

Metodi Numerici per Equazioni Differenziali alle Derivate Parziali (4)

- Principio Variazionale
- Metodi agli elementi finiti FEM

Richiami di analisi funzionale

Definizione

Dato uno spazio funzionale V si dice **funzionale** su V un operatore che associa ad ogni elemento di V un numero reale :

Si indica
$$F(v) = \langle F, v \rangle$$

Funzionale lineare

$$F(\lambda u + \mu v) = \lambda F(u) + \mu F(v)$$
 $\forall \lambda, \mu \in \Re, \forall u, v \in V$ è limitato se

$$\exists C > 0 \qquad |F(v)| \le C ||v||_{V} \quad \forall v \in V$$

Spazio delle funzioni a quadrato sommabile

Sia Ω un aperto di \mathbb{R}^n .

Consideriamo lo spazio delle funzioni a quadrato sommabile su Ω :

$$L^{2}(\Omega) = \left\{ v : \Omega \to R \ t.c. \int_{\Omega} v(x)^{2} d\Omega < \infty \right\}$$

Esso è uno spazio di Hilbert il cui prodotto scalare è:

$$(v,u)_{L^2(\Omega)} \equiv \int_{\Omega} v(x)u(x)d\Omega$$

da cui la norma $\|v\|_{L^2(\Omega)} \equiv \sqrt{(v,v)_{L^2(\Omega)}}$

Spazio delle funzioni a quadrato sommabile

Sia Ω un aperto di \mathbb{R}^n . Disuguaglianza di Cauchy-Schwartz:

$$\left| \int_{\Omega} v(x)u(x)d\Omega \right| \le ||v||_{L^{2}(\Omega)} ||u||_{L^{2}(\Omega)}$$

$$||\bullet||_{L^{2}(\Omega)} \equiv \sqrt{\int_{\Omega} |\bullet| d\Omega}$$

Spazi di Sobolev

Sia Ω un aperto di R^n e k un intero positivo. Lo spazio di Sobolev di ordine k su Ω è formato dalla totalità delle funzioni di $L^2(\Omega)$ aventi tutte le derivate (distribuzionali) fino all'ordine k appartenenti ad $L^2(\Omega)$:

$$H^{k}(\Omega) \equiv \{ v \in L^{2}(\Omega) : D^{\alpha}v \in L^{2}(\Omega), \forall \alpha : |\alpha| \leq k \}$$

Gli spazi di Sobolev risultano essere spazi di Hilbert rispetto al prodotto scalare seguente:

$$(\mathbf{v},\mathbf{u})_{k} = \sum_{|\alpha| \le k} \int_{\Omega} (D^{\alpha} \mathbf{v})(D^{\alpha} \mathbf{u}) d\Omega$$

$$\|v\|_{k} = \|v\|_{H^{k}(\Omega)} = \sqrt{(v,v)_{k}} = \sqrt{\sum_{|\alpha| \le k} \int_{\Omega} (D^{\alpha}v)^{2} d\Omega}$$

Forma

Dato uno V uno spazio di Hilbert con norma ||.||_V, si dice **forma** un'applicazione **a** che associa ad ogni coppia di elementi di V un numero reale

$$a:V\times V\mapsto\mathfrak{R},$$

Bilineare se è lineare rispetto ad entrambi i suoi argomenti

$$a(\lambda u + \mu w, v) = \lambda a(u, v) + \mu a(w, v) \quad \forall \lambda, \mu \in \Re, \ \forall u, v, w \in V$$
$$a(u, \lambda w + \mu v) = \lambda a(u, v) + \mu a(u, w) \quad \forall \lambda, \mu \in \Re, \ \forall u, v, w \in V$$

Continua

se
$$\exists M > 0$$
 tale che $|a(u,v)| < M ||u||_V ||v||_V$

se
$$\exists \alpha > 0$$
 tale che $a(u,u) \ge \alpha \|u\|^2$

Analisi del problema di Poisson

Sia $\Omega \subset \Re^d$ un *aperto limitato* e *connesso* (che chiameremo dominio) e sia $\partial\Omega$ la sua frontiera. Consideriamo il problema:

$$-\Delta u = f$$
 in Ω

dove f=f(x) è una funzione assegnata.

L'equazione è ellittica del second'ordine, lineare, non omogenea (se $f \neq 0$).

Fisicamente, **u** può rappresentare lo spostamento verticale di una membrana elastica dovuto all'applicazione di una forza specifica pari ad **f**, oppure può essere la distribuzione di potenziale elettrico dovuta ad una densità di carica elettrica **f**.

