
Numerical Methods for 

Partial Differential Equations 

(PDE) (5)

Finite Element Methods

(FEM)



(a) Domain with irregular geometry and nonhomogeneous composition. 

(b) very difficult to model with a finite-difference approach. This is due to 

the fact that complicated approximations are required at the boundaries of 

the system and at the boundaries between regions of differing composition. 

(c) A finite-element discretization is much better suited for such systems.



Richiami di analisi funzionale
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Definizione

Dato uno spazio funzionale V si dice 

funzionale su V un operatore che associa ad 

ogni elemento di V un numero reale :

F:V->R

Si indica F(v)=<F,v>

Funzionale lineare

è limitato se
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Spazio delle funzioni a quadrato 

sommabile
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Sia  un aperto di  .

Consideriamo lo spazio delle funzioni a quadrato sommabile su  :
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Spazio delle funzioni a quadrato 

sommabile
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Sia  un aperto di  .

Disuguaglianza di Cauchy-Schwartz:
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Spazi di Sobolev

2

Sia  un aperto di  e k un intero positivo.

Lo spazio di Sobolev di ordine k su  è formato 

dalla totalità delle funzioni di L ( ) aventi tutte le derivate

(distribuzionali) fino all'ordine k apparten
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Gli spazi di Sobolev risultano essere spazi di Hilbert 

rispetto al prodotto scalare seguente:
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Forma 

    ,:  VVa

Bilineare se è lineare rispetto ad entrambi i suoi argomenti

Continua

Coerciva

Dato uno V uno spazio di Hilbert con norma ||.||V, si dice

forma un’applicazione a che associa ad ogni coppia di

elementi di V un numero reale
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PDE - Definitions

Strong (classical) solutions: functions u(t,x,y,…) that

are continuously differentiable of order m at each point of the

domain of the PDE (are Cm(D) ) and that satisfy the PDE at

each point of D.

Weak solutions: less regular functions u(t,x,y,...) (that is,

are not Cm(D) ) that do not satisfy the PDE everywhere in D.

They are characterized by an integral formulation (called

variational formulation), associated with the original PDE,

that involves partial derivatives of order less than m defined in

the sense of distributions.

PDE of order m



Poisson’s Equation
dLet be open, limited and connected (domain) and let

its boundary. Consider the problem:

where f=f(x) is a given function.

This is an elliptic, second order, linear, non homogeneous

(when ).

Physically, u may represent the vertical displacement of an

elastic membrane due to the application of a specific

force equal to f, or it can be the distribution of electric

potential due to a density of electric charge f.
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Boundary Conditions

      on   u g= 

To have a unique solution, the equation must be added the appropriate

boundary conditions. You can for example assign the value of u on the

boundary (Dirichlet BC)

g is a given function. When g=0 we have homogeneous BC.

Alternatively, impose the value of the normal derivative of u

with n outgoing normal from  and h a given function (Neumann BC). 

In the case of the membrane, this corresponds to have imposed the 

traction on the boundary. In case of heat diffusion: free boundary through 

which heat cannot flow.

It may finally assign conditions of different

type, for example (Mixed BC)
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On the space of solutions

)(2 C

It might not make sense to look for a solution

while you are more likely to find a solution

A space larger than

It seeks an alternative formulation to the strong one because it does 
not allow to treat some cases physically significant.

In fact, in the presence of not smooth data, the physical solution may 
not even belong to the space 
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Poisson’s Equation : 1D 
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         ,
Equilibrium condition of an elastic thread

with a strain equal to one, fixed at the

ends, for small displacements and

subject to a transversal force f.

f concentrated loads

u transversal 

displacement  with 

respect to rest position.

Physical solution, continuous but not differentiable,

Analytical solution continuous until the second derivative

Strong formulation 

not adequate



Solution only C1([0,1])

f piecewise constant

Poisson’s Equation: 1D 



We need an alternative to the strong formulation of the

problem in order to reduce the order of derivation required

on the unknown solution u.

We will convert a second-order differential problem to one

in integral form of the first order.

This problem is the weak formulation of the differential

problem.



Homogeneous Dirichlet Problem:

Weak formulation
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         , Multiply by a test function v (for

now, arbitrary) and integrate on

the interval (0,1)
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Since u vanishes at the

extremes, we impose that the

test functions v vanish at the

extremes of the interval (satisfy

the homogeneous Dirichlet

boundary conditions) -> the

boundary term vanishes



Homogeneous Dirichlet Problem
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1) Space of the test functions V ( ) ( )    then  0 1 0If v V v v = =

2) If u,v belong to C1([0,1]) then  ( )1,0,
0''

Cvu 

and then the integral to the first member would make sense. In

reality the physical solutions can not be continuously

differentiable. Moreover, even when there is no

certainty that the problem admits solution in space
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0
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Choose the space V:



Homogeneous Dirichlet Problem
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Space of functions with p-th power integrable (Lebesgue)
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So that if  v'u' is in L1(0,1)  the integral is well defined
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Square integrable Functions

with square integrable derivatives

Definition: Sobolev Space

We choose as the space V the subspace of H1(0,1)

The functions belonging to H1 are not differentiable in the classical

sense. Piecewise continuous functions with corner junctions belong

to H1 but not to C1. Therefore, solutions continuous but not

differentiable are also covered.



