

Risoluzione di equazioni e sistemi non lineari

PROBLEMA

Data $f:[a,b]\subseteq \mathbb{R} \to \mathbb{R}$, determinare x*in [a,b] tale che:

$$f(x^*) = 0$$

Esempi di equazioni non lineari

$$e^{x} + 1 = 0$$

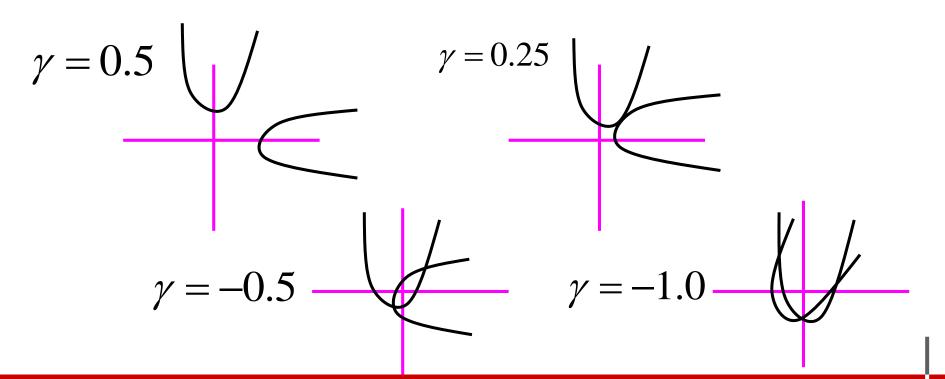
 $e^{-x} - x = 0$
 $x^{2} - 4\sin(x) = 0$
 $x^{3} + 6x^{2} + 11x - 6 = 0$
 $\sin(x) = 0$

- No soluzione
- Una soluzione
- Due soluzioni
- Tre soluzioni
 - · Infinite soluzioni

Esempi di

Sistemi di equazioni non lineari

$$f(x) = \begin{bmatrix} f_1(x) \\ f_2(x) \end{bmatrix} = \begin{bmatrix} x_1^2 - x_2 + \gamma \\ -x_1 + x_2^2 + \gamma \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$



Considerazioni generali

• Le radici di un'equazione non lineare

$$f(x) = 0$$

non possono in generale venire espresse in "forma chiusa" e anche quando cio' e' possibile la corrispondente espressione puo' risultare molto complessa

Si ricorre a metodi numerici iterativi approssimanti

Metodi Numerici Iterativi per la soluzione di equazioni non lineari:

- Metodo di Bisezione
- Metodo delle secanti
- Metodo di Newton
- Metodo di regula falsi

$$f(x^*) = 0$$

Si costruisce una successione di valori X_k tali che

$$\lim_{k\to\infty}x_k=x^*$$

Condizionamento del problema

- Problema matematico: determinare x^* tale che $f(x^*) = 0$
- Problema perturbato (lavorando in aritmetica finita):

Data una perturbazione sui dati: funzione εg tale che $f_e = f + \varepsilon g$ determinare $x_e = x^* + h$ tale che $f_e(x^* + h) = 0$

h è la perturbazione sui risultati.

Sviluppando con Taylor:

$$f(x^*+h) + \varepsilon g(x^*+h) = 0$$

$$\left[f(x^*) + hf'(x^*) + \frac{1}{2}h^2f''(\xi) \right] + \varepsilon \left[g(x^*) + hg'(x^*) + \frac{1}{2}h^2g''(\eta) \right] = 0$$

$$h \approx -\varepsilon \frac{g(x^*)}{f'(x^*)}$$

Condizionamento del problema

$$h \approx -\varepsilon g(x^*) \frac{1}{f'(x^*)}$$

Indice di condizionamento del problema

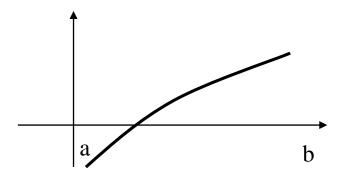
Se $f'(x^*)$ molto piccolo, vicino allo zero, allora il problema è mal condizionato, viceversa, il problema risulta ben condizionato e $f_e(x)=0$ ha una radice che non differisce troppo

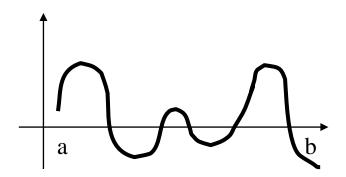
da x*.

