
Rendering: part II

Rendering

is the ”engine” that

creates

images from

3D scenes and a

virtual camera

Rendering Pipeline

Geometry stage

Compute lighting projection clip viewport

Object space world space camera view space

GPU

CPU

Geometry stage: Clipping

Application

Model View

Transform

Lighting

Projection

Transform/clip

Fragment generation

asterization

Fragment

Processing

Z-Buffer

Visibility Test

Final Image

in FRAME BUFFER

Vertices

geometry

rasterization

We need to clip scene against
sides of view volume

Portions of the object

outside the view

volume are

removed

GPU

CPU

Clipping: when?

Application

Model View

Transform

Lighting

Projection

Transform/clip

Fragment generation

Rasterization

Fragment

Processing

Z-Buffer

Visibility Test

Final Image

in FRAME BUFFER

Vertices

geometry

rasterization

Proj. Transformation

(Perspective / Orthographic)

Clipping

Projection

(to Screen Space)

NDCVCS

projection

NDC

projection

Screen Space

GPU

CPU

Scan Conversion (Rasterization)

Application

Model View

Transform

Lighting

Projection

Transform/clip

Fragment generation

Rasterization

Fragment

Processing

Z-Buffer

Visibility Test

Final Image

in FRAME BUFFER

Vertices

geometry

rasterization

– Determine which pixels that are inside

primitive specified by a set of vertices

– Produces a set of fragments

– Fragments have a location (pixel location)

and other attributes such color and texture

coordinates that are determined by

interpolating values at vertices

GPU

CPU

Visibility / Display

Application

Model View

Transform

Lighting

Projection

Transform/clip

Fragment generation

Rasterization

Fragment

Processing

Z-Buffer

Visibility Test

Final Image

in FRAME BUFFER

Vertices

geometry

rasterization

- Fragment processing (texturing)

- Draw the closest object

(depth buffer)

Clipping Against View Volume

– Polyhedra transformed to the normalized world are clipped against bounds of

canonical view volume, one polygon at a time

– Polygons are clipped one edge at a time

– Intersection calculations are trivial because of normalized planes of canonical

view volume

– New vertices are created where objects are clipped

– Use bounding volumes to trivially reject groups of objects at a time

• The view volume is a cuboid that extends from -1 to 1 in
x and y and z

• Test components of vertices -1 <= x,y,z <=1

• Points falling within these values are saved, and vertices
falling outside get clipped

Point Clipping

Back clip plane
Front clip plane

(1, -1, 1)

(-1, -1, 1)

(-1, 1, -1)

(1, 1, 1)

(-1, -1,-1)

(1, 1, -1)

(1, -1, -1)

(-1, 1, 1)

x

y

z

Line Clipping

Endpoint analysis for lines:

– if both endpoints in, can do “trivial acceptance”
– if one endpoint is inside, one outside, must clip
– if both endpoints out, don’t know

Cohen-Sutherland

Line Clipping in 2D
• Divide plane into 9 regions

• 4 bit outcode OC

Records results of four bounds tests:

First bit: x<xmin outside halfplane of left edge, to left of left edge

Second bit: x>xmax outside halfplane of right edge, to right of right edge

Third bit: y>ymax outside halfplane of top edge, above top edge

Fourth bit: y<ymin outside halfplane of bottom edge, below bottom edge

• Determine OC for the line vertices (OCp , OCq)

• CASE 1:

Lines with OCp = 0000 and OCq = 0000 can be trivially accepted

Clip Rectangle

H1 H2

H3

H4

0000

1010 0010 0110

1000 0100

00011001 0101

p q

H1 H2

H3

H4

0000

1010 0010 0110

1000 0100

00011001 0101

• CASE 2:
Lines lying entirely in a half plane on outside of an edge

can be trivially rejected:

OCp AND OCq  0000

(i.e., they share an “outside” bit)

Outcode of p : 1010

Outcode of q : 0110

Outcode of [pq] : 0010

Clipped because there is a 1

p q

• CASE 3:

External vertices but the line can not be rejected

OCp AND OCq = 0000

Outcode of p : 1000

Outcode of q : 0010

Outcode of [pq] : 0000

Not clipped

H1 H2

H3

H4

0000

1010 0010 0110

1000 0100

00011001 0101

p

q

External vertices but the line can not be rejected

OCp AND OCq = 0000

Outcode of p : 1000

Outcode of q : 0010

Outcode of [pq] : 0000

H1 H2

H3

H4

0000

1010 0010 0110

1000 0100

00011001 0101

p

q

•Consider one vertex with OC 0000;

•Determine the intersection between the line and the window edge

(corresponding to the bit  0 in the OC);

•If the intersection has OC=0000 then update the vertex

with the computed intersection vertex, otherwise reject segment

•Repeat test

Cohen-Sutherland

Line Clipping in 3D
• Very similar to 2D

• Divide volume into 27 regions

• 6 bit outcode records results of 6 bounds tests:

First bit: outside back plane, behind back plane

Second bit: outside front plane, in front of front plane

Third bit: outside top plane, above top plane

Fourth bit: outside bottom plane, below bottom plane

Fifth bit: outside right plane, to right of right plane

Sixth bit: outside left plane, to left of left plane

• Lines with OC0 = 000000 and OC1 = 000000 can be trivially
accepted

• Lines lying entirely in a volume on outside of a plane can be trivially
rejected:

OC0 AND OC1  0 (i.e., they share an “outside” bit)

• Otherwise CLIP

Line – Plane Intersection

• Explicit (Parametric) Line Equation

P(t) = P0 + t (P1 – P0)

P(t) = (1-t) P0 + t P1

• How do we intersect?
Insert explicit equation of line into
the plane equation

• P(t)= (1 − t)P0 + tP1 n · (P(t) − P2) = 0

t= n·(P2−P0)/n·(P1−P0)

Then find the intersection point and shorten the line

P2

Polygon Clipping

• What happens to a triangle during clipping?

- possible outcomes:

triangle triangle triangle quad triangle 5-gon

How many sides could a clipped triangle have?

Sutherland-Hodgman

Polygon Clipping

INPUT: v1, v2, ..vn ordered polygon vertices

OUTPUT: one or more polygons (for nonconvex)

Decompose the problem in

simple clip pipelined

subproblems:

-Clip right window boundary

-Clip bottom window boundary

-Clip left window boundary

-Clip top window boundary

Sutherland-Hodgman Polygon Clipping

For each window boundary:

• CASE 1: internal

polygon edge ⇒
add E to the final

vertex list

• CASE 3: both

external vertices ⇒
no vertex in final list

• CASE 2: add the

intersection point to

the final vertex list

• CASE 4: add

intersection point and

E to the final vertex list

Clipping pipeline on

the other window

boundaries

Output

Vertex

Output

Intersection

Second

Output

First

Output

No

output.

