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ABSTRACT

We deal with the inverse problem of reconstructing a surface
with photometric stereo technique, i.e. using two or more pic-
tures of the surface lighted under different light sources. The
new model studied in this paper allows us to extend previous
results [1, 2] obtaining a uniqueness result and to solve the
classical convex/concave ambiguity of the Shape from Shad-
ing (SfS) problem. Finally, we propose an approximation
scheme for the solution of the problem testing it on real and
synthetic images.

Index Terms— Shape from shading, Photometric Stereo,
Nonlinear Systems, Hamilton-Jacobi Equations, Semi-Lagran-
gian Schemes.

1. INTRODUCTION

The SfS problem is a classical problem in image processing
and computer vision. The main goal is to reconstruct a surface
using the variation of brightness (shading) of its image. We
will make the following assumptions:

1. The light sources are located at infinity;
2. The surface is Lambertian;
3. There are no self-reflections on the surface;
4. There are no black shadows in the images (i.e. there are

no points (x, y) ∈ Ω such that I(x, y) = 0);
5. The optical center is sufficiently far from the surface so

that perspective deformations can be neglected;
6. The albedo α(x, y) is known.

Let us denote by the unit vector ω = (ω1, ω2, ω3) = (ω̃, ω3)
the light source direction (ω3 > 0) and by I : Ω → (0, 1]
a function representing the image (where Ω ⊂ R2). The or-
thographic SfS problem consists in determining the function
u : Ω→ R which satisfies the following brightness equation

α(x, y)(n(x, y) · ω) = I(x, y), ∀(x, y) ∈ Ω (1)
that is

−∇u(x, y) · ω̃ + ω3√
1 + |∇u(x, y)|2

= I(x, y), ∀(x, y) ∈ Ω (2)

where n(x, y) is the outgoing normal to the surface of height
u, the albedo is assumed equal to one all over Ω and the
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boundary condition u(x, y) = g(x, y) on ∂Ω is given as well
as the light vector ω and the greylevel I .

In the classical SfS problem those are standard assump-
tion and a single image of the surface is used (we refer the
interested reader to [3] for extensions of this classical model
to perspective view and to [4,5] for non-Lambertian surfaces).
It is important to note that this problem is in general ill-posed
since a single image is not sufficient to determine the surface
due the convex/concave ambiguity.

We refer to the classical monography by Horn and Brooks
[6] for a mathematical formulation of the problem and to the
more recent surveys [7, 8]. In order to recognize the surface
without ambiguities, we want to study SfS using Photomet-
ric Stereo techniques (SfS-PS), where we use more than one
image of the same surface, i.e. we increase the information
about the surface in a natural way adding new images associ-
ated to different light source directions.

In particular, we consider two images I1 and I2 taken
from the same point of view, but using two different light
sources (respectively located at the directions ω′ and ω′′).
That is, we consider the following system of Hamilton-Jacobi
equations with the same Dirichlet boundary condition:

−∇u(x, y) · ω̃′ + ω′3√
1 + |∇u(x, y)|2

= I1(x, y), ∀(x, y) ∈ Ω;

−∇u(x, y) · ω̃′′ + ω′′3√
1 + |∇u(x, y)|2

= I2(x, y), ∀(x, y) ∈ Ω;

u(x, y) = g(x, y), ∀(x, y) ∈ ∂Ω.
(3)

Onn, Bruckstein [2] and Kozera [1] have studied this
problem as a system of non-linear PDEs looking for smooth
solution. More precisely, it is proved uniqueness for func-
tions u of class C2(Ω) (i.e. Ck is the set of the functions l
where the derivative l′, l′′, . . . , l(k) exist and are continuous),
the images I1 and I2 have to be of class C1(Ω), which is not
realistic. Our goal here is to extend these results to less regu-
lar solutions, obtain uniqueness and to construct an algorithm
for their approximation.

It is important to note that the SfS-PS problem (3) is well-
posed. This is a very important issue for a mathematician
problem since it guarantees the uniqueness of solution. Fur-
thermore, it has also the merit to have the solution in a very
weak function space (that is Lipschitz functions, i.e. the set
of the functions almost everywhere differentiable).



This is important specially for the real applications, in fact
the regularity of the function space determines the smooth-
ness of the object’s surface reconstructed, that is, as the solu-
tion is regular, the admissible surfaces must be smooth.