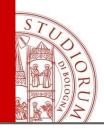
Teorema degli zeri per le funzioni continue

Data una funzione **continua** $f:[a,b] \rightarrow \Re$ e tale che f(a)*f(b)<0,

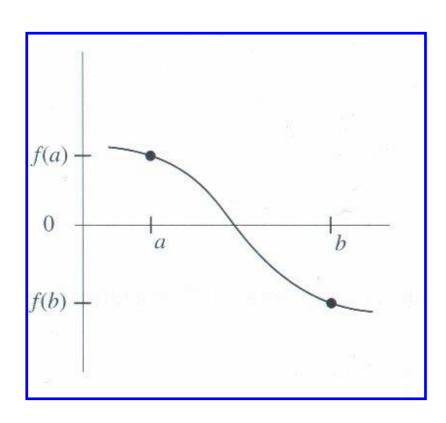
allora esiste **almeno** una soluzione $x^* \in [a,b]$ tale che $f(x^*)=0$

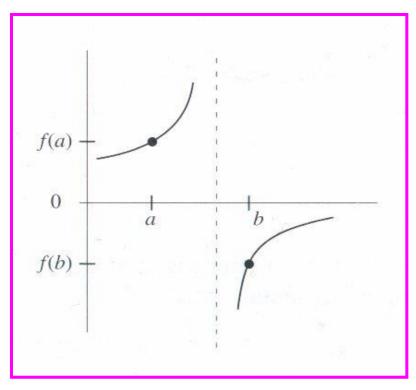






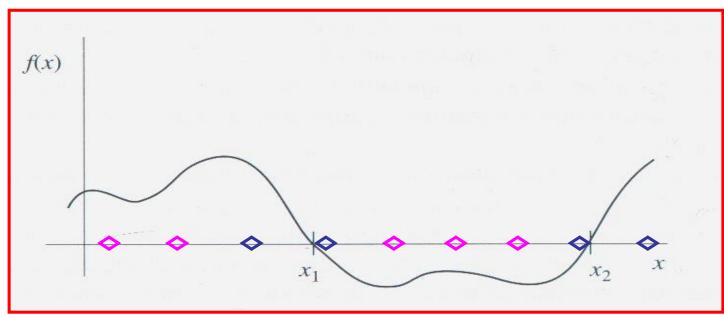
La funzione ha delle singolarità?





Alcune procedure per il calcolo delle radici convergono sia a singolarità che a radici. Questo deve essere prevenuto.

Localizzare le radici

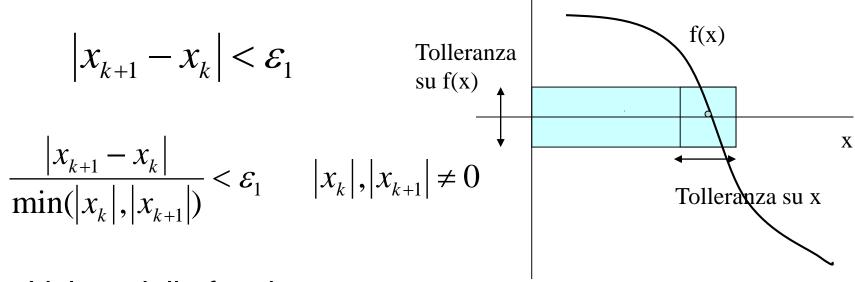


- Localizzare le radici: determinare il numero delle soluzioni e separare ogni soluzione, cioè individuare, per ogni soluzione, un intervallo che non ne contenga altre. (discretizzando l'intervallo iniziale)
- Applicare per ogni intervallo determinato un metodo iterativo fino alla convergenza ad una soluzione (radice).

Criteri di arresto

Date due tolleranze $\varepsilon_1 > 0, \varepsilon_2 > 0$

1. Variazione tra due successive approssimazioni della radice:



2. Valore della funzione:

$$|f(x_k)| < \varepsilon_2$$

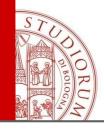
3. Numero massimo iterazioni: nmax

Metodo di bisezione in [a,b]

- a₀ = a, b₀ = b. Si individua un intervallo [a₀, b₀] contenente la radice x* e tale che f(a₀) f(b₀)<0
- Si calcola il punto medio di tale intervallo $x_m = (a_0 + b_0)/2$

- Se f(a₀) f(x_m)<0 si prosegue con l'intervallo [a₀, x_m]
- Se f(b₀) f(x_m)<0 si prosegue con l'intervallo [x_m, b₀]
- Se f(x_m)=0 x_m è la radice cercata

Il procedimento definisce una successione di intervalli $[a_i, b_i]$ contenenti x^* , ciascuno di lunghezza metà del precedente. Quindi la successione dei x_{mi} converge ad x^* .