E

E

E

E

Sutherland-Hodgman Algorithm

1P

2P

3P

4P

Out In

S

E

No output

Out In

S
E

Output E

Out In

SE

Output I

Out In

S
E

Output I,E

I
I

Sutherland-Hodgman Algorithm

1P

2P

3P

4P

)(1PL

R

B

T

1234 PPPP•

Out In

S

E

No output

Out In

S
E

Output E

Out In

SE

Output I

Out In

S
E

Output I,E

I
I

Sutherland-Hodgman Algorithm

1P

2P

3P

4P

)(1PL

R

B

T

1234 PPPP•

Out In

S

E

No output

Out In

S
E

Output E

Out In

SE

Output I

Out In

S
E

Output I,E

I
I

Sutherland-Hodgman Algorithm

1P

2P

3P

4P

)(1PL

)(aR

B

T

234 PPP•a

aP2

Out In

S

E

No output

Out In

S
E

Output E

Out In

SE

Output I

Out In

S
E

Output I,E

I
I

Sutherland-Hodgman Algorithm

1P

2P

3P

4P

)(1PL

)(aR

B

T

234 PPP•a

aP2

Out In

S

E

No output

Out In

S
E

Output E

Out In

SE

Output I

Out In

S
E

Output I,E

I
I

Sutherland-Hodgman Algorithm

1P

2P

3P

4P

)(1PL

)(aR

B

T

34PP•a

aPP 23

Out In

S

E

No output

Out In

S
E

Output E

Out In

SE

Output I

Out In

S
E

Output I,E

I
I

Sutherland-Hodgman Algorithm

1P

2P

3P

4P

)(1PL

)(aR

B

T

34PP•a

aPP 23

b

Out In

S

E

No output

Out In

S
E

Output E

Out In

SE

Output I

Out In

S
E

Output I,E

I
I

Sutherland-Hodgman Algorithm

1P

2P

3P

4P

)(1PL

)(aR

B

T

4P•
a

aPbP 23

b

Out In

S

E

No output

Out In

S
E

Output E

Out In

SE

Output I

Out In

S
E

Output I,E

I
I

Sutherland-Hodgman Algorithm

1P

2P

3P

4P

)(1PL

)(aR

B

T

4P•
a

aPbP 23

b

Out In

S

E

No output

Out In

S
E

Output E

Out In

SE

Output I

Out In

S
E

Output I,E

I
I

Sutherland-Hodgman Algorithm

1P

2P

3P

4P

L

)(aR

B

T

a

aPbP 23•

b

Out In

S

E

No output

Out In

S
E

Output E

Out In

SE

Output I

Out In

S
E

Output I,E

I
I

Sutherland-Hodgman Algorithm

1P

2P

3P

4P

L

)(aR

)(cB

T

a

23PbP•

b

c

c

Out In

S

E

No output

Out In

S
E

Output E

Out In

SE

Output I

Out In

S
E

Output I,E

I
I

Sutherland-Hodgman Algorithm

1P

2P

3P

4P

L

)(aR

)(cB

T

a

3bP•

b

c

c

Out In

S

E

No output

Out In

S
E

Output E

Out In

SE

Output I

Out In

S
E

Output I,E

I
I

Sutherland-Hodgman Algorithm

1P

2P

3P

4P

L

)(aR

)(cB

T

a

b•

b

c

bdc

d

Out In

S

E

No output

Out In

S
E

Output E

Out In

SE

Output I

Out In

S
E

Output I,E

I
I

Sutherland-Hodgman Algorithm

1P

2P

3P

4P

L

)(aR

)(cB

T

a

•

b

c

abdc

d

Out In

S

E

No output

Out In

S
E

Output E

Out In

SE

Output I

Out In

S
E

Output I,E

I
I

Sutherland-Hodgman Algorithm

1P

2P

3P

4P

L

R

)(cB

T

a

b

c

abdc•

d

Out In

S

E

No output

Out In

S
E

Output E

Out In

SE

Output I

Out In

S
E

Output I,E

I
I

Sutherland-Hodgman Algorithm

1P

2P

3P

4P

L

R

)(cB

)(dT

a

b

c

abd•

d
d

Out In

S

E

No output

Out In

S
E

Output E

Out In

SE

Output I

Out In

S
E

Output I,E

I
I

Sutherland-Hodgman Algorithm

1P

2P

3P

4P

L

R

)(cB

)(dT

a

b

c

ab•

d
ed

e

Out In

S

E

No output

Out In

S
E

Output E

Out In

SE

Output I

Out In

S
E

Output I,E

I
I

Sutherland-Hodgman Algorithm

1P

2P

3P

4P

L

R

)(cB

)(dT

a

b

c

a•

d
afed

e

f

Out In

S

E

No output

Out In

S
E

Output E

Out In

SE

Output I

Out In

S
E

Output I,E

I
I

Sutherland-Hodgman Algorithm

1P

2P

3P

4P

L

R

)(cB

)(dT

a

b

c

•

d
cafed

e

f

Out In

S

E

No output

Out In

S
E

Output E

Out In

SE

Output I

Out In

S
E

Output I,E

I
I

Sutherland-Hodgman Algorithm

1P

2P

3P

4P

L

R

B

)(dT

a

b

c

d
cafed•

e

f

Out In

S

E

No output

Out In

S
E