Analisi del problema di Poisson

Per avere un'unica soluzione, all'equazione vanno aggiunte delle opportune condizioni al contorno. Si può ad esempio assegnare il valore di u sul bordo (**problema di Dirichlet**)

$$u = g$$
 su $\partial \Omega$

g è una funzione assegnata. Il caso g=0 si dice omogeneo.

Oppure imporre il valore della *derivata normale* di *u*

$$\nabla u \bullet n = \frac{\partial u}{\partial n} = h \quad \text{su } \partial \Omega$$

essendo n la normale uscente ad Ω e h una funzione assegnata (**problema di Neumann**), corrisponde, nel caso della membrana, ad aver imposto la trazione al bordo. Si possono infine assegnare condizioni di tipo diverso, ad esempio $\int_{u=\sigma}^{u=\sigma} \nabla u$

$$\begin{cases} u = g & \text{su } \Gamma_D \\ \frac{\partial u}{\partial n} = h & \text{su } \Gamma n \end{cases}$$
 (problema misto)
$$| \text{IORUM - UNIVERSITÀ DI BOLOGNA} | \text{IORUM -$$

Una considerazione sulla regolarità

$$-\Delta \mathbf{u} = 1 \quad \forall x \in (0,1) \times (0,1)$$

Potrebbe non aver senso cercare una soluzione $u \in C^2(\Omega)$ mentre si hanno maggiori probabilità di trovare una soluzione

$$u \in C^2(\Omega) \cap C^0(\overline{\Omega})$$

Uno spazio più grande di $C^2(\overline{\Omega})$

Si cerca una formulazione alternativa a quella forte perchè essa non consente di trattare alcuni casi fisicamente significativi.

In effetti, in presenza di dati poco regolari, la soluzione fisica potrebbe addirittura non appartenere nemmeno allo spazio

$$u \in C^1(\Omega) \cap C^0(\overline{\Omega})$$

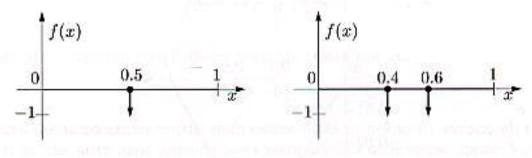
Problema di Poisson monodimensionale

$$\begin{cases} -u''(x) = f(x), \\ u(0) = 0, \end{cases}$$

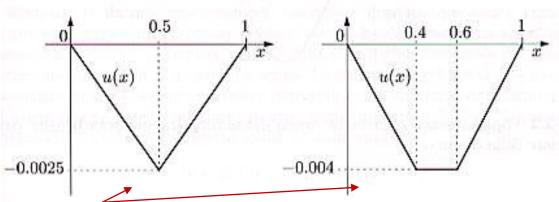
$$0 < x < 1$$
,

$$u(1)=0$$

Condizione di equilibrio di un filo elastico 0 < x < 1, con tensione pari ad uno, fissato agli estremi, in regime di piccoli spostamenti e soggetto ad una forza trasversale di intensità f.



f carico



rispetto filo posizione di riposo u=0.

Formulazione forte

U spostamento verticale

Soluzione fisica, continua ma non derivabile,

non adeguata

Soluzione analitica continua fino derivata seconda

Problema di Poisson monodimensionale

f costanti a tratti

$$u(x) = \begin{cases} -\frac{1}{10}x & \text{per } x \in [0, 0.4], \\ \frac{1}{2}x^2 - \frac{1}{2}x + \frac{2}{25} & \text{per } x \in [0.4, 0.6] \\ -\frac{1}{10}(1-x) & \text{per } x \in [0.6, 1]. \end{cases}$$

-0.03

-0.04

-0.05 -

Soluzione di classe solo C¹([0,1])

Serve dunque una formulazione del problema alternativa a quella forte che consenta di ridurre l'ordine di derivazione richiesto sulla soluzione incognita **u**.

Passeremo da un problema differenziale del secondo ordine ad uno in forma integrale del primo ordine.

Questo problema costituisce la formulazione debole del problema differenziale.