Metodo di bisezione in [a,b]

```
Do while |b - a| >= tolerance value
    mid = (a+b)/2;
    fmid = fname(mid); % evaluate function f at mid
    IF fa of opposite sign of fmid
        % radice in [a,mid]
         set b = mid; fb = fmid;
      ELSE
        % radice in [mid,b]
         set a = mid; fa = fmid;
    END if
 END loop
radice=(b+a)/2
```


Metodo di bisezione: velocità di convergenza

- Si genera una successione di intervalli [a_k,b_k]
- Dopo k passi otteniamo un intervallo [a_k,b_k] contenente la radice cercata di ampiezza

$$b_{k} - a_{k} = \frac{b_{k-1} - a_{k-1}}{2} = \dots = \frac{b_{0} - a_{0}}{2^{k}}$$

$$x_{m} = \frac{1}{2}(a_{k} + b_{k}) \quad \text{Stima della radice}$$

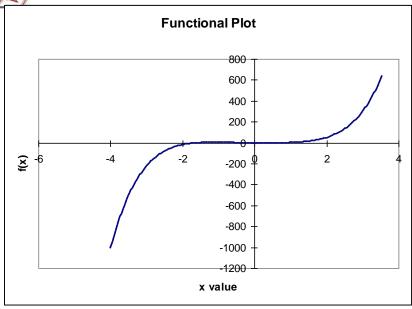
$$x^{*} = x_{m} \pm e_{k+1} \quad \text{Errore assoluto } e_{k+1}$$

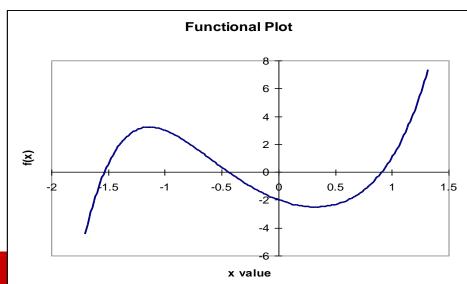
$$|e_{k+1}| \le \frac{b_{k} - a_{k}}{2} = \frac{b_{0} - a_{0}}{2^{k+1}}$$

$$da \quad cui \quad \lim_{k \to \infty} |e_{k}| = 0$$

• Sempre convergente ma convergenza lenta. Ad ogni passo "si guadagna" una cifra binaria ma $10^{-1} \simeq 2^{-3.3}$

Esempio: Metodo di bisezione





$$f(x) = x^5 + x^3 + 4x^2 - 3x - 2$$

Ci sono 3 radici

(a)
$$-2 < x < -1$$

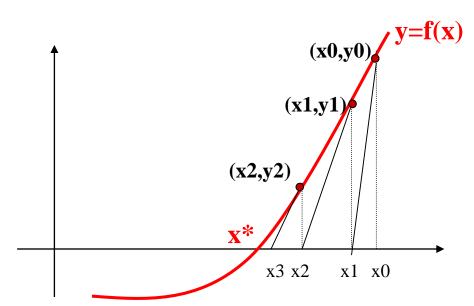
(b)
$$-1 < x < 0$$

(c)
$$0.5 < x < 1.5$$

Nel caso di un numero dispari di radici il metodo di bisezione determina un'approssimazione di una sola di esse.

Idea

Partendo da un'approssimazione iniziale x₀, generiamo i valori successivi nel modo seguente



$$f(x_k) + k_k(x - x_k) = 0$$
 $k = 0,1,2,...$
 $x_{k+1} = x_k - \frac{f(x_k)}{k_k}$,

Ad ogni iterazione sostituiamo la funzione f non lineare con una funzione lineare più semplice: una retta con pendenza k_k passante da $(x_k,f(x_k))$:

$$y-f(x_k) = k_k(x-x_k)$$
 $k = 0,1,2,...$

come nuova approssimazione x_{k+1} della radice x^* si calcola l'intersezione esatta di tale retta con y=0

I coefficienti angolari k possono essere scelti in vari modi.