Output E

Out In

SE

Output I

Out In

S
E

Output I,E

I
I

Sutherland-Hodgman Algorithm

1P

2P

3P

4P

L

R

B

)(dT

a

b

c

d
cafe•

e

f

e

Out In

S

E

No output

Out In

S
E

Output E

Out In

SE

Output I

Out In

S
E

Output I,E

I
I

Sutherland-Hodgman Algorithm

1P

2P

3P

4P

L

R

B

)(dT

a

b

c

d
caf•

e

f

fe

Out In

S

E

No output

Out In

S
E

Output E

Out In

SE

Output I

Out In

S
E

Output I,E

I
I

Sutherland-Hodgman Algorithm

1P

2P

3P

4P

L

R

B

)(dT

a

b

c

d
ca•

e

f

gfe

g

Out In

S

E

No output

Out In

S
E

Output E

Out In

SE

Output I

Out In

S
E

Output I,E

I
I

Sutherland-Hodgman Algorithm

1P

2P

3P

4P

L

R

B

)(dT

a

b

c

d
c•

e

f

chgfe

g

h

Out In

S

E

No output

Out In

S
E

Output E

Out In

SE

Output I

Out In

S
E

Output I,E

I
I

Sutherland-Hodgman Algorithm

1P

2P

3P

4P

L

R

B

)(dT

a

b

c

d
•

e

f

dchgfe

g

h

Out In

S

E

No output

Out In

S
E

Output E

Out In

SE

Output I

Out In

S
E

Output I,E

I
I

Sutherland-Hodgman Algorithm

1P

2P

3P

4P

L

R

B

T

a

b

c

d
e

f

dchgfe•

g

h

Out In

S

E

No output

Out In

S
E

Output E

Out In

SE

Output I

Out In

S
E

Output I,E

I
I

GPU

CPU

Rasterization (Scan Conversion

Fragment generation)
Application

Model View

Transform

Lighting

Projection

Transform/clip

Fragment generation

Rasterization

Fragment

Processing

Z-Buffer

Visibility Test

Final Image

in FRAME BUFFER

Vertices

geometry

rasterization

– Determine which pixels that are inside

primitive specified by a set of vertices

OUTPUT: Produces a set of fragments

– Fragments have a location (pixel location)

and other attributes such color and texture

coordinates that are determined by

interpolating values at vertices

Fragments

GPU

CPU

Fragment processing

Application

Model View

Transform

Lighting

Projection

Transform/clip

Fragment generation

Rasterization

Fragment

Processing

Z-Buffer

Visibility Test

Final Image

in FRAME BUFFER

Vertices

geometry

rasterization

– Fragment Processing

Pixel colors determined later using color,

texture, and other vertex properties

(Texture Mapping)

Rasterization

• Geometric primitives

(point, line, polygon, circle, polyhedron, sphere...)

• Primitives are continuous; screen is discrete

• Rasterization: algorithms for efficient generation of the

samples occupied by a geometric primitive

– It enumerates the fragments covered by the primitive

– It interpolates values, called attributes, across the primitive

Line rasterization

• Compute the boundary pixels

75

Polygon Rasterization

• Compute the boundary pixels

• Polygon Filling:

– Fill the spans

– Flood fill

77

Scan Converting:

how to draw 2D Line Segments
1. Given two points on the screen (with integer coords.)

2. Determine which pixels should be drawn in between

these to display a unit width line…

– Line-Drawing Algorithms:

DDA, Midpoint (Bresenham’s) Algorithm

Line Rasterization Requirements

Transform continuous primitive into

discrete samples

• Uniform thickness & brightness

• Continuous appearance

• No gaps

• Accuracy

• Speed

Special case:

• Horizontal Line:

Draw pixel P and increment x coordinate value by 1 to get

next pixel.

• Vertical Line:

Draw pixel P and increment y coordinate value by 1 to get

next pixel.

• Diagonal Line:

Draw pixel P and increment both x and y coordinate by 1 to

get next pixel.

• What should we do in general case?

– Increment x coordinate by 1 and choose point closest to line.

– But how do we measure “closest”?

