
Programming with OpenGL:

PART I

Serena Morigi

A.A.2018/2019

http://www.opengl.org

What is OpenGL

Use graphics hardware, via OpenGL or

DirectX

- OpenGL is multi-platform,

Regularly released by the Khronos Group

- DirectX is MS only

Why OpenGL?

“A software interface to graphics hardware”

▪ OpenGL (for “Open Graphics Library”) is a multi-

platform graphics API.

▪ OpenGL is a computer graphics rendering API

– With it, you can generate high-quality color

images by rendering with geometric and image

primitives

– It forms the basis of many interactive applications

that include 3D graphics

– By using OpenGL, the graphics part of your

application can be

• operating system independent

• window system independent

What Is OpenGL?

API (Application Programming Interface)

For each windowing system there’s a binding library that lets

interfaces between OpenGL and the native windowing system.

– GLX for Xwindow System

– AGL for Apple Macintosh

– WGL for Microsoft Windows

- EGL for OpenGL ES on mobile and embedded devices

GLU (OpenGL Utility Library)

- Library embedded in OpenGL, utility functions and other graphics primitives

(curves and surfaces NURBS)

GLUT (OpenGL Utility Toolkit) (more specifically, Freeglut)

- Simple open source library that will help us in creating windows, dealing

with user input and input devices, and other window-system activities.

(windowing system independent interface)

GLEW, (OpenGL Extension Wrangler library)

- Open-source library which removes all the complexity of accessing OpenGL

functions, and working with OpenGL extensions.

FRAME BUFFER

OPENGL Application Program

The Evolution of the OpenGL

Pipeline

Timeline of OpenGL’s

Development
2009

OpenGL 4.6

2019

OpenGL3.1

fixed-function pipeline

▪ OpenGL 1.0 was released on July 1st, 1994

▪ Its pipeline was entirely fixed-function

▪ the only operations available were fixed by the implementation

▪ The pipeline evolved, but remained fixed-function through

OpenGL versions 1.1 through 2.0 (Sept. 2004)

In the Beginning …

Primitive

Setup and

Rasterization

Fragment

Coloring and

Texturing

Blending

Vertex

Data

Pixel

Data

Vertex

Transform

and Lighting

Texture

Store

▪ OpenGL 2.0 (officially) added programmable shaders

▪ vertex shading augmented the fixed-function transform

and lighting stage

▪ fragment shading augmented the fragment coloring

stage

▪ However, the fixed-function pipeline was still available

The Start of the Programmable

Pipeline

Primitive

Setup and

Rasterization

Fragment

Coloring and

Texturing

Blending

Vertex

Data

Pixel

Data

Vertex

Transform

and Lighting

Texture

Store

▪ OpenGL 3.1 removed the fixed-function pipeline

▪ programs were required to use only shaders

▪ Almost all data is GPU-resident

▪ all vertex data sent using buffer objects

▪ Introduced an OpenGL extensions,

GL_ARB_compatibility

The Exclusively Programmable

Pipeline

Primitive

Setup and

Rasterization

Fragment

Shader
Blending

Vertex

Data

Pixel

Data

Vertex

Shader

Texture

Store

OpenGL 3.2 (released August 3rd, 2009) added an

additional shading stage – geometry shaders

- modify geometric primitives within the graphics pipeline

More Programability

Primitive

Setup and

Rasterization

Fragment

Shader
Blending

Vertex

Data

Pixel

Data

Vertex

Shader

Texture

Store

Geometry

Shader

▪ OpenGL 4.1 (released July 25th, 2010) included

additional shading stages – tessellation-control

and tessellation-evaluation shaders

▪ Latest version is 4.6 (July 31, 2017)

The Latest Pipelines

Primitive

Setup and

Rasterization

Fragment

Shader
Blending

Vertex

Data

Pixel

Data

Vertex

Shader

Texture

Store

Geometry

Shader

Tessellation

Control

Shader

Tessellation

Evaluation

Shader

OpenGL ES , Vulkan and WebGL

▪ OpenGL ES 3.2

▪ Designed for embedded and hand-held devices

such as cell phones

▪ Based on OpenGL 3.1

▪ Shader based

▪ Vulkan, the "Next Generation OpenGL

Initiative" (glNext), effort to unify OpenGL and

OpenGL ES into one common API

▪ WebGL (Web-based Graphics Library)

▪ JavaScript implementation of ES 2.0

▪ 3D graphics for the browsers web

Two OpenGL approaches..