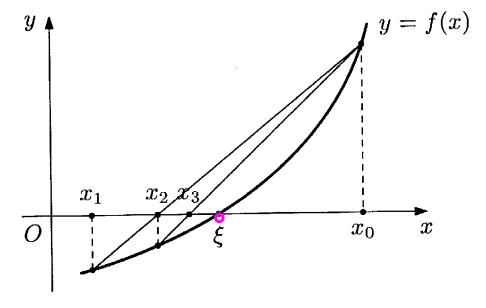
Metodo di Regula Falsi

Come approssimazione della funzione si considera la retta per i punti $(x_k,f(x_k)),(x_n,f(x_n))$ con n < k massimo indice tale che

$$f(x_k)^*f(x_n)<0$$

$$\frac{x - x_k}{x_n - x_k} = \frac{y - f(x_k)}{f(x_n) - f(x_k)}$$

$$k_{k} = \frac{f(x_{k}) - f(x_{n})}{x_{k} - x_{n}}$$



che interseca l'asse x nel punto di ascissa

$$x_{k+1} = x_k - f(x_k) \frac{(x_k - x_n)}{f(x_k) - f(x_n)}$$

Metodo di Regula Falsi

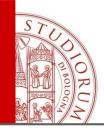
- Si individua un intervallo $[x_1, x_2]$ tale che $f(x_1)*f(x_2)<0$
- Si costruisce la retta passante per x₁ e x₂ :

$$\frac{x_2 - x}{x_2 - x_1} = \frac{f(x_2) - y}{f(x_2) - f(x_1)}$$

Si ricava x₃ come intersezione della retta con l'asse x:

$$x_3 = x_2 - \frac{f(x_2)}{f(x_2) - f(x_1)}(x_2 - x_1)$$

- Si valuta il segno di $f(x_3)$, il punto x_3 sostituisce x_1 o x_2 in base alla concordanza di segno di $f(x_1)$ e $f(x_2)$ con $f(x_3)$.
- In questo modo la radice è sempre racchiusa nell'intervallo [x₁, x₂]



Metodo di Regula Falsi

```
Do while |x_2 - x_1| >= tolerance value 1
              or |f(x_3)| >= tolerance value 2
 Set x_3 = x_2 - f(x_2) * (x_2 - x_1) / (f(x_2) - f(x_1))
 IF f(x_3) of opposite sign of f(x_1);
    Set x_2 = x_3;
 ELSE
    Set x_1 = x_3;
 ENDIF
END loop
```


Metodo delle Secanti

Simile al Regula Falsi ma ogni volta si procede con gli ultimi due punti trovati in successione senza tener conto del valore positivo o negativo della funzione.

Assegnati i due valori iniziali x_0, x_1 , al passo k l'approssimazione della funzione f nell'intervallo $[x_{k-1}, x_k]$ è la retta per i punti