Finding next pixel:

Strategy 1 –

Digital Differential Analyzer (DDA)

i i

i

i

i

y mx B

m(x) B

mx B m

y m

+ +
= +

= + +

= + +

= +

1 1

1

2 1

2 1

m y / x

x x x

y y y

 





=

= −


= −

y mx B= +

Float

Increment

Equation of line that connects two points

Starting with leftmost point,

•Increment xi by 1

•Color pixel at drawpixel [x ,round(y)]

),(ii yx

i i
(x , y m)+ +1

Problem

• DDA = for each x plot pixel at closest y

– Problems for steep lines

0 ≤m≤1

Solution: if the slope is >1, step for y instead

Using Symmetry

• For m > 1, swap role of x and y

yi+1 = mxi+1 + B = m(xi + 1) + B= yi + m (0<m ≤ 1)

yi+1 = yi+1 xi+1 =(yi+1 - B)/m = xi + 1/m (m>1)

y and m are float type numbers,

it is hard to be implemented by hardware.

Strategy 2: Midpoint Algorithm (1985)

(Bresenham's Algorithm (1965))

• Select pixel vertically closest to line segment

– intuitive, efficient, pixel center always within 0.5

vertically

Bresenham's Algorithm

• Observation:

– If we're at pixel P (xp, yp), the next pixel must

be either E (xp+1, yp) or NE (xp+1, yp+1)

E
NE

Bresenham Step

• Which pixel to choose: E or NE?

– Choose E if segment passes below or

through middle point M

– Choose NE if segment passes above M

E

NE

M

E

NE

M

Now, find a way to calculate on which side of line midpoint lies

Line equation as function y:

• y = m x + B = dy/dx x + B

Line equation as implicit function:

• F(x, y) = a x + b y + c = 0

from above, y dx = dy x + B dx or

F(x, y) = dy x – y dx + B dx = 0

so a = dy, b = -dx, c = B dx, a > 0 for y1 < y2

• F(xm, ym) = 0 when any point M is on line

• F(xm, ym) < 0 when any point M is above line

• F(xm, ym) > 0 when any point M is below line

• Our decision will be based on value of function at midpoint

M (xm, ym) where (xm=xp+1, ym=yp+½)

Line

M
F<0

F>0

F=0
p

F>0

F=0
F<0

p

Decision Variable d:

• midpoint M at (xp + 1, yp + ½)

• We only need sign of F(xp + 1, yp + ½) to see where line

lies, and then pick nearest pixel

• d = F(xp + 1, yp + ½)

- if d > 0 choose pixel NE

- if d < 0 choose pixel E

- if d = 0 choose either one consistently

How do we incrementally update d ?

- On basis of picking E or NE, figure out location of M for

that pixel, and corresponding value of d for next grid line

Decision Variable

M
F<0

F>0

F=0
p

NE

E

Increment M by one in x direction

dnew = F(xp + 2, yp + ½)

= a(xp + 2) + b(yp + ½) + c

dold = a(xp + 1) + b(yp + ½) + c

• Subtract dold from dnew to get incremental difference E

dnew = dold + a

E = a = dy

• Derive value of decision variable at next step incrementally without
computing F(M) directly

dnew = dold + E = dold + dy

• E can be thought of as correction or update factor to take dold to dnew

• It is referred to as forward difference

If E was chosen:
M

F<0

F>0

F=0
p

Increment M by one in both x and y directions

dnew = F(xp + 2, yp + 3/2)

= a(xp + 2) + b(yp + 3/2) + c

• Subtract dold from dnew to get incremental difference

dnew = dold + a + b

NE = a + b = dy – dx

• Thus, incrementally,

dnew = dold + NE = dold + dy – dx

If NE was chosen:
M

F<0

F>0

F=0
p

• At each step, algorithm chooses between 2 pixels based
on sign of decision variable calculated in previous
iteration.

• It then updates decision variable d by adding either E
or NE to old value depending on choice of pixel. Simple
additions only!

• First midpoint for first d = dstart is at (x0 + 1, y0 + ½):

F(x0 + 1, y0 + ½) = F(x0, y0) + a + b/2 = a+b/2

To eliminate fraction in dstart :

redefine F by multiplying it by 2; F(x,y) = 2(ax + by + c)

Summary

=0, (x0, y0) is on the line

Example Code
void MidpointLine(int x1, int y1,

int x2, int y2, int value) {

int dx = x2 – x1;

int dy = y2 – y1;

int d = 2 * dy - dx;

int incrE = 2 * dy;

int incrNE = 2 * (dy - dx);

int x = x1;

int y = y1;

writePixel(x, y, value);

while (x < x2) {

if (d <= 0) { // East Case

d = d + incrE;

