
Ordinary Differential

Equations ODE
Initial Value Problems

Examples

Symbolic solution of ODEs

with MATLAB
• Sometimes it is possible to determine the

analytical solution of a differential equation.

This function is called symbolic solution and is

obtained by the function dsolve of the Symbolic

Math Toolbox.

• Functionalities of the Symbolic Math Toolbox:

– symbolic algebra;

– resolution of algebraic and transcendental equations;

– calculation of integrals, derivatives, series, etc. ...;

– symbolic methods for solving ODE

– ..

s=dsolve('eqn') solves the ordinary differential equation

eqn , symbolic equation, represented

by a string , order >=1

Y=dsolve('eq1', ‘eq2',…) solves the system of ODE and returns

a structure array that contains the

solutions.

Y=dsolve('eq1',

'cond1', 'cond2',…)

solves the ordinary differential equation

eqn1 with the initial or boundary

condition cond, order >1

Y=dsolve('eq1',

'eq2',…, 'cond1',

'cond2',…)

solves the system of ordinary

differential equations eqns with the

initial or boundary conditions conds.

The function dsolve

122 =+ y
dt

dy
1) Solve the ODE:

>> dsolve('Dy+2*y=12')

ans =

6+exp(-2*t)*C1

N.B. you can use a string with

the letter capital D to indicate

the derivative and requires that

the entire equation appear in

single quotes.

D2 for second derivatives, and

so on..2) Solve the ODE: yc
dt

yd 2

2

2

=

>> dsolve('D2y=c^2*y')

ans =

C1*sinh(c*t)+C2*cosh(c*t) The solution is found in function

of arbitrary constants C1, C2

Examples

3) Solve the system of ODE:

>> [x,y]=dsolve('Dx=3*x+4*y','Dy=-4*x+3*y')

x = exp(3*t)*(cos(4*t)*C1+sin(4*t)*C2)

y = -exp(3*t)*(sin(4*t)*C1-cos(4*t)*C2)

4) Solve the ODE with init. Cond.:

>> dsolve('Dy=sin(b*t)','y(0)=0')

ans =

(-cos(b*t)+1)/b

yx
dt

dy

yx
dt

dx

34

43

+−=

+=

0)0(=y

)sin(bt
dt

dy
=

Examples

5) Solve the system of ODE:

yx
dt

dy

yx
dt

dx

34

43

+−=

+= (0) 0

(0) 1

x

y

=

=

>> [x,y]=dsolve('Dx=3*x+4*y','Dy=-4*x+3*y','x(0)=0','y(0)=1')

x = exp(3*t)*(-cos(4*t)*sin(4)/cos(4)+sin(4*t))

y = -exp(3*t)*(-sin(4*t)*sin(4)/cos(4)-cos(4*t))

Examples

6) Solve the nonlinear ODE:

24 y
dt

dy
−= 1)0(=y

>> dsolve('Dy=4-y^2','y(0)=1')

ans =

(2*exp(4*t+log(-3))+2)/(-1+exp(4*t+log(-3)))

>> simple(ans) %%apply algebraic simplifications,

ans =

(-6*exp(4*t)+2)/(-1-3*exp(4*t))

Examples

(0) 2
dy

x y y
dt

= + =7) Solve the ODE with init.cond:

>> sol=dsolve('Dy=x+y‘,’y(0)=2’,’x’)

sol =

-x-1+3*exp(x)

Plot the obtained solution in the range [-1,2]

>> ezplot(sol,[-1,2])

Examples

The independent variable may be

changed from 't' to some other

symbolic variable by including

that variable as the last input

argument.

ODE of order > 1
() (1) (1)

() (1) (1)

(1)

1 2

(1)

1 2

1 2

1 2

1 2

(, , ',.., , ,..,)

(, , ',.., , ,..,)

Choose the state variables:

, ',.., ,

, ',.., ,

Then

'

' (, , ,..,)

'

m m n

m m n

m

m

m

m m m n

m m n

m m

x f t x x x y y

y g t x x x y y

x x x x x x

x y x y x y

x x

x f t x x x

x x

− −

− −

−

−

+ + +

+

+ +

 =


=

= = =

= = =

=

=

=

1 2' (, , ,..,)m n m nx g t x x x+ +










=

Example: mass spring system

The vertical displacement of

the two masses suspended in

series by springs of spring

constant k1, k2, is given by

Hooke's law as a system of two

second-order ODE:

m1

m2

X1=0.5

X2=0.25

0)(

0)(

1222

2

2

2

111222

1

2

1

=−+

=+−−

xxk
dt

xd
m

xkxxk
dt

xd
m

Example: mass spring system

Substitution of variables to obtain a system of four ODE of the

first order:















−−=

=

−−+=

=

=

=

)('

'

)('

'

13

2

2
4

43

1

1

1
13

1

2
2

21

23

11

uu
m

k
u

uu

u
m

k
uu

m

k
u

uu

xu

xu

44332211)0()0()0()0(auauauau ====Initial conditions:

Example: mass spring system

• Step 1: Write the ODE function:

function dydt=mass_spring(t,y)

global k1 m1 k2 m2

dydt=[y(2);

(-k1*y(1)+k2*(y(3)-y(1)))/m1;

y(4);

-k2*(y(3)-y(1))/m2];















−−=

=

−−+=

=

)('

'

)('

'

13

2

2
4

43

1

1

1
13

1

2
2

21

uu
m

k
u

uu

u
m

k
uu

m

k
u

uu

script exampleODE.m

a=0; b=5; tspan=[a b]; % iintegral interval

y0=[0.5 0 0.25 0]; % initial conditions

global k1 m1 k2 m2

k1=100; m1=10; k2=120; m2=2; % in Kg, meters, Newton

[t,y]=ode45(@mass_spring,tspan,y0);

% down direction , thus -y

% the position depends on the spring length r1 and r2:

r1=10; r2=15;

plot(t,-r1-y(:,1),'.-');

hold on

plot(t,-r2-y(:,3),'-');

plot([a b],[0 0]);

Step 2: Define the problem data:

Step 3: System solver:

Step 4: Visualize the solution:

Example: mass spring system

MATLAB Solvers

Runge Kutta 1 step, explicit variable step

Runge Kutta 1 step, explicit variable step

Adams-Bashforth Moulton, if f

evaluation is expensive

Implicit Multistep, variable step

Implicit 1 step, variable step

Equivalent to implicit Runge Kutta

Event in MATLAB

Typically, the ODE solvers in MATLAB terminate after solving

the ODE over a specified domain of the independent variable

[t0,tfinal].

In applications, however, we often would like to stop the solution

at a particular value of the dependent variable (for example,

when an object fired from the ground reaches its maximum

height or when a population crosses some threshold value).

Since we do not know the appropriate final time, find the

solution y(t) and a final time t* such that

0*))(*,(

,)(

),(

00

'

=

=

=

tytg

yty

ytfy

Event in MATLAB

EXAMPLE:

body in free fall under the force of gravity.

When does it hit the ground?

For which t value y(t)=0?

function ydot = f(t,y)

ydot = [y(2); -1+y(2).^2];

'' 21 (')

(0) 1, '(0) 0,

y y

y y

= − +

= =

Event in MATLAB

function [value,isterminal,direction] = gstop(t,y)

value = y(1);

isterminal = 1;

direction= []; % [] if all zeros are to be computed (the default),

% +1 if only zeros where the event function is increasing, and

% -1 if only zeros where the event function is decreasing.

opts = odeset('events',@gstop);

[t,y,tfinal] = ode23(@f,[0 Inf],[1; 0],opts);

[t,y,tfinal,Ye,Ie] = ode23(@f,[0 Inf],[1; 0],opts);

• tfinal: A column vector of times at which events occur

• Ye: Solution values corresponding to these times

• Ie: Indices into the vector returned by the events function. The values indicate

which event the solver detected.

% the solver stops at a zero of this event (gs=0)

% value of the event function

The Apollo spacecraft orbit

• The ODE describing the motion of a body in orbit around two other

bodies much heavier. An example would be the Apollo spacecraft in

orbit around the earth and the moon.

• The three bodies determine a plane in space. The x-axis is the

straight line joining the two heavy bodies , the origin is placed in

their center of gravity and the distance between them is taken as the

unit of measure.

• the coordinate systems moves in agreement with the moon that

revolves around the earth.

• It is assumed that the third body , the Apollo , has negligible mass

compared to the first two , and that his position as a function of time

(x(t) , y(t)) .