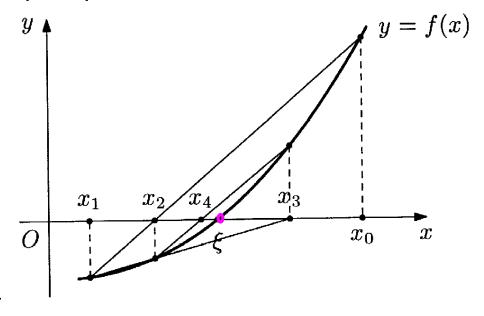
$$(x_{k-1},f(x_{k-1})),(x_k,f(x_k))$$

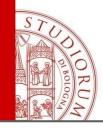
con coefficiente angolare

$$k_{k} = \frac{f(x_{k}) - f(x_{k-1})}{x_{k} - x_{k-1}}$$

che interseca l'asse x nel punto di ascissa

$$x_{k+1} = x_k - f(x_k) \frac{(x_k - x_{k-1})}{f(x_k) - f(x_{k-1})}$$





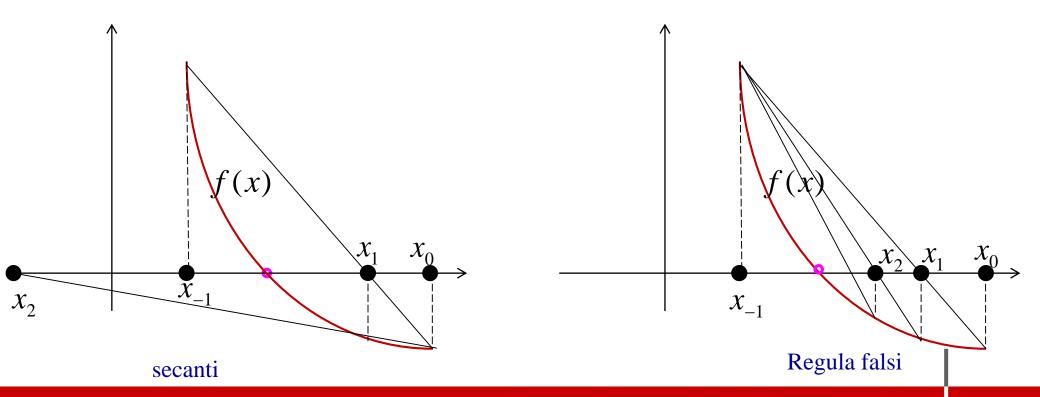
Algoritmo delle Secanti

```
function [x,cont] = secanti(fun,x0,x1,ep)
% INPUT
% fun
         puntatore alla funzione non lineare
% x0,x1 vettori contenenti le approssimazioni iniziali
% ep
       parametro di tolleranza per l'errore
% OUTPUT:
       vettore soluzione dell' equazione non lineare
% cont numero di iterazioni per ottenere l'approssimazione desiderata
x=x1; cont=0; x1=x0;
y1=fun(x1);
while (abs(x-x1) > ep) & (cont<100)
   x0=x1; y0=y1; x1=x;
   y1=fun(x1);
   if (abs(y1)>ep)
      x=x1-y1*(x1-x0)./(y1-y0);
      cont=cont+1;
   end
end
if cont==100
   disp('Il procedimento non converge con la precisione desiderata');
end
```

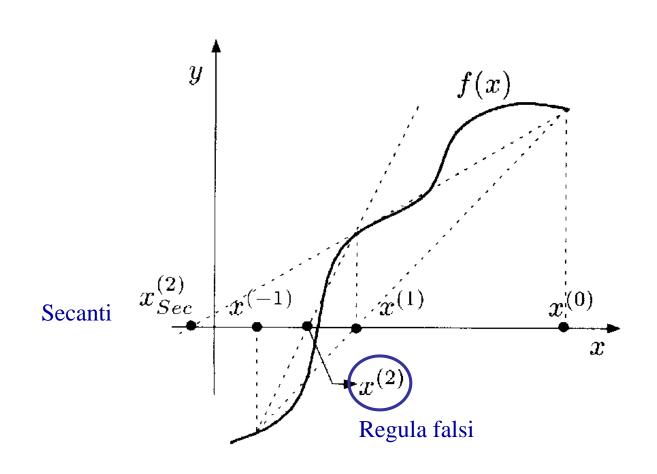
Confronto tra i metodi Regula Falsi e Secanti

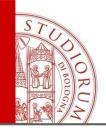
Il metodo delle secanti può essere più veloce ma non converge sempre.

Non c'è più la certezza di avere sempre il punto cercato all'interno dell'intervallo.



Confronto tra i metodi Regula Falsi e Secanti





Metodo di Newton

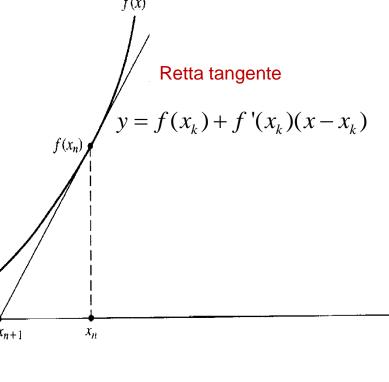
Isaac Newton (1642-1727)

