta cliccare due volte con il mouse sull'icona corrispondente.
- La finestra che appare quando si esegue MATLAB viene chiamata <u>desktop</u>.
- Il simbolo prompt >> indica che il calcolatore è pronto a ricevere le istruzioni e ad eseguirle.
- Per uscire dall'ambiente basta digitare
 > quit

Interfaccia grafica (per gestire files, variabili e programmi)

Interfaccia grafica (per gestire files, variabili e programmi)

Editor

L'editor è la finestra in cui si scrivono i programmi MATLAB (M-files, cioè file con estensione ".m").

^		Per richiamarla:								
📣 N. TLAB 7.4.0 (R2007a)		>> odit oppuro da	monu							
File . Jebag Desktop Window		v eur oppuie da	menu							
🗋 🗜 👗 🛍 🏙 🗠 여 🕽 🖬	🔁 Edit	litor - F:\LEZIONI\LEZIONI_CESENA_0809\BSA\calcolo.m								
Shortcuts 🗷 How to Add 💽 What's New	File Ed	Edit Text Go Cell Tools Debug Desktop Window Help 🛛 🛪 🛪								
Current Directory Wo	B - 2									
눱 🗃 🖉 🛍 🎒 🎽 🔤 🔹	0 🗁	🗜 🔤 % 🖷 🖷 🗠 🖓 🚭 🖓 🐗 📥 🎦 🔄 🌠 🦓 🦏 📾 👘 🕇								
Name 🔺 Min	1	*= ⊑ ↓= - 1.0 + ÷ 1.1 × ‰ ‰ 0								
⊞m 0.0001 ⊞m 0.5	n This	is file uses Cell Mode. For information, see the rapid code iteration video, the publishing video, or help,								
	1	88 Plot del grafico di una funzione.								
	2	% FPLOT grafico della funzione funprova nel dominio di x [-pi,pi].								
	3 -	fplot(@funprova,[-pi,pi]);								
	4	88 Minimo di una funzione								
	5	% FMINBND trova il minimo di una funzione in un dato dominio								
	6	% Un minimo per funprova nel dominio (0,1).								
<	7 -	<pre>m = fminbnd(@funprova.0.1.optimset('Display', 'off'));</pre>								
Command History	8 -	hold on:								
	0 –	noid on,								
10	9 - 10	piot(m, funprova(m), f**); varutazione di funzione dentro al piot								
	10	88 Integrale di funzione								
* 25/09/08 10.06*	11	% QUAD trova l'integrale definito di funprova in un dato dominio								
**** 25/09/08 12.19*	12	% Qui calcola l'area nel dominio [-pi,-pi/2].								
\$ 25/09/08 12.20*	13 -	q = quad(@funprova,-pi,-pi/2);								
	14 -	14 - x=-pi:pi/100:-pi/2;								
	15 -	area(x,funprova(x));	-							
	16 -	title(['Area = ',num2str(g)]);	1							
E-\$ 25/09/08 16.50\$		script Ln 6 Col 45 OVR .	1							
calcolo										
<		IIVERSITÀ DI BOLOGNA								
📣 Start										

Si può accedere al manuale o tramite il menu

Help → MATLAB Help (guida in linea)

o digitando **help** dalla Command Window (help generale di tutte le funzioni).

- Per visualizzare l'help di un singolo comando digitare help <nomecomando> dalla Command Window (esempio help plot).
- Digitando lookfor <keyword> si attiva invece la ricerca di funzioni basate su una parola chiave.
- Attraverso il comando doc si accede direttamente alla documentazione online di MATLAB.

0				
BOL	🚅 Help			×
GN	File Edit View Go Favorites Desktop Wind	ow Help		2
/~	Help Navigator ×	← → 😂 🎒 👫		
	Contents Index Search Demos	Title: Graphics :: (Graphics)		1
	🗄 🥥 Getting Started	Graphics	▶	-
	Section Tools and Developme			
	Mathematics	Graphics		
	🗉 🖬 Programming	 		
	🖃 🖬 Graphics			
	MATLAB Plotting Tools	his section discusses technic how to plot expostate and prin	ques for plotting data and provides examples showing t graphs	
	🗉 Data Exploration Tools	MATLAR Disting Tools	Creating plate and patting graphic philot properties	
	⊞ Annotating Graphs	MATLAD Plotting Tools	Creating plots and setting graphic object properties	
	Basic Plotting Commands ■	Data Exploration Tools	Tools to extract information from graphs	
			Interactively	
	Displaying Bit-Mapped Images	Annotating Graphs	Adding annotations, axis labels, titles, and	
	Printing and Exporting		legends to graphs	
	■ Figure Properties	Basic Plotting Commands	Plotting vector and matrix data in 2-D	
	Aves Properties		representations	
	Examples	Creating Specialized Plots	Creating bar graphs, histograms, contour plots,	
	🗉 🖬 3-D Visualization		and other specialized plots	
	🗉 🛅 Creating Graphical User Interfa	Displaying Bit-Mapped	Displaying and modifying bit-mapped images with	
	🗉 🛅 Functions Categorical List 🛁	Images	MATLAB	
	🖺 Functions Alphabetical List	Printing and Exporting	Printing graphs on paper and exporting graphs to	
	🖺 Handle Graphics Property Bro	Finning and Exporting	standard graphic file formats	
	🗉 🛅 External Interfaces	Handla Cranking Objects	MATLAR eventies chiests and evenestics	
	🗉 🗎 External Interfaces Reference	mandle Graphics Objects	MATLAD graphics objects and properties	
	🕀 🖽 Release Notes 🛛 👻	Figure Properties	How to use figure properties	_
				*

