
Programming with OpenGL:

PART III

Serena Morigi

A.A.2018/2019

Depth Buffering and

Hidden Surface Removal (z-buffer)
Using depth buffer, as each pixel in a primitive is rasterized, its

distance from the eyepoint (depth value), is compared with the

values stored in the depth buffer.

Z-buffer algorithm:

Set depthBuffer(:,:)->z=far clipping plane;

if (pixel->z < depthBuffer(x,y)->z) {

depthBuffer(x,y)->z = pixel->z;

colorBuffer(x,y)->color = pixel->color;

}

OpenGL depth values range from

[0.0, 1.0], with 1.0 being essentially

infinitely far from the eyepoint.

Generally, the depth buffer is cleared

to 1.0 at the start of a frame.

Depth Buffering Using

OpenGL
The current framebuffer, whether an FBO (Framebuffer
Object) or the default framebuffer, must have a depth buffer.

• Request a depth buffer

glutInitDisplayMode(GLUT_RGB |GLUT_DOUBLE |
GLUT_DEPTH);

• Enable depth buffering

glEnable(GL_DEPTH_TEST);

• Clear Color and depth buffers

glClear(GL_COLOR_BUFFER_BIT |

GL_DEPTH_BUFFER_BIT);

• Render scene

• Swap color buffers

Lighting

Turning on/off the Lights:

glEnable(GL_LIGHTING) // Enable Lighting

glDisable(GL_LIGHTING)// disable is default

Rendering techniques

OpenGL can render an object in wireframe mode, shading mode,

textured mode

Why we need shading

• Suppose we build a model of a sphere

using many polygons and color it with
glColor. We get something like

• But we want

Is Lighting Enabled?

NO!? Final polygon colour is

determined only by glColor()

Shading

• Why does the image of a real sphere look like

• Light-material interactions cause each point to
have a different color or shade

• Lighting contributors:
– Light sources

– Material properties

– Location of viewer

– Surface orientation

– Illumination model

Material Properties

glMaterial{if}v(GLenum face,

GLenum pname,

TYPE *param)

– face: separate materials for front and back:

GL_FRONT, GL_BACK, GL_FRONT_AND_BACK

- pname:
– GL_DIFFUSE Base color

– GL_SPECULAR Highlight Color

– GL_AMBIENT Low-light Color

– GL_EMISSION Glow Color

– GL_SHININESS Surface Smoothness

Values range from 0 (very rough surface - no highlight) to 128 (very shiny)

– param: parameter value

Let's make the sphere shiny.

Add the following material properties before

you define the sphere:

GLfloat white[] = {0.8f, 0.8f, 0.8f, 1.0f};

GLfloat cyan[] = {0.f, .8f, .8f, 1.f};

glMaterialfv(GL_FRONT, GL_DIFFUSE, cyan);

glMaterialfv(GL_FRONT, GL_SPECULAR, white);

GLfloat shininess[] = {50};

glMaterialfv(GL_FRONT, GL_SHININESS, shininess);

More shiny means a smaller highlight.

Turning on the Lights

• Turning on the power (global control over lighting)

glEnable(GL_LIGHTING);

• Each OpenGL light is controllable separately, using

glEnable(GL_LIGHT0);

...

glEnable(GL_LIGHT7);

• Turning off the light:

glDisable(GL_LIGHT#);

At least 8 lights are supported, each identified by a light

constant: GL_LIGHTn, n = 0, 1, …, 7

Types of Lights
• The type of light is determined by the w

coordinate of the light’s position (x,y,z,w).

• Directional (infinite)

– Infinite light directed along (x,y,z,w) con w=0

• Point light (local)

– Local Light positioned at (x,y,z,w) con w=1

– the rays are emitted in all directions.

• Spotlight

– the light rays are restricted to a cone of light

Specifying a Light Source

Position, Type, Color

glLight{if}v(Glenum light,Glenum pname,

TYPE *param)

– Light#: id light number: GL_LIGHT0, …, GL_LIGHT7

– pname: parameter name (GL_POSITION,

GL_AMBIENT, GL_DIFFUSE,GL_SPECULAR)

– param: parameter value (components RGB for

light color, x,y,z for position, etc..)

pname in glLight

GL_POSITION →Position (x,y,z,w)

float light0Position[4] = {1.0, 0.0, 4.0, 1.0};

glLightfv(GL_LIGHT0, GL_POSITION,light0Position);

Type: point , directional, spotlight.

w component determines the type (1.0 in the example)

(w=0 directional lights, w=1 point/spot lights)

GL_AMBIENT, GL_DIFFUSE,GL_SPECULAR→ Color

components in the range [0,1]: Ambient, Diffuse, Specular

pname in glLight:

• GL_AMBIENT

• GL_DIFFUSE

• GL_SPECULAR

OpenGL lights can emit different colors for each of a

materials properties. For example, a light’s

GL_AMBIENT color is combined with a material’s

GL_AMBIENT color to produce the ambient contribution

to the color -Likewise for the diffuse and specular

colors.(color (RGB))

GL_SPOT_DIRECTION

GL_SPOT_CUTOFF

Spotlights
• glLight{if} (lightNo, GL_SPOT_CUTOFF, degree)

• glLight{if}v (lightNo, GL_SPOT_DIRECTION,

spot_direction)

•The spot light, besides the

position has a direction,

spotDirection, which represents

the axis of the cone.