Partendo da una stima iniziale x_0 della soluzione si genera una successione $\{x_k\}$ approssimando ad ogni passo k la curva f(x) mediante la retta tangente ad f nel punto $(x_k, f(x_k))$

$$k_k = f'(x_k)$$

e calcolando x_{k+1} come l'intersezione della tangente con l'asse delle ascisse

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$



Metodo di Newton o delle tangenti

L'idea viene dagli sviluppi in serie di Taylor centrata in xk, dove si conosce la funzione e la sua derivata prima:

$$f(x_{k+1}) = f(x_k) + (x_{k+1} - x_k)f'(x_k) + \dots$$

Poichè lo scopo è quello di avere f(x)=0, poniamo $f(x_{k+1})=0$ e tralasciamo i termini di ordine superiore:

$$0 \approx f(x_k) + (x_{k+1} - x_k) f'(x_k) + \dots$$

$$x_{k+1} \cong x_k - \frac{f(x_k)}{f'(x_k)}$$

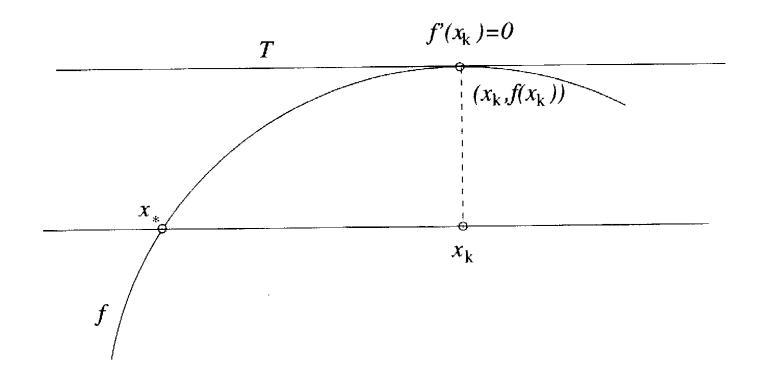
Metodo di Newton o delle tangenti

```
function [x,cont] = newton(fun,jac,x0,ep)
% INPUT fun, jac puntatori rispettivamente alla funzione non lineare
        e alla matrice Jacobiana della funzione
% x0
       vettore contenente l'approssimazione iniziale della soluzione
      parametro di tolleranza per l'errore
% ep
% OUTPUT:
       vettore soluzione del sistema (o equazione) non lineare
% cont numero di iterazioni per ottenere l'approssimazione desiderata
y=jac(x0) \setminus fun(x0);
x=x0-y;
cont=1;
while (norm(x-x0, 'inf') > ep) & (cont<100)
   x0=x;
   y=jac(x0) \setminus fun(x0);
   x=x0-y;
   cont=cont+1;
end
if cont==100
   disp('Il procedimento non converge con la precisione desiderata ');
end
```


Metodo di Newton o delle tangenti

Il metodo genera la successione $x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}, se\ f'(x_k) \neq 0, k = 0, 1, 2, \dots$

Problemi con il metodo di Newton



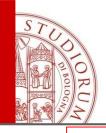
Ordine (velocità) di convergenza

Sia $\{x_k\}$ una successione convergente a x^* e sia $x_k \neq x^*$ per ogni k. Se esiste un numero reale $p \geq 1$ tale che:

$$\lim_{k \to \infty} \frac{\left| x_{k+1} - x^* \right|}{\left| x_k - x^* \right|^p} = \gamma$$

si dice che la successione ha ordine di convergenza ρ e fattore di convergenza γ Un metodo iterativo è convergente di ordine p se tale è la successione da esso generata

se
$$p=1$$
 occorre che $0<\gamma\le 1$ per avere convergenza lineare Tanto più piccolo è γ tanto migliore è la convergenza



Significato del concetto di ordine di convergenza

$$|e_k| = x_k - x^*$$
 $|e_k| \le \frac{1}{2} 10^{-n}$ $|e_k| \le \frac{1}{2} 10^{-n}$

$$|e_{k+1}| \cong \gamma \left(\frac{1}{2}10^{-n}\right)^p = \frac{\gamma}{2^p}10^{-pn}$$

 X_{k+1} ha pn decimali corretti

Il numero di decimali corretti tende ad essere moltiplicato per p ad ogni passo solo per $k \to \infty$

Per valori finiti di k (e soprattutto nei primi passi) l'aumento di cifre corrette dipende anche dalla costante

$$\gamma_k: |e_{k+1}| = \gamma_k |e_k|^p \qquad \lim_{k \to \infty} \gamma_k = \gamma$$