S

Le variabili

Variabile: nome associato ad una entità (scalare, vettore, matrice) che contiene dati.

I nomi scelti (meglio se legati all'entità che rappresentano) devono rispettare le seguenti regole di sintassi:

- possono contenere solo lettere, cifre e il carattere di sottolineatura ("_");
- 2. non possono iniziare con una cifra;

3. non si possono utilizzare parole riservate di MATLAB.

- Matlab è un linguaggio <u>case sensitive</u>, ossia distingue fra lettere maiuscole e minuscole: la variabile A è quindi diversa dalla variabile a.
- La variabile utilizzata da MATLAB in default è ans.

Esempio

Introdurre 4 variabili e farne la media.

>> media=(a+b+c+d)/4 media = Il valore della media aritmetica tra 10,20,30,40 è stato memorizzato nella variabile **media**

25

Le variabili **a**,**b**,**c**,**d** contengono

rispettivamente i valori 10,20,30,40

Tipi di variabili

Tipo	Tipo dato	Occupazione di memoria
Double	Numeri reali nell'intervallo [10 ⁻³⁷ ,10 ³⁷]	8 byte
Complex double	Numeri complessi	16 byte
Logical double	Risultato di una operazione logica (1=vero, 0=falso)	8 byte
Char	Carattere	2 byte

ALMA MATER STUDIORUM - UNIVERSITÀ DI BOLOGNA

var_testo = 'questa stringa viene assegnata alla
variabile var_testo' Char array

Formato output

L'output può essere visualizzato in diversi modi, pur non influendo sul formato che MATLAB usa per memorizzare ed elaborare i dati (double precision).

SHORT	Virgola fissa 5 cifre
SHORT E	Virgola mobile 5 cifre
SHORT G	Meglio tra virgola fissa e mobile 5 cifre
LONG	Virgola fissa 15 cifre
LONG E	Virgola mobile 15 cifre
LONG G	Meglio tra virgola fissa e mobile 15 cifre
RAT	Approssimazione mediante il rapporto ridotto ai minimi termini

Esempio

>>format short 1.3333 >>format short e 1.3333E+000 >>format short g 1.3333 >>format long 1.33333333333333333 >>format long e 1.333333333333333E+000 >>format long g 1.3333333333333333 >>format rat 4/3

default : format short

ALMA MATER STUDIORUM ~ UNIVERSITÀ DI BOLOGNA

Workspace: lo spazio di lavoro

E' l'insieme delle variabili mantenute in memoria durante una sessione MATLAB.

📣 MATLAB 7.4	.0 (R2007a)								
File Edit Debug	Desktop Window Help								
🗅 😅 🕺 🛍	🗅 🖆 🐇 🛍 🛍 🕫 🖙 🔯 🛃 🦻 Current Directory: F:\LEZIONI\LEZIONI_CESENA_0809\BSA								
Shortcuts 💽 How t	to Add 🛛 💽 What's New								
Current Directo	ry Workspace	I+	ommand Window 💛 🗆 🔻 🗙						
18 🖬 🕮 🖷 é	🞒 🐐 🔝 🔹 Stack: Base		To geometed, select <u>MATLAB Help</u> or <u>Demos</u> from the Help menu.						
Name 🔺	Min	Value >>	> calcolo						
🖽 m	0.0001	0.0001 >>							
H q	0.5	0.5							
∎ ×	-3.1416	<1x511							
<		>							
Command Histo	пу								
r vede	ere il cor	ntenut	n del Morksnace						
		iteriat							
clice		larkon	aca nal manu						
	ale su vv	σκερ							
* 25/09/	/08 12.19%								
dialt	are Work	snare	e nel prompt della finestra						
	/08 13.01*	Space							
Com	"h'di-"								
COPIN	anui.								
Clc	00 10.30	-							
calcolo									
		>							
📣 Start			OVR	OGNA					

Workspace

Informazioni per ogni variabile attiva:

Cı	ırrent Di	rectory	Worl	kspace	s ⊡ →	×	Command W	/indow
濇) 🛒 💯	🗎 🎒 Y	🖌 🔽 👻 Stack: B	iase 🔽			🕦 To get start	ed, select <u>MATL</u>
N	ame 🔺	Min	Value	Max			>> calcol	o
H	X	-0.9987	<32x32 double>	0.9936			ESEMPI DI	COMANDI M
\blacksquare	Y	-0.9974	<32x32 double>	0.9974			FIGURA 1:	Esempio d
\blacksquare	Z	-1	<32x32 double>	1			FIGURA 2:	Esempio d
abo	а		'pappa'					per
\blacksquare	m	0.0001	0.0001	0.0001			FIGURA 3:	Esempio d
	n	31	31	31				per
\blacksquare	phi	-1.5708	<32x1 double>	1.5708			FIGURA 4:	Esempio d
\blacksquare	q	0.5	0.5	0.5				per
\blacksquare	t	0	<1x315 double>	31.4			FIGURA 5:	Esempio d
	theta	-3.1416	<1x32 double>	3.1416				per vis
\blacksquare	x	0.0748	<100x1 double>	6.0984				(x(i,j),y(
\blacksquare	xlin	0.0748	<1x40 double>	6.0984			>> a=char	
\blacksquare	l y	0.0146	<100x1 double>	3.1294				
\blacksquare	ylin	0.0146	<1x40 double>	3.1294			a =	
	-	0.96/1	<100v1 doubles	n aas				

Ogni variabile sarà visualizzata insieme allo spazio da essa occupato, al numero di elementi, e al suo tipo.

appa'

Con il workspace si può:

- visualizzare e modificare le variabili dell'area di lavoro (eventualmente cambiandone il formato output);
- 2. cancellare le variabili dell'area di lavoro;
- **3.** rappresentare graficamente le variabili dell'area di lavoro;
- 4. salvare l'area di lavoro;
- 5. caricare un'area di lavoro precedentemente salvata.

Ogni sessione di lavoro può essere salvata in un file binario (nomefile.mat) mediante il comando

save <nome file>

e ricaricata in ambiente MATLAB mediante

load <nome file>

Le variabili utilizzate in ogni workspace possono essere consultate semplicemente digitando il nome della variabile stessa.

La sessione di lavoro

- Per cancellare la variabile nomevariabile
 clear <nomevariabile>
- Per cancellare tutte le variabili di una sessione di lavoro clear
- Per pulire il desktop di MATLAB
 clc
- Per pulire la finestra di una figura clf
- Per avere un elenco degli m-files memorizzati what

&

Operatori Matlab

Operatori di base:

- + addizione
- sottrazione
- / divisione a destra
- \ divisione a sinistra
- elevamento a potenza
 moltiplicazione
 - moltiplicazione

1/4=4\1=0.25

Operatori logici:

- and
 - or

not

Operatori relazionali:

- ~ = diverso da
- <= minore uguale a
- < minore a
- >= maggiore uguale a
- > maggiore a
 - = uguale logico

(per ~ in una tastiera italiana premere ALT e digitare 126 nel tastierino numerico)

Scalari, Vettori e matrici

Una matrice ha dimensione **nxm** (n righe, m colonne). Un vettore ha dimensione **nx1** (vettore colonna) o **1xn** (vettore riga). Uno scalare ha dimensione **1x1**.

- a = 1 (scalare, ovvero matrice 1x1)
- a = [0 1 2 3 4], a = [0,1,2,3,4] ed anche a = [0:4]
- b = [0, .5, 1, 1.5, 2, 2.5] ed anche b = [0:.5:2.5]
- c = [.1, .1, .1, .1] ed anche c = ones(1,5) * 0.1

Costruire Vettori

» a = [1 2 3 4] a = 1 2 3 4	 Definisce un vettore "a" (le parentesi quadre indicano ur vettore o matrice)
<pre>» size(a) ans = 1 4</pre>	fornisce la dimensione di "a"
<pre>» length(a) ← for ans = 4</pre>	usato per i vettori indica la loro lunghezza
» a'	<pre>» size(a')</pre>
ans = ans =	$\begin{array}{c} ans = \\ 4 \\ 1 \\ 4 \end{array}$
$\begin{array}{c} 2 \\ 3 \\ 4 \\ 4 \\ 4 \end{array}$	trasposta di "a" (ha dimensioni "invertite" rispetto ad "a")

Costruire Matrici

- » c =[1 2 3 4 ; 5 6 7 8] c = 1 2 3 4
 - 1 2 3 4 5 6 7 8
- Per fare riferimento ad un elemento della matrice "c":

- Usare ":" per indicare tutte le righe o tutte le colonne, esempio:
 - c(1,:) indica la prima riga, tutte le colonne
 - c(:,2) indica tutte le righe, la seconda colonna
 - c(:,2:4) indica tutte le righe, dalla seconda alla quarta colonna

» c(1,:)				» c(:,2) » c(:,2:4)		
an	s =			ans =	ans =	
1	2	3	4	2	2 3 4	
				6	6 7 8	

Funzioni di matrici

» c =[1 2 3 4 ; 5 6 7 8]								
C =								
1	2	3	4					
5	6	7	8					
» sum(c)				» sum(c')			» sum(sum(c))	
ans =				ans =			ans =	
6	8	10	12		10	26	36	

La funzione *sum* calcola la somma degli elementi di una matrice per colonne; il risultato è un vettore.