• Fixed-Function Pipeline

ok with OpenGL < 3.2

OpenGL3.0 retains backward compatibility.

With OpenGL > 3.2 , use the "Compatibility" profile

since the "Core" profile does not support any deprecated
features

• Programmable Pipeline

pixel and fragment shaders,

needs OpenGL >= 2.0

OpenGL Shading Language (GLSL)

OpenGL Application

Development

Application Framework Requirements:

freeGLUT and GLEW

• OpenGL applications need a place to render into

– usually an on-screen window

• Need to communicate with native windowing

system (Each windowing system interface is different)

• We use GLUT (more specifically, freeglut)

– simple, open-source library that works everywhere

– handles all windowing operations:

• opening windows

• input processing

freeGLUT

(openGL Utility Toolkit)
A window system independent toolkit for writing OpenGL programs.

The freeGLUT source code distribution is portable to nearly all OpenGL
implementations and platforms. The current version is 3.0

The toolkit supports:

• Multiple windows for OpenGL rendering

• Callback driven event processing

• Sophisticated input devices

• An 'idle' routine and timers

• A simple, cascading pop-up menu facility

• Utility routines to generate various solid and wire frame objects

• Support for bitmap and stroke fonts

• Miscellaneous window management functions

freeglut updates GLUT

GLEW: OpenGL Extension Wrangler Library

Simplifying Working with OpenGL

• OS deal with library functions differently

• Additionally, OpenGL has many versions and profiles

which expose different sets of functions

– managing function access is cumbersome, and window-

system dependent

• We use a cross-platform open-source library, GLEW,

to hide those details http://glew.sourceforge.net

• GLEW provides efficient run-time mechanisms for

determining which OpenGL extensions are supported

on the target platform.

http://glew.sourceforge.net/

OpenGL #include

• OpenGL #include <GL/gl.h>

• the “core” library that is platform independent

• GLU #include <GL/glu.h>

• an auxiliary library that handles a variety of

graphics accessory functions

• GLUT #include <GL/freeglut.h>

• an auxiliary library that handles window creation,

OS system calls (mouse buttons, movement,

keyboard, etc), callbacks

– Note #include <GL/freeglut.h> should

automatically include the others

Windows OS using

OpenGL/FreeGLUT/GLEW

with Visual Studio 2017

Option 1) dummy

New Project

Strumenti

Gestione Pacchetti NuGet

Console di Gestion Pacchetti

>> Install-Package nupengl.core

Option 2) advanced

- Downloading freeGLUT and GLEW

- Creating a Visual Studio Project

- Installing freeGLUT and GLEW on a Project

1) Windows using OpenGL/FreeGLUT/GLEW

with Visual Studio 2017

In Visual Studio a Solution is a set of projects (programs).

To create a new project:

1. Click on the "New Project".

2. Select "Visual C++".

3. Select the category “Empty Project".

4. Specify the nameProject and directory of the project.

5. Click "Ok"

6. Copy your file.cpp in the nameProject folder created.

7. menu '"Project - Add Existing Item ...") and select file.cpp

8. menu “Tools – NuGet Packages – Console ”

>> Install-Package nupengl.core

>> Install Package glm % libreria matematica

Compile (Ctrl-F7) and run (Ctrl-F5) your program.