Formulazione debole del Problema di Dirichlet omogeneo

$$\begin{cases} -u''(x) = f(x), & 0 < x < 1, \\ u(0) = 0, & u(1) = 0 \end{cases}$$

Moltiplichiamo per una funzione test **V** (per ora arbitraria) ed integriamo sull'intervallo **(0,1)**

$$-u"v = fv \implies -\int_0^1 u"v \, dx = \int_0^1 fv \, dx$$
 Integriamo per parti

$$-\int_{0}^{1} u''v \, dx = \int_{0}^{1} u'v' \, dx - \left[u'v\right]_{0}^{1}$$

Essendo *u* nulla al bordo, imponiamo che la funzione test *V* sia nulla agli estremi dell'intervallo, non potendo pretendere che *u*' si annulli.

Problema di Dirichlet omogeneo

$$\int_{0}^{1} u^{'}v^{'} dx = \int_{0}^{1} fv dx$$
 Scelta dello spazio V:

1)Spazio delle funzioni test V se $v \in V$ allora v(0) = v(1) = 0

2)Se u,v appartenessero a $C^1([0,1])$ avremmo $u',v' \in C^0([0,1])$ e quindi l'integrale al primo membro avrebbe senso. Nella realtà le soluzioni fisiche possono non essere derivabili con continuità. Inoltre, anche quando $f \in C^0([0,1])$ non vi è certezza che il problema ammetta soluzione nello spazio

$$V = \{ v \in C^1([0,1]) : v(0) = v(1) = 0 \}$$

Problema di Dirichlet omogeneo

$$V = \left\{ v \in C^{1}([0,1]) : v(0) = v(1) = 0 \right\}$$
Non è uno spazio vettoriale completo con il prodotto scalare $(u,v)_{1} = \int_{0}^{1} u'(x)v'(x)dx$

$$L^{p}(0,1) = \left\{ v : (0,1) \mapsto \Re \ t.c. \ \left\| v \right\|_{L^{p}(0,1)} = \left(\int_{0}^{1} \left| v(x) \right|^{p} dx \right)^{1/p} < +\infty \right\}$$

$$1 \leq p < \infty$$

Proprietà: $Se \quad u, v \in L^2(0,1) \quad allora \ u'v' \in L^1(0,1)$

Spazio delle funzioni a potenza p-esima integrabile secondo Lebesgue

Affinche' l'integrale sia ben definito la richiesta minima è che v'u' stia in L¹(0,1)

Funzioni a quadrato integrabile con derivate a quadrato integrabile

Spazio di Sobolev

$$H^{1}(0,1) \equiv \{ v \in L^{2}(0,1) : v' \in L^{2}(0,1) \}$$

Scegliamo dunque come spazio V il sottospazio di H1(0,1)

$$H_0^1(0,1) = \{ v \in H^1(0,1) : v(0) = v(1) = 0 \}$$

$$H^1(0,1) \not\subset C^1([0,1])$$

Le funzioni di H¹ non sono derivabili in senso classico. Funzioni continue a tratti con raccordi a spigolo appartengono ad H¹ ma non a C¹. Sono dunque contemplate anche le soluzioni continue ma non derivabili.

Formulazione debole del Problema di Dirichlet omogeneo

Problema

$$\begin{cases} -u''(x) = f(x), & 0 < x < 1, \\ u(0) = 0, & u(1) = 0 \end{cases}$$
 (1)

è ricondotto a trovare

(2)
$$u \in V: \int_{0}^{1} u'v' dx = \int_{0}^{1} fv dx \quad \forall v \in V, \ V = H_{0}^{1}(0,1)$$

Il problema debole (2) risulta equivalente ad un problema variazionale in virtù del seguente risultato:

Formulazione variazionale del Problema di Dirichlet omogeneo

Teorema Il problema variazionale

(3)
$$\begin{cases} cercare & u \in V: \ J(u) = \min J(v) \\ J(v) \equiv \frac{1}{2} \int_{0}^{1} (v')^{2} dx - \int_{0}^{1} fv dx \end{cases}$$

è equivalente al problema

(2) cercare
$$u \in V$$
: $\int_{0}^{1} u'v' dx = \int_{0}^{1} fv dx$ $\forall v \in V, V = H_{0}^{1}(0,1)$

nel senso che u è soluzione di (2) se e solo se u è soluzione di (3)

Principio dei lavori virtuali della meccanica.

Problema di Dirchlet omogeneo

$$\begin{cases} cercare & u \in V: \ J(u) = \min J(v) \\ J(v) \equiv \frac{1}{2} \int_{0}^{1} (v')^{2} dx - \int_{0}^{1} fv dx \end{cases}$$

J(v) esprime infatti l'energia potenziale globale corrispondente alla configurazione *v* del sistema, il principio dei lavori virtuali stabilisce che fra gli spostamenti ammissibili del filo elastico, quello che corrisponde alla soluzione è quello che minimizza l'energia potenziale.