Ordine del metodo di Newton: p=2

Nell'ipotesi x* radice semplice: $f(x^*) = 0$ $f'(x^*) \neq 0$

$$f(x^*) = 0 \qquad f'(x^*) \neq 0$$

Posto:
$$e_k = x_k - x^*$$

$$f(x^*) = 0 = f(x_k) + (x^* - x_k)f'(x_k) + \frac{(x^* - x_k)^2}{2}f''(\xi)$$

dividendo per $f'(x_k)$

$$\frac{f(x_k)}{f'(x_k)} + x^* - x_k + \frac{\frac{(x^* - x_k)^2}{2} f''(\xi)}{f'(x_k)} = x^* - x_{k+1} + \frac{\frac{(x^* - x_k)^2}{2} f''(\xi)}{f'(x_k)} = 0$$

$$e_{k+1} = \frac{e_k^2}{2} \frac{f''(\xi)}{f'(x_k)} \implies \boxed{\frac{e_{k+1}}{e_k^2} \xrightarrow{x_k \to x^*} \frac{1}{2} \frac{f''(x^*)}{f'(x^*)}}$$
2° ordine

Ordine di convergenza

	1
IJ	

$$0 < \gamma < 1$$

convergenza lineare

$$\gamma = 1$$

convergenza sublineare

convergenza superlineare

$$p=2$$

convergenza quadratica

$$p=3$$

convergenza cubica

Ordine dei metodi

Sia x* radice semplice $f(x^*) = 0$ $f'(x^*) \neq 0$

$$f'(x^*) \neq 0$$

Metodo di Newton o delle tangenti

convergenza quadratica p=2

Metodo delle secanti

convergenza superlineare

$$p = \frac{1+\sqrt{5}}{2} \sim 1.618$$
 sezione aurea

Metodo regula falsi

convergenza superlineare

Metodo di bisezione

convergenza lineare p=1

Esempio: problema di Archimede

$$f(x)=0$$
 $f(x)=x^3-3x^2+1$ in [0,1]

metodo bisezione

k	X_k	$f(x_k)$
1	0.50000	3.7500 x 10 ⁻¹
2	0.75000	-2.6563 x 10 ⁻¹
3	0.62500	7.2266 x 10 ⁻²
4	0.68750	-9.3018 x 10 ⁻²
5	0.65625	-9.3689 x 10 ⁻³
6	0.64063	3.1712 x 10 ⁻²
7	0.64844	1.1236 x 10 ⁻²
8	0.65234	9.4932 x 10 ⁻⁴
9	0.65430	-4.2058 x 10 ⁻³
10	0.65332	-1.6273 x10 ⁻³

Secanti

$k x_k$	$f(\mathbf{x}_k)$
1 0.50000	3.7500 x10 ⁻¹
2 0.63636	4.2825 x10 ⁻²
3 0.65130	3.7093 x10 ⁻³
4 0.65259	3.1166 x10 ⁻⁴
5 0.65269	2.6116 x10 ⁻⁵

Arresto con

Tol=10⁻³ sull' ampiezza dell'intervallo.

Newton $(x_0 = 1)$

k x _k	$f(x_k)$
1 0.66667	3.7037 x10 ⁻²
2 0.65278	1.9558 x10 ⁻⁴
3 0.65270	5.7248 x10 ⁻⁹

Se però scegliamo x0 = 0.1 si ottiene x1 = 1.8035 che è fuori dall'intervallo [0,1]. Infatti con questa scelta di x0 la successione ottenuta ha come limite il punto -0.53209, che è un'altra soluzione della stessa equazione, ma inaccettabile per il nostro problema che richiede soluzioni in [0,1].

Scelta dell'iterato iniziale

- Metodi a convergenza locale
 - La convergenza è assicurata per x₀ appartenente ad un intorno della soluzione.

(Secanti, Newton)

- Metodi a convergenza globale
 - La convergenza è assicurata pe qualsiasi scelta del punto iniziale appartenente all'intervallo che racchiude la radice, cioè x₀ in [a,b]

(Bisezione, Regula Falsi)

Teorema di Convergenza globale

Sia x* uno zero semplice di f:[a, b] \rightarrow R. Si supponga inoltre che $f(x) \in C^2[a,b]$ Se