2) Windows using OpenGL/FreeGLUT/GLEW

with Visual Studio 2017

Run or write an opengl program:

First thing you need to do when the project opens up is to click on the

"Project" menu item from the top.

Select “Properties” (a window will come up)

Select Configuration/All Configuration

On the left side of the window there are tabs

C/C++ /General → Additional Include Directories

Select folder for include directory for freeglut/include

Linker/Input → Additional Dependencies

Select folder for library opengl32.lib;glu32.lib;freeglut32.lib

Linker/General → Additional Library Directories

Select folder for include directory for freeglut/lib

"OK" and that will include all the opengl libraries that you need

Now all you need to do is include <gl\freeglut.h> and you are ready to go

Program Structure

• Event Driven Programming

• Most OpenGL programs have a similar structure

that consists of the following functions
– main():

• opens one or more windows with the required properties

• specifies the callback functions

• enters event loop (last executable statement)

– init(): sets the state variables

• Viewing

• Attributes

– initShader():read, compile and link shaders

– callbacks

• Display function

• Input and window functions

main.c

#include <GL/freeglut.h>

int main(int argc, char** argv)

{

glutInit(&argc,argv);

glutInitDisplayMode(GLUT_SINGLE|GLUT_RGBA|GLUT_DEPTH);

glutInitWindowSize(500,500);

glutInitWindowPosition(0,0);

glutCreateWindow("simple");

glutDisplayFunc(mydisplay);

glutReshapeFunc(resize);

glutKeyboardFunc(keyb);

init();

glutMainLoop();

}

includes gl.h

specify window properties

set OpenGL state (and initialize shaders)

enter event loop

display callback

GLUT functions

• glutInit allows application to get command line
arguments and initializes system

• gluInitDisplayMode requests properties for the
window (the rendering context)

– RGB color

– Single buffering

– Properties logically ORed together

• glutWindowSize in pixels

• glutWindowPosition from top-left corner of display

• glutCreateWindow create window with title “simple”

• glutDisplayFunc display callback

• glutMainLoop enter infinite event loop

Initialization of the states that will be used throughout the application

execution

void init(void) {

glClearColor(0.0, 0.0, 0.0, 1.0);

glClearDepth(1.0);

glEnable(GL_LIGHT0);

glEnable(GL_LIGHTING);

glEnable(GL_DEPTH_TEST);

}

Init()

Rendering Callback
glutDisplayFunc(display);

void display(void)

{

glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT);

glutSwapBuffers();

}

glDrawArrays(GL_TRIANGLES, 0, NumVertices);

User Input Callback

glutKeyboardFunc(keyboard);

void keyboard(char key, int x, int y)

{

switch(key) {

case ‘q’ : case ‘Q’ :

exit(EXIT_SUCCESS);

break;

case ‘r’ : case ‘R’ :

rotate = GL_TRUE;

break;

}

}

Mouse callback
glutMouseFunc(mymouse)

void mymouse(GLint button, GLint

state, GLint x, GLint y)

• Handles

– which button caused event
(GLUT_LEFT_BUTTON,

GLUT_MIDDLE_BUTTON,

GLUT_RIGHT_BUTTON)

– state of that button (GLUT_UP, GLUT_DOWN)

– Position in window
glutMouseFunc(), glutMotionFunc(), glutPassiveMouseFunc()

Events in OpenGL

Event Example OpenGL Callback
Function

Keypress KeyDown

KeyUp

glutKeyboardFunc

Mouse leftButtonDown

leftButtonUp

glutMouseFunc

Motion With mouse press

Without

glutMotionFunc

glutPassiveMotionFunc

Window Moving

Resizing

glutReshapeFunc

System Idle

Timer

glutIdleFunc

glutTimerFunc

Software What to draw glutDisplayFunc

OpenGL Functions

• Primitives
– Points

– Line Segments

– Triangles

• Attributes

• Transformations
– Viewing

– Modeling

• Control (GLUT)

• Input (GLUT)