In questo senso il Teorema afferma che la soluzione debole è anche quella che minimizza l'energia potenziale.

Principio del minimo dell'energia potenziale

Problema di Neumann omogeneo

$$\begin{cases} -u''(x) + \sigma u = f(x), & 0 < x < 1, \\ u'(0) = 0, & u'(1) = 0 \end{cases}$$
 of funzione positiva

Moltiplichiamo per una funzione test **v** (per ora arbitraria) ed integriamo sull'intervallo **(0,1)**. Integriamo poi per parti

$$\int_{0}^{1} u'v' dx + \int_{0}^{1} \sigma uv dx - [u'v]_{0}^{1} = \int_{0}^{1} fv dx$$

Supponiamo $f \in L^2(0,1)$ e $\sigma \in L^{\infty}(0,1)$ ossia che σ sia una funzione limitata quasi ovunque (q.o.) su (0,1).

Il termine di bordo è identicamente nullo in virtù delle condizioni di Neumann imposte su u e quindi non è necessario richiedere che v si annulli.

Problema di Neumann omogeneo

$$\begin{cases} -u''(x) + \sigma u = f(x), & 0 < x < 1, \\ u'(0) = 0, & u'(1) = 0 \end{cases}$$

Formulazione debole

cercare
$$u \in H^1(0,1)$$
:
$$\int_0^1 u'v'dx + \int_0^1 \sigma uvdx = \int_0^1 fvdx \quad \forall v \in V \quad con \quad V = H^1(0,1)$$

Problema misto omogeneo

$$\begin{cases} -u''(x) + \sigma u = f(x), & 0 < x < 1, \\ u(0) = 0, & u'(1) = 0 \end{cases}$$

Dirichlet Neumann

$$\int_{0}^{1} u'v' dx + \int_{0}^{1} \sigma uv dx - [u'v]_{0}^{1} = \int_{0}^{1} fv dx$$

Il termine di bordo si annulla solo in x=1, per cui si deve chiedere che le funzioni test siano nulle in x=0.

Ponendo $\Gamma_D = \{0\}$ e definendo

$$H_{\Gamma_D}^1(0,1) \equiv \{ v \in H^1(0,1) : v(0) = 0 \}$$

Problema misto omogeneo

$$\begin{cases} -u''(x) + \sigma u = f(x), & 0 < x < 1, \\ u(0) = 0, & u'(1) = 0 \end{cases}$$

Formulazione debole

cercare
$$u \in H^1_{\Gamma_D}(0,1)$$
:
$$\int_0^1 u'v' dx + \int_0^1 \sigma uv dx = \int_0^1 fv dx \quad \forall v \in V \quad con \quad V = H^1_{\Gamma_D}(0,1)$$

$$f \in L^2(0,1) \quad e \quad \sigma \in L^\infty(0,1)$$

Equazione di Poisson 2D Problema di Dirichlet omogeneo

$$\begin{cases} -\Delta u = f & in \ \Omega \\ u = 0 & su \ \partial \Omega \end{cases} \qquad \Omega \subset \Re^2$$

Moltiplichiamo per una funzione test \mathbf{v} (per ora arbitraria) ed integriamo su Ω .

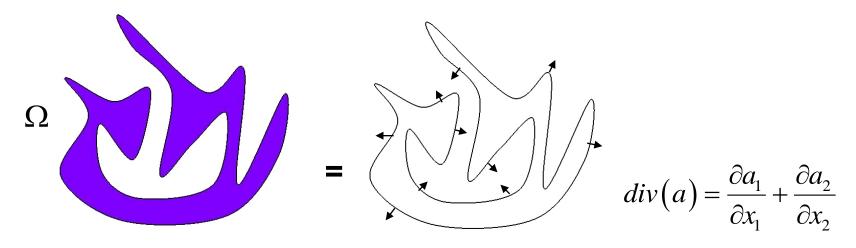
$$-\int_{\Omega} \Delta uv \ d\Omega = \int_{\Omega} fv \ d\Omega$$

Teorema divergenza. Formula di Gauss-Green.