•There is an angle of the cone

spotCosCutoff.

•Finally we have a rate of

decay, spotExponent, i.e. a

measure of how the light

intensity decreases from the

center to the walls of the cone.

Example

specifying light source parameters

GLfloat position0[] = {1.0, 1.0, 1.0, 0.0};

GLfloat diffuse0[] = {1.0, 0.0, 0.0, 1.0}; // Id term - Red

GLfloat specular0[] = {1.0, 1.0, 1.0, 1.0};// Is term - White

GLfloat ambient0[] = {0.1, 0.1, 0.1, 1.0}; // Ia term - Gray

glEnable(GL_LIGHTING);

glEnable(GL_LIGHT0);

glLightfv(GL_LIGHT0, GL_POSITION, position0);

glLightfv(GL_LIGHT0, GL_DIFFUSE, diffuse0);

glLightfv(GL_LIGHT0, GL_SPECULAR, specular0);

glLightfv(GL_LIGHT0, GL_AMBIENT, ambient0);

Moving Light Sources

• Light sources are geometric objects whose

positions or directions are affected by the

model-view matrix

• Depending on where we place the position

(direction) setting function, we can

– Move the light source(s) with the object(s)

– Fix the object(s) and move the light source(s)

– Fix the light source(s) and move the object(s)

– Move the light source(s) and object(s)

independently

Controlling a Light’s Position

• Modelview matrix affects a light’s position

• Different effects based on when position is specified
– light position fixed relative to my eye position:VCS

CTM=I

then specify your light position.

– light stay fixed relative to the scene: WCS

Set the view transform (with gluLookAt). CTM=Tv

Set the light position //glLightfv(GL_LIGHT_POSITION,…)

– light that moves around in a scene: OCS

Set the view transform CTM=Tv*Tm

Push the matrix stack

Set the model transform to update the light’s position

Set the light position //glLightfv(GL_LIGHT_POSITION,…)

Pop the matrix stack

Distance Terms
• Attenuation controls the natural tendency of light to decay

over distance.

• The light from a point source that reaches a surface is

inversely proportional to the square of the distance

between them

glLightf(Glenum light,Glenum pname, float k)

• a = GL_CONSTANT_ATTENUATION (default 1.0)

• b = GL_LINEAR_ATTENUATION (default 0.0)

• c = GL_QUADRATIC_ATTENUATION (default 0.0)

• Default is no attenuation: a=1, b=0, c=0

• No attenuation for directional lights

2

1
()attf d

a bd cd
=

+ +

Tips for Better Lighting

• Computes a color for each vertex

• Vertex colors are interpolated across

polygons by the rasterizer

• Recall lighting computed only at vertices

– model tessellation heavily affects lighting results

• better results but more geometry to process

• Use a single infinite light for fastest lighting
• minimal computation per vertex

Light Material Tutorial

Light Position Tutorial

OpenGL Shading

OpenGL allows for two shading models:

flat

glShadeModel(GL_FLAT)

smooth (Gourand shading)

glShadeModel(GL_SMOOTH)

Phong shading by shaders

Surface Normals
The normal vectors have to be explicitly computed and

assigned to the vertices :

glNormal3f(x, y, z)

Sets the current normal, which is used in the lighting

computation for all vertices until a new normal is provided.

Automatically normalize normals,

by enabling
glEnable(GL_NORMALIZE)

Vector

Normal

Face

Rendering example (FLAT)

glShadeModel(GL_FLAT);

glBegin(GL_POLYGON)

glNormal3fv(n1);

glVertex3fv(v1);

glVertex3fv(v2);

glVertex3fv(v3);

glVertex3fv(v4);

glEnd();

n1

v1

v3

v2

v4

Rendering example (Gouraud)

glShadeModel(GL_SMOOTH);

glBegin(GL_POLYGON);

glNormal3fv(n1);

glVertex3fv(v1);

glNormal3fv(n2);

glVertex3fv(v2);

glNormal3fv(n3);

glVertex3fv(v3);

glNormal3fv(n4);

glVertex3fv(v4);

glEnd();

n4

n3

n2

n1