• Query

OpenGL State
• OpenGL is a state machine
- You give it orders to set the current state of any one

of its internal variables, or to query for its current

status

- The current state won’t change until you specify

otherwise

- Ex.: if you set the current color to Red, everything

you draw will be painted Red until you change the

color explicitly

- Each of the system’s state variables has a default value

State changing: Examples

glPointSize(size);

glLineStipple(repeat, pattern); //patterns

glShadeModel(GL_SMOOTH);

glEnable(GL_LIGHTING);

glDisable(GL_TEXTURE_2D);

OpenGL’s Geometric Primitives

GL_POINTS GL_LINES

. .

.
GL_TRIANGLES

GL_QUADS

GL_TRIANGLE_FAN

GL_TRIANGLE_STRIP

GL_QUAD_STRIP

GL_LINE_STRIP GL_LINE_LOOP

GL_POLYGON

All primitives are specified by vertices

Polygon Issues

• OpenGL will only display triangles

– Simple: edges cannot cross

– Convex: All points on line segment between two points in a

polygon are also in the polygon

– Flat: all vertices are in the same plane

• Application program must tessellate a polygon into

triangles (triangulation)

• OpenGL 4.1 contains a tessellator

nonsimple polygon
nonconvex polygon

The rendering techniques are:

• 1) Immediate mode

– Each time a vertex is specified in application, its

location is sent to the GPU

– Uses glVertex, glBegin/glEnd

– Creates bottleneck between CPU and GPU

– To redraw the same data needs to resend the data

• 2) Display list mode
– Better to send array over and store on GPU for

multiple renderings

– Each display list can contain commands and data and
is associated with a name (id)

The four rendering techniques

are:
• 3) DrawArrays/DrawElements with Arrays — The

data is stored in a vertex array, and each primitive is

drawn using a call to glDrawArrays. The data has to be

sent to the GPU every time a primitive is drawn.

• 4) DrawArrays/DrawElements with VBOs —

Again, glDrawArrays is used to draw the primitive, but

this time the data is stored in a VBO instead of in an

array, so the data only has to be transmitted to the GPU

once (Later).

DrawArrays (without indexing)

DrawElements (with indexing)

Immediate Mode

OpenGL function format

void

rtype glNAME{1234}{b s i f d ub us ui}[v]

belongs to GL library, function name, dimensions,

v is a pointer to an array

Immediate Mode
Primitive generating
glBegin(primType);

..

..

glEnd();

GLfloat red, greed, blue;

Glfloat coords[3];

glBegin(primType); %primType geometric primitive type

for (i = 0; i < nVerts; ++i)

{

glColor3f(red, green, blue);

glVertex3fv(coords);

}

glEnd();

Display list

Display list is a group of OpenGL commands and the

data used by those commands that have been stored

(compiled) for later execution in GPU.

Once a display list is created, all vertex and pixel data

are evaluated and copied into the display list memory on

the server machine. It is only one time process.

After the display list has been prepared (compiled), you

can reuse it repeatedly without re-evaluating and re-

transmitting data over and over again to draw each

frame.

Disadvantage : it’s STATIC, while Vertex Buffer Object

can handle both static and dynamic dataset.

Display list
• Create a display list

GLuint id;

void init(void)

{

id = glGenLists(1);

glNewList(id, GL_COMPILE);

/* other OpenGL routines */

glEndList();

}

• Call the created display list
void display(void)

{

glCallList(id);

}

Replace GL_COMPILE with

GL_COMPILE_AND_EXECUTE

to store and visualize directly

Example: display list

• Consider drawing a car model:

– Create a display list for chassis

– Create a display list for a wheel

glNewList(CAR, GL_COMPILE);

glCallList(CHASSIS);

glTranslatef(…);

glCallList(WHEEL);

glTranslatef(…);

glCallList(WHEEL);

…

glEndList();