2. THE NEW DIFFERENTIAL APPROACH

Our new approach is based on the elimination of the non-
linearity of the problem considering it from the first equation
of (3) as follow√

1 + |∇u(x, y)|2 =
−∇u(x, y) · ω̃′ + ω′3

I1(x, y)
(4)

and replacing it on the second equation. We obtain the linear
hyperbolic problem:{

b(x, y) · ∇u(x, y) = f(x, y), a.e.(x, y) ∈ Ω;
u(x, y) = g(x, y) ∀(x, y) ∈ ∂Ω. (5)

where b(x, y) = (I2(x, y)ω′1 − I1(x, y)ω′′1 , I2(x, y)ω′2 −
I1(x, y)ω′′2 ) and f(x, y) = I2(x, y)ω′3 − I1(x, y)ω′′3 .

The condition of the complete illumination of the surface
from the light source ω is mathematically guaranteed by the
following inequality

u((x, y) + tω̃) < u(x, y) + tω3 ∀t > 0. (6)

Let us emphasize the fact that we can identify the points
where the surface u is not differentiable with the points where
the functions b and f are discontinuous (i.e. where I1 and I2
are discontinuous) [9].

If we define the family of piecewise continuous curves
(γ1(s), . . . , γk(s)) (where s is the argument of the parametric
representation) like the curves of discontinuity for b and f , it
is possible to prove the following theorem:

Theorem 2.1 Let us suppose that (γ1(s), . . . , γk(s)), the
family of discontinuous curves for b(x, y) and f(x, y) are not
characteristic curves (with respect to the problem (5)). Then
the problem (5) admits a unique Lipschitz solution u(x, y).

The proof of this theorem follow the characteristics method
used taking into account, in particular, the discontinuity of
the vector field b(x, y). In particular it consists in:

1. prove that the vector field b does not admit singular
points (i.e. there are no points (x, y) ∈ Ω such that
||b(x, y)|| = 0);

2. verify that, if from one side with respect to a disconti-
nuity curve the vector field b is incoming, then from the
other it is outgoing (and viceversa);

3. construct the Lipschitz solution using the characteris-
tics method starting from the boundary point across all
the domain.

A complete proof of this theorem is contained in [9]. This the-
orem, beyond the goal to obtain a weaker solution, is very im-
portant because its proof gives us the possibility to construct a
numerical scheme to approximate the unique weak solution of
the problem. In particular we use the semi-lagrangian scheme
where the driving force of this method is the flow of informa-
tion in the model equation [10]. At the numerical level, the
semi-lagrangian approximation mimics the method of char-
acteristics looking for the point of the boundary where the
characteristic curve passes and following this curve for all the
image domain Ω.

3. NUMERICAL APPROXIMATION

For the numerical part we use synthetic and real images. For
the synthetic ones we consider the square domain [−1, 1]2

with uniform discretization space step ∆ = 2/n where n rep-
resents the number of intervals that divide the square (that is
xi = −1 + i∆, yj = −1 + j∆ with i, j = 0, . . . , n). We call
Ωd the set that contains the internal (xi, yj) and ∂Ωd the set
of points (xi, yj) that discretize the boundary.

3.1. Semi-Lagrangian Schemes

The semi-Lagrangian method to the resolution of equation (5)
considers the idea of integrating the solution along the charac-
teristics [10]. We have then to consider the following equiva-
lent equation obtained dividing by the norm of b(x, y):

∇ρ(x,y)u(x, y) =
f(x, y)

||b(x, y)||
, ∀(x, y) ∈ Ω (7)

with ρ(x, y) = b(x,y)
||b(x,y)|| . We can divide without problem be-

cause we are using the first point of the sketch of the proof
(i.e. the one where ||b(x, y)|| 6= 0). Now, considering the def-
inition of directional derivative, we can write the following
approximation

u(x+ hρ1(x, y), y + hρ2(x, y))− u(x, y)

h
' f(x, y)

||b(x, y)||
.

(8)
We introduce two discrete functions un(xi, yj) = uni,j

and un+1(xi, yj) = un+1
i,j defined only on the grid nodes.

Therefore, (8) brings us to the following semi-Lagrangian
scheme:

un+1
i,j = un(xi+hρ1(xi, yj), yj+hρ2(xi, yj))−

f(xi, yj)

||b(xi, yj)||
h

(9)
∀(xi, yj) ∈ Ωd and we intend h > 0. It consists in a fix point
operator where the convergence of the sequence of functions,
in the Lipschitz function space, has been proved [9].