Se la matrice è un vettore 1 x m (come sum(c)), allora la somma è calcolata sugli elementi del vettore.

» m	ear	1(C)			>>	max(c)			» min(c)	
ans	=				a	ns =				ans =	
	3	4	5	6		5	6	7	8	1 2 3	4

mean fornisce la media per colonne; max e min il massimo e il minimo ancora per colonne.

ALMA MATER STUDIORUM ~ UNIVERSITÀ DI BOLOGNA

Concatenazione di matrici

» A =	[2,0	; 0,1	; 3,3]	» A(1:2,1:2)			
A = 2 0 3	0 1 3			ans = 2 0	0 1		
<pre>» A =[A,[1;2;3]] A = 2 0 1</pre>				» A =[A A= 2 0	;[1 2]]		
0 3	1 3	2 3		0 1 3 3 1 2			
Equivale a	a <mark>c</mark> a	at(2,	A,[1;2;3])	Equivale	a cat(1,A,[1 2])		

ALMA MATER STUDIORUM ~ UNIVERSITÀ DI BOLOGNA

Definiamo una matrice "c" come concatenazione dei vettori "a" e "b".

Nota: l'uso di ";" entro [....] indica la fine della riga.

```
» size(c)
ans =
```

2 4

Definiamo la matrice "d" ponendo "a" e "b" a fianco: notare il risultato diverso da "c"

» d = [a b]

Possiamo definire un vettore "e" che è una funzione logica di d

» e = d>2 e = 0 0 1 1

Possiamo ora usare "e" per trovare gli elementi di d>2

» **d(e)** ans = 3

» ones(2,3)	» ones(2)			
ans =	ans =			
	1 1			
1 1 1	1 1			
1 1 1				
» zeros(1,4)	» zeros(2,1)			
	ans =			
ans =	0			
0 0 0 0	0			
» rand(3,3)	» eye(2)			
ans -	ans =			
	1 0			
0.2176 0.4909 0.8985	0 1			
0.4054 0.1294 0.5943				
0.5699 0.5909 0.3020				

Operazioni aritmetiche su vettori-matrici

Somma/sottrazione

tra elementi corrispondenti purchè le dimensioni siano compatibili

Operazioni aritmetiche su vettori-matrici

» a = [1 2 3] a = 1 2 3	Operatori:
» b = [4 5 6] b -	Nontiplicatione tra matrici $-\Delta^* R$
4 5 6 >> a'*b ans =	moltiplicare una matrice A (n x m) con una matrice B (m x p) per ottenere una matrice (n x p)
4 5 6 8 10 12 12 15 18	Moltiplicazione tra vettori: -prodotto scalare -prodotto esterno
» a*b' ans = 32	moltiplichiamo una matrice 1 x 3 per una 3 x 1 per ottenere una 1 x 1 scalare)

Operazioni aritmetiche su vettori-matrici

Attenzione alle dimensioni dei vettori /matrici

??? Error using ==> mtimes Inner matrix dimensions must agree.

ALMA MATER STUDIORUM ~ UNIVERSITÀ DI BOLOGNA

Gli operatori su elementi indicano operazioni aritmetiche tra elementi corrispondenti: .* ./ ./ .

» f =[1 2 3]; g= [4 5 6]; Definiamo i vettori 1x3 f e g.

Nota: usando ";" alla fine della linea si elimina la stampa del risultato.

» h=f.*g h = 4 10 18 » h=f.\g h = 4.0000 2.5000 2.0000 » h=f./g h = 0.2500 0.4000 0.5000 » h=f.^2 h = 1 4 9

Valido per vettori e matrici.

Variabili complesse

Un complex double array è visto come la somma di due double array.

Con le variabili 'i' o 'j' si indica l'unità complessa

$$i=\sqrt{-1}$$

Numeri complessi
 z = 3 + 4 * i (o z = 3 + 4 * j)

Variabili complesse

Array di variabili complesse

```
B=[1 2;3 4]+i*[5 6;7 8]
```

o equivalentemente

B=[1+5*j 2+6*j;3+7*j 4+8*j]

Non ci devono essere spazi bianchi nell'espressione del numero complesso.