Teorema di Divergenza

Dato un campo vettoriale $\mathbf{a}(\mathbf{x})=(\mathbf{a}_1(\mathbf{x}),\mathbf{a}_2(\mathbf{x}))$ definito su una regione Ω , l'integrale di volume di $\nabla \cdot \mathbf{a}$ su Ω e l'integrale di superficie di \mathbf{a} su $\partial \Omega$ sono uguali:

$$\int_{\Omega} div(a) \ d\Omega = \int_{\partial \Omega} a \bullet n \ d\gamma$$



 $\mathbf{n}(x)=(n_1(x),n_2(x))$ è il versore normale uscente a omega

Equazione di Poisson 2D-Problema di Dirichlet omogeneo

$$-\int_{\Omega} \Delta u \, v \, d\Omega = \int_{\Omega} f v \, d\Omega$$

$$\nabla \bullet (v \nabla u) = \nabla v \bullet \nabla u + v \Delta u$$

$$\int \nabla \bullet (v \nabla u) = \int \nabla v \bullet \nabla u + \int v \Delta u$$

$$\int \nabla \nabla u \bullet n = \int \nabla v \bullet \nabla u + \int v \Delta u$$

$$\nabla u \bullet n = \frac{\partial u}{\partial x_1} n_1 + \frac{\partial u}{\partial x_2} n_2 = \frac{\partial u}{\partial n}$$

Regola del prodotto mult.

Teorema divergenza

Formula di Green

$$-\int_{\Omega} v \, \Delta u \, d\Omega = \int_{\Omega} \nabla v \bullet \nabla u \, d\Omega - \int_{\partial \Omega} v \frac{\partial u}{\partial n} \, d\gamma \quad , \quad \nabla v = \left(\frac{\partial v}{\partial x_1}, \frac{\partial v}{\partial x_2}\right)^T$$

Equazione di Poisson 2D-Problema di Dirichlet omogeneo

Formulazione debole

cercare
$$u \in H_0^1(\Omega)$$
:
$$\int_{\Omega} \nabla u \cdot \nabla v \ d\Omega = \int_{\Omega} f v \ d\Omega \qquad \forall v \in H_0^1(\Omega)$$

$$f \in L^2(\Omega)$$

$$H^{1}(\Omega) = \left\{ v : \Omega \mapsto \Re \ t.c. \ v \in L^{2}(\Omega) : \frac{\partial v}{\partial x_{i}} \in L^{2}(\Omega), \ i = 1, 2 \right\}$$

Funzione test nulle al bordo

$$H_0^1(0,1) = \left\{ v \in H^1(0,1) : v = 0 \quad su \quad \partial \Omega \right\}$$

Equazione di Poisson 2D-Problema di Dirichlet omogeneo

cercare
$$u \in H_0^1(\Omega)$$
:
$$\int_{\Omega} \nabla u \bullet \nabla v \ d\Omega = \int_{\Omega} fv \ d\Omega \qquad \forall v \in H_0^1(\Omega)$$

$$f \in L^2(\Omega)$$

è equivalente al problema variazionale

cercare
$$u \in V$$
: $J(u) = \inf_{v \in V} J(v)$ con
$$J(v) = \frac{1}{2} \int_{\Omega} |\nabla v|^2 d\Omega - \int_{\Omega} fv d\Omega$$

$$V = H_0^1(\Omega)$$

Formulazione più compatta

Forma bilineare

$$a: V \times V \to \Re$$
, $a(u,v) \equiv \int_{\Omega} \nabla u \cdot \nabla v \ d\Omega$
Funzionale lineare

$$F:V\to\Re,\quad F(v)\equiv\int_{\Omega}fv\ d\Omega$$

cercare
$$u \in V$$
:
 $a(u,v) = F(v)$ $\forall v \in V$

Teorema di esistenza ed unicità

Teorema di Lax-Milgram

Sia V uno spazio di Hilbert, $a:V\times V\mapsto\Re$, una forma bilineare continua e coerciva. Sia $F:V\to\Re$, un funzionale lineare continuo. Allora esiste unica la soluzione del problema

cercare
$$u \in V$$
:
 $a(u,v) = F(v)$ $\forall v \in V$ (*)

Nelle ipotesi del Teorema di Lax-Milgram, se inoltre a(.,.) è anche simmetrica: a(u,v)=a(v,u) $u,v\in V$ allora il problema (*) è equivalente al problema variazionale

J(v): energia totale a(v,v): energia interna F(v): energia forze esterne

cercare
$$u \in V$$
: $J(u) \ge J(v) \quad \forall v \in V$

per il funzionale quadratico

$$J(v) \equiv \frac{1}{2}a(v,v) - F(v) \tag{**}$$

Dim.