} else { // Northeast Case

d = d + incrNE;

y++;

}

x++;

writePixel(x, y, value);

} /* while */

} /* MidpointLine */

Other Quadrants

• Note that this only applies
to lines with a positive
gradient

• But you can easily write a
separate case for each
other case

• Also if the gradient is too
steep you need to step for
x instead of y (as we saw in
DDA)

Step for y

instead of x

- Swap x1 for x2

- Step for y

instead of x

Swap x1 for x2

-Increment by -y

-Swap y1 for y2

-Swap y1 for y2

-Step for x

instead of y

- Increment by -x

-Step for x

instead of y

- Increment by x

Increment by -y

Polygon Rasterization

Polygon Filling

Polygon Rasterization

Polygon Filling

The basic rule for filling a polygon is:

– If a point is inside the polygon, color it with the

inside color.

– INSIDE/OUTSIDE TEST: triangle test/odd-even test

Polygon fill is a sorting problem, where we sort all

the pixels in the frame buffer into those that are

inside the polygon, and those that are not.

Polygon filling Algorithms:

– Flood fill

– Scan-line fill

Inside Triangle Test

A point is inside a triangle if it is in the

negative half-space of all three boundary lines

o Triangle vertices are ordered counter-clockwise

o Point must be on the left side of every boundary line

Triangle method works only for convex polygons!

(,) within triangle E (,) 0, 1,2,3ix y x y i   =

-
E1

E2

E3

+
P=(x,y)

A

B

C

0 1 0 0 1 0

1 0 0 1

0 1 0 0 1 0

(,)

()() ()()

() ()

() ()

a b

c

E x y ax by c

x x y y y y x x

x y y y x x

x y y y x x

= + + =

= − − − − −

= − + − +

− − + −

outward

normal

Inside Polygon Rule

• How to tell inside from outside

– Convex easy, but..

– What is a good rule for which pixels are inside?

Odd-even test

Any ray from P to infinity crosses a number of edges

– Odd = inside polygon

– Even = outside polygon

Flood Fill Method

• Given an initial point(x,y) inside the polygon- a seed point -

then we can look at its neighbors recursively, coloring them

with the foreground color if they are not edge point.

• use black for rasterize edge

• Scan convert edges into buffer in edge/inside color (RED)

flood_fill(int x, int y) {

if(read_pixel(x,y)== WHITE) {

write_pixel(x,y,RED);

flood_fill(x-1, y);

flood_fill(x+1, y);

flood_fill(x, y+1);

flood_fill(x, y-1);

} }

Scan Line Fill Method

Incremental algorithm to find spans for each

scanline (top-to-bottom), and determine

“insideness”

Each span can be

processed independently

(parallel span processor) desired order

Span Scanline

Scan Line Fill Method

Proceeding from top to bottom, from left to right the

intersections are paired and intervening pixels are set to the

specified intensity

Algorithm

- Find the intersections of the scan line with all the edges in the polygon

- Sort the intersections by increasing X-coordinates

- Fill the pixels between pair of intersections

Scan Line Fill (for triangle)

For every triangle

Compute projection for vertices, compute the Ei

Compute bbox, clip bbox to screen limits

For all pixels x,y in bbox

Evaluate edge functions Ei

If all Ei < 0

Framebuffer[x,y] = triangleColor

How do we get such a bounding box?

Xmin, Xmax, Ymin, Ymax of the projected

triangle vertices

Can we do better?

For every triangle

Compute projection for vertices

Compute bbox, clip bbox to screen limits

For all scanlines y in bbox

Evaluate all Ei’s at (x0,y): Ei = aix0 + biy + ci

For all pixels x in bbox

If all Ei<0

Framebuffer[x,y] = triangleColor

Increment line equations: Ei += ai

We save ~two multiplications and two additions per pixel when the triangle
is large

Ei (x+1,y) = Ei (x,y) + ai

Scanline for concave polygons:

tessellator
Convert everything into triangles

then scan convert the triangles

Framebuffer[x,y] = Color(?)