If we assign an initial function u0
i,j , that is u0(xi, yj) =

g(xi, yj) ∀(xi, yj) ∈ ∂Ωd (and for example u0
i,j = 0



∀(xi, yj) ∈ Ωd), it is possible to start the iterations com-
puting the successive approximations un+1

i,j as described in
(9). For every point (xi, yj) and every iteration n it will be
necessary to compute un(xi + hρ1(xi, yj), yj + hρ2(xi, yj))
and thus to approximate with an interpolation method the
function un at a point not belonging to the grid Ωd ∪ ∂Ωd.
The algorithm will stop when:

max
(xi,yj)∈Ωd

|un(xi, yj)− un+1(xi, yj)| < ε (10)

where ε is a small parameter.
It is clear that the main gap between the theoretical ap-

proach and the real application is the absence of the starting
data g(x, y) not obtainable only taking two pictures of the sur-
face. With the aim to approximate the boundary condition we
use our new approach to the SfS-PS problem with three im-
ages (i.e. we add the image function I3(x, y) obtained with
the same reflectance equation (1) using the light source ω′′′).
In particular it is possible to prove that, considering our new
differential approach, we can compute the gradient value of
u on the boundary using only the pixels of the third image in
∂Ωd [9].

Definition 3.1 Three image functions I1, I2 and I3 obtained
from the SfS orthographic model, are linearly independent if
they are generated by three non coplanar light vectors.
According with other existing approach to the photometric
stereo [11], the uniqueness of the boundary condition can be
obtained if the starting data are three linear independent im-
ages [9]. Another advance using this new approach consists
to have not the necessity to all the pixel of the three images,
but, relatively to the third one, we need only its value on the
boundary. This means that even if there are some sets of black
shadows in the internal part of the third image, we can also
approximate the surface.

4. NUMERICAL TESTS

In this section we present some examples where we use both
cases explained before, that is two synthetic surfaces (with
a given boundary condition) and one real object (with three
images).

4.1. Synthetic Images

The numerical scheme previously described is tested on the
two kinds of surfaces of Fig.1.

The first one (vsmo) is very smooth and its peculiarity is
in the hight slope between the maximum and the minimum
point. The other one (vLip) has just the required regularity for
our scheme. The procedure followed is resumed below:

1. we consider two light sources expressed in the polar co-
ordinates (ω = (sin(ϕ) cos(θ), sin(θ) sin(ϕ), cos(ϕ)))
in order to obtain no black shadow using (6);

2. we construct the images from the analytical formula of
the surface. Let us call its height v(x, y);

Fig. 1. On the left a smooth surface (vsmo), on the right an
only Lipschitz surface (vLip).

Table 1. Comparison of different results.
Surface n err
vsmo 113 6.514× 10−2

vLip 114 3.487× 10−2

3. we set the initial guess such that u0(xi, yj) = v(xi, yj)
∀(xi, yj) ∈ ∂Ωd and equal to zero in Ωd;

4. let us start the iteration of (9) till (10) with ε = 10−7

calling n the last iteration;
5. the error in the L∞(Ωd) norm is calculated
err = max(xi,yj)∈Ωd

|un(xi, yj)− v(xi, yj)|.

We set a uniform integration step ∆ = 0.02 and a semi-
lagrangian step h equal to ∆ that allows to obtain the best
error exploiting estimate concerning the consistency error [9].
For both surfaces we use the same couple of light sources (i.e.
the same angles of their polar coordinates), that is ϕ1 = 0.1,
θ1 = π

3 + 0.2 for ω′, ϕ2 = −0.1 and θ2 = π
3 + 0.3 for ω′′.

The images, related to these light sources, are shown in Fig.2
and in Fig. 3. In Table 1 are shown the number of iterations
and the errors for these two synthetic cases.

Fig. 2. On the left the image I2, on the right the image I1 of
the smooth surface.

4.2. Real Images
In order to use the Lambertian characteristics of the surface to
reconstruct, we use a half-length statue of Beethoven. Then,
considering three pictures of 210 × 77 pixels (Fig.4), we ob-
tain the 3D surface of Fig. 5. In particular we can note that the



Fig. 3. On the left the image I2, on the right the image I1 of
the Lipschitz surface.

model is robust with respect some little sets of black shadows.
In fact, in the second and in the third images there are some
black pixels that however don’t influence the reconstruction
of the surface.

Fig. 4. From left to right: I1 obtained by ϕ1 = 0.263, θ1 =
−0.305, I2 by ϕ2 = 0.200, θ2 = 1.655 and I3 by ϕ3 =
0.281, θ3 = 3.502.

Fig. 5. Two different points of view of the statue’s reconstruc-
tion.

5. CONCLUSION AND PERSPECTIVE

This PDE approach to the orthographic SfS-PS is a step for-
ward that permits to arrive to obtain the weakest type of solu-
tion for this kind of formulation of the problem like presented
for the images of Fig. 3. In fact it is also possible to prove
that we can not obtain uniqueness of solution if we consider
discontinuous function space [9]. A further step for the study

of these kind of problems is related to weaken the starting
hypotheses (for instance adding some specular-reflection ef-
fects) in particular considering the perspective model (PSfS-
PS) as in [12].
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