Sia u soluzione di (**). Ponendo

$$v = u + \delta w, \quad \delta \in R \quad \Rightarrow \quad J(v) > J(u) \quad \forall v \in V, v \neq u$$

$$J(u+\delta w) = \frac{1}{2} \int_{\Omega} |\nabla(u+\delta w)|^2 d\Omega - \int_{\Omega} f(u+\delta w) d\Omega$$

$$J(u + \delta w) = \frac{1}{2} \int_{\Omega} |\nabla u + \delta \nabla w|^2 d\Omega - \int_{\Omega} f(u + \delta w) d\Omega$$

$$J(u + \delta w) = \frac{1}{2} \int_{\Omega} (\nabla u)^2 + \delta^2 (\nabla w)^2 + 2\delta \nabla u \nabla w d\Omega - \int_{\Omega} f(u + \delta w) d\Omega$$

$$J(u + \delta w) = \frac{1}{2} [a(u, u) + 2\delta a(u, w) + \delta^{2} a(w, w)] - (f, u) - \delta(f, w)$$

Dim.

$$J(u + \delta w) = \frac{1}{2}[a(u,u) + 2\delta a(u,w) + \delta^2 a(w,w)] - [(f,u) + \delta(f,w)] =$$

$$= J(u) + \frac{1}{2}[\delta^2 a(w,w) + 2\delta a(u,w)] - \delta(f,w) =$$

$$\frac{J(u + \delta w) - J(u)}{\delta} = \frac{1}{2}[\delta a(w,w) + 2a(u,w)] - (f,w)$$

$$\lim_{\delta \to 0} \frac{J(u + w) - J(u)}{\delta} = 0$$

$$\Rightarrow a(u,w) - (f,w) = 0 \quad \forall w \in V, \text{ ovvero u soddisfa (*).}$$

Risoluzione numerica di problemi ellittici

METODO DI GALERKIN per problemi ellittici

Metodo agli elementi finiti

Metodi variazionali

<u>Idea</u>

Problema ai limiti in forma generale

$$\begin{cases} Ly = f & su & \Omega \\ By = g & su & \Gamma \end{cases}$$

L operatore differenziale B condizioni ai limiti

La soluzione **y** viene cercata in un opportuno spazio funzionale **V**, solitamente di dimensione infinita.

Si può introdurre un *problema discreto* scegliendo uno spazio V_n a dimensione n finita, in cui si fissa una particolare base:

Base in
$$V_n \coloneqq \{\psi_1, \psi_2, ..., \psi_n\}$$

Metodi variazionali

Lo spazio V_n può essere uno spazio di polinomi, nelle varie forme di Lagrange, Legendre, Chebyshev, oppure uno spazio di splines o di funzioni trigonometriche, ecc.. L'idea consiste, quindi, nel cercare un'*approssimazione* della soluzione y nella seguente forma

$$y(x) \approx y_n := c_1 \psi_1 + c_2 \psi_2 + \dots + c_n \psi_n$$

Le funzioni Y_i sono anche dette le funzioni forma (*shape functions*), mentre i parametri c_i sono i gradi di libertà. In questo modo il problema è ricondotto a quello della determinazione dei parametri c_i . A seconda di come si imposta tale problema, si ottiene un particolare metodo.

Idea variazionale

- In realtà, i problemi ai limiti derivano, in gran parte, dalla applicazione di principi variazionali, quali il minimo di un funzionale dell'energia ed il principio dei lavori virtuali.
- Allora la soluzione discreta può essere ottenuta imponendo lo stesso principio variazionale sullo spazio V_n, anziché sullo spazio continuo V.

Metodo degli elementi finiti.

V_n spazio di polinomi a tratti

Metodo spettrale.

 V_n spazio di polinomi, algebrici o trigonometrici, su tutto Ω .

Breve confronto tra spettrali e FE

Metodi Spettrali:

Usano funzioni base globali per approssimare una soluzione sull'intero dominio.

Metodo (FE):

Usa funzioni base a supporto locale per approssimare una soluzione su singoli elementi del partizionamento dell'intero dominio.

Breve confronto tra FD e FE

Metodo Finite Difference (FD):

FD approssima un operatore (derivate) e risolve un problema su un insieme di punti (griglia)

Metodo Finite Element (FE):

FE usa operatori esatti ma approssima le funzioni base della soluzione. Inoltre, FE risolve un problema anche all'interno delle celle griglia.

Idea base Metodo Finite Element