• We store data (such as color, etc.) on the vertices

of triangles, and subsequently use interpolation to

compute values of this data on the interior of the

triangle

For example:

•Specify an (R,G,B) color on each vertex of a triangle

•For each pixel inside the triangle, compute the interpolation

coordinates for that pixel

•Then use these interpolation coordinates to compute an

interpolated (R,G,B) color value for that pixel

Per-pixel color:

linear Interpolation
C1 C2 C3 specify Color or by vertex shading

C4 determined by interpolating between C1 and C2

C5 determined by interpolating between C2 and C3

interpolate between C4 and C5 along span

span

C1

C2

C3

C5

C4scan line

Per-Pixel color:

barycentric interpolation

Triangle’s color at point x?

Color at x is affine combination of

color at three triangle vertices

xcolor color color colorA B C  = + +

1
2

1
2

(x) (x)

(A) (A)

(x)

(B)

(x)

(C)

xBC BC BC

ABC BC BC

CA

CA

AB

AB

area E E

area E E

E

E

E

E







= = =

=

=

C

B

A

aa

aa

aa

Per-pixel attributes

Interpolate colors

￭R = α0 R0+ α1R1+ α2R2

￭G = α0G0+ α1G1+ α2G2

￭B = α0B0+ α1B1+ α2B2

Interpolate normal vectors

￭N = α0N0+ α1N1+ α2N2

Interpolate z-buffer depth values

￭z = α0z0+ α1z1+ α2z2

Interpolate texture coordinates

￭u = α0u0+ α1u1+ α2u2

￭v = α0v0+ α1v1+ α2v2

GPU

CPU

Visibility

Application

Model View

Transform

Lighting

Projection

Transform/clip

Fragment Generation/

Rasterization

Fragment

Processing

Z-Buffer

Visibility Test

Final Image

in FRAME BUFFER

Vertices

geometry

rasterization

• hidden surface removal

algorithms: update the frame

buffer with the closest object

• Fragment processing

Visibility

How do we know which parts are visible/in front?

Given a set of 3-D objects and a view specification (camera),

determine which lines or surfaces of the object are visible

Culling vs HSR

Culling

refers to the process of
determining and culling
polygons which are not
visible

Before HSR

HSR (hidden surface
removal) refers to the
process of determining
which parts of the
polygons are not
visible

Culling

• There are three common reasons to cull a

particular triangle

– If it doesn’t lie within the view volume

(view frustum culling)

– If it is facing ‘away’ from the viewer

(back-face culling)

– If it is degenerate (area=0)

• The first case is built automatically into the

clipping algorithm which we already covered

• In the third case normal n will be [0 0 0]

Back-face Culling

• By convention, the front side of the triangle is

defined as the side where the vertices are arranged

in a counterclockwise fashion

• Most renderers allow triangles to be defined as one

or two sided. Only one-sided triangles need to be

backface culled.

p0

p1

p2

n

Backface Culling

Any back facing triangles

should be culled as early as

possible, as it would be

expected that up to 50% of

the triangles in a scene

would be back facing

Usually, back-face culling is

done before clipping, as it is

a very quick operation and

will affect a much larger

percentage of triangles than

clipping

Backface Culling

view direction

v

the projector from any

point P on polygon to the

center of view

Backface Culling

view direction

v

n

Backface Culling

view direction

v

cos() 0n v  =  , draw polygon

n

9090 − 

Backface Culling

view direction

v

0n v  , cull polygon

n

Visible Surface determination
Two approaches:

Object space vs. image space

Object space: algorithms which work in the view

coordinate system.
Complexity:

for k objects O(k2) since each object must be compared with all the

others

Image Space: algorithms which work in the screen

coordinate system;
Complexity:

for image nxm and k objects O(k)

Painter’s algorithm

• Draw back-to-front

• How do we sort objects?

• Can we always sort objects?

1

2

5

4

3

6

7

1. Sort polygons by smallest Z

2. Solve polygons overlapping problems (in z)

3. For each polygon, draw its pixels

Painter’s algorithm (Depth-Sort)

• Can we always sort objects?