Homogeneous Dirichlet Problem:

weak formulation

Problem (strong formulation)
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is reduced to find the solution to the problem

( weak formulation)
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The weak problem (2) is equivalent to a variational

problem thanks to the following result:

(1)

(2)



Theorem The variational problem
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J v v dx fvdx
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is equivalent to the problem 
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This means that u is solution of (2) if and only if u is solution of (3)

Variational Formulation of

Homogeneous Dirichlet problem

(3)

(2)

Principle of virtual work of mechanics.



Variational Formulation of

Homogeneous Dirichlet problem

Principle of minimum of the potential energy
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J(v) expresses the global potential energy corresponding to

the configuration v of the system.

The principle of virtual work establishes that between

eligible shifts of the elastic thread, the one that corresponds to

the solution is the one that minimizes the potential energy.

In this sense, the theorem states that the weak solution is also

the one that minimizes the potential energy.



Neumann (natural) 

homogeneous BC
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Multiply by a test function v (for now arbitrary) and integrate

over the interval (0,1). Then we integrate by parts
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Suppose that                                                  is a function that is 

limited almost everywhere on (0,1).

The BC is identically zero by the Neumann conditions imposed 

on u so no need to require that v vanishes.
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Neumann homogeneous BC
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Weak Formulation



Mixed homogeneous BC
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The term on boundary vanishes only at x = 1, so you have to

impose that the test functions are null in x = 0.

Placing and defining 0=D
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D

Dirichlet Neumann



Mixed homogeneous BC

Weak Formulation
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Poisson 2D:

Homogeneous Dirichlet Problem

2

Find       such that

            
          

0                  

u

u f in

u su  

− = 


= 

Multplying by test function v and integrating on .

Divergence Theorem.  Gauss-Green’s formula.

 
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Divergence Theorem
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Given a vector field a(x)=(a1(x),a2(x)) defined on the

domain , the area integral a on

Is equal to the curvilinear integral on

( )  div a d a n d
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 = • 
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n(x)=(n1(x),n2(x)) is the outward normal
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Poisson 2D:

Homogeneous Dirichlet Problem

Divergence Theorem
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Green’s Formula

Product rule
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Test functions vanish at the boundary
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Weak Formulation

Poisson 2D:

Homogeneous Dirichlet Problem



Poisson 2D:

Homogeneous Dirichlet Problem
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is equivalent to variational problem
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A more Compact Form
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Bilinear Form

Linear Functional 
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Existence and Uniqueness
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where J() is the quadratic functional
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Find u V J u J v

J v a v v F v
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Theorem (Lax-Milgram)
Let V a Hilbert space a coercive and continuos bilinear

form, let a linear continuos functional.

Then it exists a unique solution of the problem

Moreover, if a(.,.) is also symmetric:

Then problem (2) is equivalent to the variational problem
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,: →VF
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

=  

J(v):     total energy

a(v,v):  internal energy

F(v)   : external enegy 

forces

(2)

(3)



Proof
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Numerical approximation for elliptic

problems

GALERKIN’s Method

For elliptic problems

Finite Element Method



Variational Method 

General form of an elliptic problem

   on   

     on     

y f

y g

− = 


=  boundary conditions

The solution y is searched in an appropriate functional space

V, usually of infinite dimension.

One can introduce a discrete problem choosing a space Vn

of finite dimension n, in which is fixed a particular basis:

Base  1 2: , ,...,n nV   =



Variational Idea

The space Vn can be polynomial space, (Lagrange,

Legendre, Chebyshev), or spline space.

The idea is, therefore, to seek an approximation of the

solution in the form y

( ) 1 1 2 2: ...n n ny x y c c c   = + + +

Functions φi are called the shape functions, and the

parameters ci are the degree of freedom.

Thus the problem is reduced to determine the parameters ci.

According to the space chosen, we end up with a different

method.



Variational Idea 

• In reality, the boundary problems derived, in large part,

by the application of variational principles, such as the

minimum of a energy function and the principle of virtual

work.

• Then the discrete solution can be obtained by imposing

the same variational principle on the space Vn, rather

than on the continuous space V.

Finite Element Method

Vn piecewise polynomial space

Spectral Method

Vn polynomial space, algebric or 

trigonometric, on . 