The Apollo spacecraft orbit

• The following differential equation describing the motion of

the Apollo spacecraft in orbit around the earth and the moon

ρ=1/82.4, ρ*=1-ρ

the initial values

x(0) = 1.2 x'(0) = 0, y(0) = 0 y'(0) = -1.04935751

give rise to a periodic solution of period T = 6.19216933

If ρ is the ratio of the mass of the moon and the earth, then

the moon and the earth are located at coordinates (1- ρ , 0)

and (- ρ , 0), respectively,

The Apollo spacecraft orbit

• Solve the trajectory and make the trajectory plot

• Define a set of variables

• After conversion we get the following set of first order ODEs:
1 2 3 4

1 3

3 4

3 3

2 4 1 1 1 1 2

3 3

4 3 2 2 1 2 2

, , ', '

'

'

' 2 *() / (*) /

' 2 * / /

x x x y x x x y

x x

x x

x x x x r x r

x x x x r x r

   

 

= = = =

=
 =


= + − + − −
 = − + − −

The Apollo spacecraft orbit

Prepare the ODE RHSF in MATLAB

function dydt = apolloeq(t,y,y0)

global ro ros

r1=sqrt((y(1)+ro)^2+y(2)^2);

r2=sqrt((y(1)-ros)^2+y(2)^2);

dydt=[y(3);

y(4);

2*y(4)+y(1)-(ros*(y(1)+ro))/r1^3- …

(ro*(y(1)-ros))/r2^3;

-2*y(3)+y(2)-(ros*y(2))/r1^3-(ro*y(2))/r2^3];

Solve the ODE system

ro=1/82.45;

ros=1-ro;

y0=[1.2 0 0 -1.04935751];

% Default tolerance

[t,y] = ode45(@apolloeq,[0 7],y0);

%Try a different precision for ODE solution

options=odeset('RelTol',1e-5);

[t,y]=ode45(@apolloeq,[0 7],y0,options);

figure(1)

plot(y(:,1),y(:,2),'r')

We observe that with the default values ​​of the orbit is not

perfectly periodic, moderately stringent tolerances are

necessary to reproduce the qualitative behavior of the orbit.

Using Advanced EVENT

• Determine the time at which the Apollo

return back as close as possible to the

starting point y0 and starts to move away,

then terminates the integration.

• Determine the time at which the Apollo is

as far as possible from the initial point and

begins to approach again.

Event

function [value,isterminal,direction] = events(t,y,y0)

% Event function -- y0 shared with the outer function.

% Locate the time when the object returns closest to the initial point y0

% and starts to move away, and stop integration. Also locate the time when

% the object is farthest from the initial point y0 and starts to move closer.

%

% The current distance of the body is

% DSQ = (y(1)-y0(1))^2 + (y(2)-y0(2))^2 = <y(1:2)-y0(1:2),y(1:2)-y0(1:2)>

%

% A local minimum of DSQ occurs when d/dt DSQ crosses zero heading in

% the positive direction. We can compute d/dt DSQ as

%

% d/dt DSQ = 2*(y(1:2)-y0(1:2))'*dy(1:2)/dt = 2*(y(1:2)-y0)'*y(3:4)

dDSQdt = 2 * ((y(1:2)-y0(1:2))' * y(3:4));

value = [dDSQdt; dDSQdt];

isterminal = [1; 0]; % stop at local minimum

direction = [1; -1]; % [local minimum, local maximum]

end

This is an example of event location where the ability to

specify the direction of the zero crossing is critical.

Both the point of return to the initial point and the point of

maximum distance have the same event function value, and

the direction of the crossing is used to distinguish them.

opts=odeset('events',@events,'Reltol',1e-

5,'OutputFcn',@odephas2);

[t,x,te,xe]=ode45(@apolloeq,[0 inf],y0,opts,y0);

Equilibrium Solutions

• The growth rate of a population needs to depend on the population itself. Once a population

reaches a certain point the growth rate will start reduce, often drastically. A realistic model

of a population growth is given by the logistic growth equation.

• Populations can’t just grow forever without bound. Eventually the population will reach such

a size that the resources of an area are no longer able to sustain the population and the

population growth will start to slow as it comes closer to this threshold. Also, if you start off

with a population greater than what an area can sustain there will actually be a die off until

we get near to this threshold.