– No, there can be cycles

– Requires to split polygons

A

B

C

A

B

3D Depth-Sort Algorithm
– Handles errors/ambiguities of Z-sort:

1. Sort all objects’ zmin and zmax

2. If an object is uninterrupted (its zmin and zmax are

adjacent in the sorted list), it is fine

3. If 2 objects DO overlap

3.1 Check if they overlap in x

- If not, they are fine

3.2 Check if they overlap in y

- If not, they are fine

- If yes, need to split one

Ray Casting

• Maintain intersection with closest object

For each screen pixel:

determine the ray EYE-pixel

For each object in scene:

compute intersection ray/object

If (inters. Is closest)

Then the object is visible

store the pixel object;

color the pixel;

Z-Buffer Algorithm (Catmull 1975)

– Requires two “buffers” of the same sizes

Color Buffer —RGB pixel buffer

—initialized to background color

Depth (“Z”) Buffer —depth of scene at each pixel

—initialized to far depth = 255

- Polygons are scan-converted in arbitrary order. When pixels

overlap, use Z-buffer to decide which polygon “gets” that pixel

Example using integer Z-buffer with near = 0, far = 255

255 255 255 255 255 255 255 255

255 255 255 255 255 255 255 255

255 255 255 255 255 255 255 255

255 255 255 255 255 255 255 255

255 255 255 255 255 255 255 255

255 255 255 255 255 255 255 255

255 255 255 255 255 255 255 255

255 255 255 255 255 255 255 255

127 127 127 127 127 127 127 255

127 127 127 127 127 127 255 255

127 127 127 127 127 255 255 255

127 127 127 127 255 255 255 255

127 127 127 255 255 255 255 255

127 127 255 255 255 255 255 255

127 255 255 255 255 255 255 255

255 255 255 255 255 255 255 255

127 127 127 127 127 127 127

127 127 127 127 127 127

127 127 127 127 127

127 127 127 127

127 127 127

127 127

127

127 127 127 127 127 127 127 255

127 127 127 127 127 127 255 255

127 127 127 127 127 255 255 255

127 127 127 127 255 255 255 255

127 127 127 255 255 255 255 255

127 127 255 255 255 255 255 255

127 255 255 255 255 255 255 255

255 255 255 255 255 255 255 255

+ =

127 127 127 127 127 127 127 255

127 127 127 127 127 127 255 255

127 127 127 127 127 255 255 255

63 127 127 127 255 255 255 255

63 63 127 255 255 255 255 255

63 63 63 255 255 255 255 255

63 63 63 63 255 255 255 255

63 63 63 63 63 255 255 255

63

63 63

63 63 63

63 63 63 63

63 63 63 63 63

+ =

Usually, every pixel stores a depth (or z) value, in 32 bit fixed point format

Z-Buffer Algorithm

– draw every polygon that we can’t reject trivially

– If we find a pixel of a polygon that is closer to the

front, we paint over whatever was behind it

– Inizialize the FrameBuffer/zBuffer

void Init_zBuffer() {

int x, y;

for (y = 0; y < YMAX; y++)

for (x = 0; x < XMAX; x++) {

FrameBuffer (x, y, BACKGROUND_VALUE);

zBuffer (x, y, 1);

}

}

Rasterizer with Z-buffer

pseudo code
For every triangle

Compute Projection of vertices

Compute bbox, clip bbox to screen limits

Setup 3 line equations

For all pixels in bbox

Increment line equations

If all line equations<0 //pixel [x,y] in triangle

Compute barycentric coordinates

Compute currentZ

Compute currentColor

If currentZ < zBuffer[x,y] //pixel is visible

Framebuffer[x,y]=currentColor

zBuffer[x,y]=currentZ

Z-Buffer Pros

– Simplicity lends itself well to hardware implementations:

FAST -- used by all graphics cards

– Polygons do not have to be compared in any particular

order: no presorting in z necessary

– Only consider one polygon at a time

– Z-buffer can be stored w/ an image; allows you to

correctly composite multiple images w/o having to

merge models

• great for incremental addition to a complex scene

– Can be used for non-polygonal surfaces, CSGs

(intersect, union, difference), and any z = f(x,y)

Works for hard cases!

A

B

C

MIT EECS 6.837, Cutler and Durand

Serena Morigi
Dipartimento di Matematica

serena.morigi@unibo.it

http://www.dm.unibo.it/morigi

mailto:serena.morigi@unibo.it