A First Program

Draw a cube

• We’ll render a cube with colors at each vertex

• Our example demonstrates:

– initializing vertex data

– organizing data for rendering

– simple object modeling

• building up 3D objects from geometric primitives

• building geometric primitives from vertices

Draw a cube
Cube is an object with 6 faces and 8 vertices

We’ll render a cube with colors at each vertex

x0,y0,z0

x1,y1,z1

x2,y2,z2

x3,y3,z3

x4,y4,z4

x5,y5,z5

x6,y6,z6

x7,y7,z7

1) Draw a cube:

Immediate mode
void colorcube()

{

polygon(0,3,2,1);

polygon(2,3,7,6);

polygon(0,4,7,3);

polygon(1,2,6,5);

polygon(4,5,6,7);

polygon(0,1,5,4);

}

Called by display() 0

5 6

2

4
7

1

3

Each polygon has 2 faces INTERNAL and EXTERNAL: how do we

define it?

Right-Hand Rule!!

The vertices are ordered so that we obtain correct outward facing normals

Define vertices

GLfloat vertices[][3] = {{-1.0,-1.0,-1.0},{1.0,-1.0,-1.0},

{1.0,1.0,-1.0}, {-1.0,1.0,-1.0}, {-1.0,-1.0,1.0},

{1.0,-1.0,1.0}, {1.0,1.0,1.0}, {-1.0,1.0,1.0}};

Optional:

GLfloat normals[][3] = {{-1.0,-1.0,-1.0},{1.0,-1.0,-1.0},

{1.0,1.0,-1.0}, {-1.0,1.0,-1.0}, {-1.0,-1.0,1.0},

{1.0,-1.0,1.0}, {1.0,1.0,1.0}, {-1.0,1.0,1.0}};

GLfloat colors[][3] = {{0.0,0.0,0.0},{1.0,0.0,0.0},

{1.0,1.0,0.0}, {0.0,1.0,0.0}, {0.0,0.0,1.0},

{1.0,0.0,1.0}, {1.0,1.0,1.0}, {0.0,1.0,1.0}};

glBegin(GL_POLYGON);

glColor3fv(colors[a]);

glVertex3fv(vertices[a]);

glColor3fv(colors[b]);

glVertex3fv(vertices[b]);

glColor3fv(colors[c]);

glVertex3fv(vertices[c]);

glColor3fv(colors[d]);

glVertex3fv(vertices[d]);

glEnd();

Draw a cube

Define faces:
void polygon(int a, int b, int c , int d)

{

glBegin(GL_POLYGON);

glVertex3fv(vertices[a]);

glVertex3fv(vertices[b]);

glVertex3fv(vertices[c]);

glVertex3fv(vertices[d]);

glEnd();

}

// draw in immediate mode

// 72 calls = 6x6 glVertex*() calls + 6x6 glColor*() calls

3) Draw a cube:

Use vertex array

• Instead you specify individual vertex data in

immediate mode (between glBegin() and glEnd()

pairs), you can store vertex data in a set of

arrays including vertex coordinates, normals,

texture coordinates and color information.

• Once that is done, the primitive can be drawn

with a single call to

– glDrawArrays() % reduces the number of function calls

– glDrawElements() %reduces the number of function calls

and redundant usage of shared vertices

Define vertices

GLOBALS:

float cubeCoords[72] = {

1,1,1, -1,1,1, -1,-1,1, 1,-1,1, // face #1

1,1,1, 1,-1,1, 1,-1,-1, 1,1,-1, // face #2

1,1,1, 1,1,-1, -1,1,-1, -1,1,1, // face #3

-1,-1,-1, -1,1,-1, 1,1,-1, 1,-1,-1, // face #4

-1,-1,-1, -1,-1,1, -1,1,1, -1,1,-1, // face #5

-1,-1,-1, 1,-1,-1, 1,-1,1, -1,-1,1 }; // face #6

float cubeFaceColors[72] = {

1,0,0, 1,0,0, 1,0,0, 1,0,0, // face #1 is red

0,1,0, 0,1,0, 0,1,0, 0,1,0, // face #2 is green

0,0,1, 0,0,1, 0,0,1, 0,0,1, // face #3 is blue

1,1,0, 1,1,0, 1,1,0, 1,1,0, // face #4 is yellow

0,1,1, 0,1,1, 0,1,1, 0,1,1, // face #5 is cyan

1,0,1, 1,0,1, 1,0,1, 1,0,1, }; // face #6 is red

Use vertex array: glDrawArrays

1. functions to activate and deactivate 6 different types of arrays:

glEnableClientState(GL_COLOR_ARRAY);

glEnableClientState(GL_VERTEX_ARRAY);

2. specify the exact positions(addresses) of arrays
glVertexPointer(3, GL_FLOAT, 0, cubeCoords);

glColorPointer(3,GL_FLOAT, 0, cubeFaceColors);

• glVertexPointer(): specify pointer to vertex coords array

• glNormalPointer(): specify pointer to normal array

• glColorPointer(): specify pointer to RGB color array

• glIndexPointer(): specify pointer to indexed color array

• glTexCoordPointer(): specify pointer to texture cords array

• glEdgeFlagPointer(): specify pointer to edge flag array

3. draw the cube (in display() routine)
glDrawArrays(GL_QUADS, 0, 24);

Define vertices
GLOBALS:

GLfloat vertices[] = {-1.0,-1.0,-1.0,1.0,-1.0,-1.0,

1.0,1.0,-1.0, -1.0,1.0,-1.0, -1.0,-1.0,1.0,

1.0,-1.0,1.0, 1.0,1.0,1.0, -1.0,1.0,1.0};

GLfloat colors[] = {0.0,0.0,0.0,1.0,0.0,0.0,

1.0,1.0,0.0, 0.0,1.0,0.0, 0.0,0.0,1.0,

1.0,0.0,1.0, 1.0,1.0,1.0, 0.0,1.0,1.0};

Glubyte

cubeIndices[] =
{0,3,2,1,2,3,7,6,0,4,7,3,1,2,6,5,4,5,6,7,0,1,5,4};

Use vertex array: glDrawElements

1. functions to activate and deactivate 6 different types of arrays:

glEnableClientState(GL_COLOR_ARRAY);

glEnableClientState(GL_VERTEX_ARRAY);

2. specify the exact positions(addresses) of arrays

glVertexPointer(3, GL_FLOAT, 0, vertices);

glColorPointer(3,GL_FLOAT, 0, colors);

3. draw the cube (in display() routine)

glDrawElements(GL_QUADS, 24, GL_UNSIGNED_BYTE, cubeIndices);

• With VBOs, we copy the whole lot into a buffer before

drawing starts, and this sits on the graphics hardware

memory instead.

• This is much more efficient for drawing because, although

the bus between the CPU and the GPU is very wide, a

bottleneck for drawing performance is created when

drawing operations stall to send OpenGL commands from

the CPU to the GPU.

• To avoid this we try to keep as much data and processing

on graphics card's high-performance memory as we can.

• Drawing VBO using OpenGL fixed pipeline is almost identical to Vertex

Array. The only difference is to specify the memory offsets where the

data are stored, instead of the pointers to the arrays. For OpenGL

programmable pipeline using vertex/fragment shaders, please refer to

the SHADER slides.