1 ()
' () (1) ()

2 10

P t
P t P t= −

10 = saturation level

½ = intrinsic growth rate

Example 1

For our logistics equation, equilibrium points:

• P = 0 is an unstable equilibrium solution

• P = 10 is an asymptotically stable equilibrium solution.

1 ()
' () (1) ()

2 10

compute P such that

1
(1) 0

2 10

P t
P t P t

P
P

= −

− =

Example 2

• Equilibrium points y=3,y=-2

• From this sketch it appears that solutions that start “near” y=-2

all move towards it as t increases and so y = -2 is an

asymptotically stable equilibrium solution and solutions

that start “near” y = 3 all move away from it as t increases and

so y= 3 is an unstable equilibrium solution.

2

2

y' 6

Equilibrium solutions

6 (y 3)(y 2) 0

y y

y y

= − −

− − = − + =

Classification of the equilibrium

equations:

If solutions start “near” an equilibrium solution will they move away from

the equilibrium solution or towards the equilibrium solution?

• Equilibrium solutions in which solutions that start “near” them move

away from the equilibrium solution are called unstable equilibrium

points or unstable equilibrium solutions.

• Equilibrium solutions in which solutions that start “near” them move

toward the equilibrium solution are called asymptotically stable

equilibrium points or asymptotically stable equilibrium solutions.

Stiff ODE Problems

For a stiff problem, solutions can change on a time scale

that is very short compared to the interval of integration,

but the solution of interest changes on a much longer

time scale.

Methods not designed for stiff problems are ineffective on

intervals where the solution changes slowly because

they use time steps small enough to resolve the fastest

possible change.

The graph of the components highlights the different time

scales characteristics of each component, from which

the stiff nature of the problem.

The Van der Pol Equation

The Van der Pol Equation

non linear stiff equation

()
() ()




==

=+−−

00'20

0'1''
2

yy

yyyy

 +
damping of the system

()





−−=

=

12
2
1

'
2

2
'
1

1 yyyy

yy



 ()

()



=

=

00

20

2

1

y

y

To express this equation as a system of first-order ODE,

introduce a variable y2 such that y1′= y2. You can then

express this system as

Proposed in 1920 and used in the study of the so-called vacuum tubes,

such as cathodic tubes in television sets or magnetrons in microwave

ovens.

The Van der Pol Equation

Let =1 (weak damping) and implement the ODE function vdpol.m

function yp=vdpol(t,y)

% Van der Pol Equation

mu=1;

yp=[y(2);mu*(1-y(1)^2)*y(2)-y(1)];

Solve by ode45 in [0 20] and plot the components of the results

>> [t,y]=ode45(@vdpol,[0 20],[2 0]);

>>plot(t,y(:,1),’-’,t,y(:,2),’—’);

The Van der Pol Equation

(plane y,y’, marker * denotes the initial

condition)

>>plot(y(:,1),y(:,2))

>>hold

>>plot(2,0,’*’)

plot in phase plane (y,y’)

The Van der Pol Equation

Let =1000 (strong damping) and update vdpol1000.m

function yp=vdpol1000(t,y)

% Van der Pol Equation

mu=1000;

yp=[y(2);mu*(1-y(1)^2)*y(2)-y(1)];

Solve by ode45 in [0 1000] and plot the results

>> [t,y]=ode45(@vdpol1000,[0 1000],[2 0]);

The Van der Pol Equation

When μ is increased to 1000, the solution to the van der Pol

equation changes dramatically and exhibits oscillation on a

much longer time scale. Approximating the solution of the

initial value problem becomes a more difficult task.

Because this particular problem is stiff, a nonstiff solver

such as ode45 is so inefficient that it is impractical.

• The numerical method is affected by this imbalance in the

solution scales and pays the price in terms of choosing the

integration step which in some places is very stringent.

• In this case, it is appropriate that the class of solvers,

denoted by the suffix "s" specially designed for this kind of

problems,

• For examples ode15s and ode23s.

The Van der Pol Equation

• Now the computation times are significantly decreased.

[t,y] = ode15s(@vdp1000,[0 3000],[2; 0]);

plot(t,y(:,1),'o');

title('Solution of van der Pol Equation, mu = 1000');

xlabel('time t');

ylabel('solution y(:,1)');

Serena Morigi
Dipartimento di Matematica

serena.morigi@unibo.it

http://www.dm.unibo.it/morigi

mailto:serena.morigi@unibo.it