4) Draw a cube:

Use VAO and VBO

Vertex Buffer Object (VBO)

• A vertex is a collection of generic attributes
– positional coordinates

– colors

– texture coordinates

– any other data associated with that point in space

• Position stored in 4 dimensional homogeneous
coordinates

• Vertex data must be stored in

vertex buffer objects (VBOs)

• VBOs must be stored in

vertex array objects (VAOs)

x

y

z

w

 
 
 
 
 
 

Vertex Array Objects (VAOs)

• VAOs store the data of an geometric object

• Steps in using a VAO

1) generate VAO names by calling

glGenVertexArrays()

2) sets the VAO as the active one

glBindVertexArray()

3) update VBOs associated with this VAO

4) bind VAO for use in rendering

• This approach allows a single function call to specify all

the data for an objects

VAOs in Code

• Create a vertex array object

GLuint vao;

glGenVertexArrays(1, &vao);

glBindVertexArray(vao);

VBO: Storing Vertex Attributes

• Vertex data must be stored in a VBO, this needs to be done only once
, and then associated with a VAO,

• The code-flow is similar to configuring a VAO
– generate VBO names by calling

glGenBuffers()
– sets a buffer as the current buffer. We use it to tell OpenGL that this is the

buffer we are working on now.

glBindBuffer(GL_ARRAY_BUFFER, …)

– load data into VBO using

glBufferData(GL_ARRAY_BUFFER, …)

• This at rendering time
– bind VAO for use in rendering

glBindVertexArray()

glDrawArrays(GL_QUADS, 0, NumVertices);

T

VBOs in Code

• Create and initialize a buffer object

GLuint buffer;
glGenBuffers(1, &buffer);
glBindBuffer(GL_ARRAY_BUFFER, buffer);

glBufferData(GL_ARRAY_BUFFER,
sizeof(vPositions) + sizeof(vColors),
NULL, GL_STATIC_DRAW);

glBufferSubData(GL_ARRAY_BUFFER, 0,
sizeof(vPositions), vPositions);

glBufferSubData(GL_ARRAY_BUFFER, sizeof(vPositions),
sizeof(vColors), vColors);

RGB vs Indexed COLOR

RGBA (TRUECOLOR) or COLOR INDEX (COLORMAP)

glColor*() glIndex*()

glutInitDisplayMode() specifies a RGB window RGBA (with GLUT_RGBA), or a

color indexed window (with GLUT_INDEX).

RGBA color in OpenGL
• Each color component (8 bits) is stored separately in the

frame buffer

• Color values can range from 0.0 (none) to 1.0 (all) using

floats or over the range from 0 to 255 using unsigned

bytes

• Example, define the background color for a window:

glClearColor(1.0,0.3,0.6,1.0)

R G B A

• RGBA…..Alpha Transparency values from 0

(transparent) to 1 (solid)

• GLUT_RGB and GLUT_RGBA with alpha channel

– glColor3f (1.0, 1.0, 1.0);

– glColor4f (1.0, 1.0, 1.0, 0.0);

Double buffering

The application

displays the

contents of

the front buffer

while it is being

made

the next frame in

the back buffer

then an

appropriate signal

allows the

exchange of roles

of the two buffers.

Front buffer and Back buffer

Back

Buffer

Animation using double

buffering
1. Specify the use of double buffer FB
glutInitDisplayMode(GLUT_RGB | GLUT_DOUBLE);

2. Clear FB
glClear (GL_COLOR_BUFFER_BIT);

3. Scene Rendering

4. The contents of the back buffer of the current
window becomes the contents of the front buffer.
glutSwapBuffers();

An implicit glFlush is done by glutSwapBuffers before it returns.

5. Repeat 2 - 4 to produce animation

Idle Callback

glutIdleFunc(idle);

void idle(void)

{

t += dt;

glutPostRedisplay();

}

Trigger an automatic redraw for animation

The window's display callback will be called to redisplay the window

References
• www.opengl.org

– Standards documents

– Sample code

• OpenGL Programming Guide: The Official Guide

to Learning OpenGL, (9th Edition)
John Kessenich, Graham Sellers, and Dave Shreiner.

• OpenGL 4 Shading Language Cookbook: Build

high-quality, real-time 3D graphics with OpenGL

4.6, GLSL 4.6 and C++17, 3rd Edition, 2018,
David Wolff

• OpenGL Shading Language.