1.
$$f(a)f(b) < 0$$

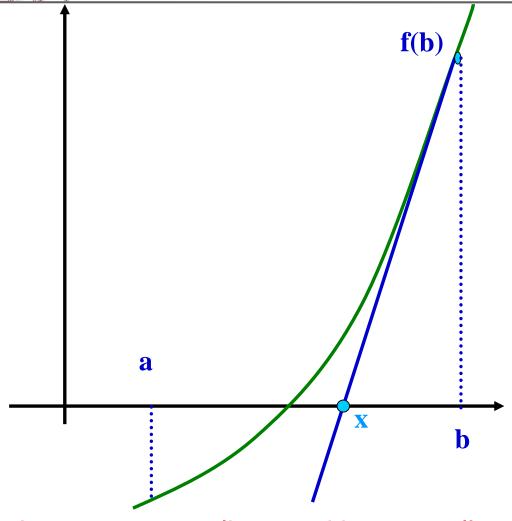
2.
$$f'(x) \neq 0 \quad \forall x \in [a,b]$$

3.
$$f''(x) > 0$$
 oppure $f''(x) < 0$ $\forall x \in [a,b]$

4.
$$\left| \frac{f(a)}{f'(a)} \right| < b - a$$
 $\left| \frac{f(b)}{f'(b)} \right| < b - a$

allora il metodo di Newton converge all'unica soluzione $x^* \in [a,b]$, per ogni scelta di x_0 in [a,b].

Ipotesi 4 del Teorema di Convergenza



$$\begin{cases} y - f(b) = f'(b)(x - b) \\ y = 0 \end{cases}$$

x interno ad [a,b]

$$\left|\frac{f(b)}{f'(b)}\right| = \left|x-b\right| < b-a$$

La tangente negli estremi interseca l'asse x all'interno dell'intervallo [a,b]

Sistemi di equazioni non lineari

$$\begin{cases} f_1(x_1, x_2, ..., x_n) = 0 \\ f_2(x_1, x_2, ..., x_n) = 0 \\ \\ f_m(x_1, x_2, ..., x_n) = 0 \end{cases}$$

Data
$$F: \mathbb{R}^n \to \mathbb{R}^m$$
 calcolare $x^* \in \mathbb{R}^n$ tale che

$$F(x^*) = 0,$$

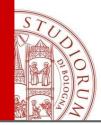
 $x = (x_1, x_2, ..., x_n)^T, \quad F = (f_1, f_2, ..., f_m)^T$

Preliminari

• $f: \mathbb{R}^n \to \mathbb{R}$ è continuamente differenziabile se $\frac{\partial f}{\partial x_i}$ esiste ed è continua per i=1,2,...,n

•Il gradiente di f in x è dato da

$$\nabla f(x) = \begin{vmatrix} \frac{\partial f(x)}{\partial x_2} \\ \frac{\partial f(x)}{\partial x_n} \end{vmatrix}$$



Preliminari

• $F: \mathbb{R}^n \to \mathbb{R}^m$ funzione a valori vettoriali

$$f: \begin{bmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{bmatrix} \rightarrow \begin{bmatrix} f_1(x) \\ f_2(x) \\ \dots \\ f_m(x) \end{bmatrix}$$

•Derivata di F in x o Jacobiano è la matrice

$$J(x_{k}) = \begin{bmatrix} \frac{\partial f_{1}}{\partial x_{1}} \Big|_{x=x_{k}} & \frac{\partial f_{1}}{\partial x_{2}} \Big|_{x=x_{k}} & \dots & \frac{\partial f_{1}}{\partial x_{n}} \Big|_{x=x_{k}} \\ \frac{\partial f_{2}}{\partial x_{1}} \Big|_{x=x_{k}} & \frac{\partial f_{2}}{\partial x_{2}} \Big|_{x=x_{k}} & \dots & \frac{\partial f_{2}}{\partial x_{n}} \Big|_{x=x_{k}} \\ \vdots & \vdots & \vdots & \vdots \\ \frac{\partial f_{m}}{\partial x_{1}} \Big|_{x=x_{k}} & \frac{\partial f_{m}}{\partial x_{2}} \Big|_{x=x_{k}} & \dots & \frac{\partial f_{m}}{\partial x_{n}} \Big|_{x=x_{k}} \end{bmatrix}$$

•Gradiente di F in x è la matrice: $\nabla F(x) = J(x)^T$

Metodo di Newton-Raphson

Algoritmo

Dato $x_0 \in \mathbb{R}^n$ e F, per ogni iterazione k:

- 0. Valutare $J(x_k)$
- 1. Risolvere il sistema lineare

$$J(x_k)s_k = -F(x_k)$$

2. Porre

$$x_{k+1} = x_k + s_k$$

Il metodo ha convergenza *locale* quadratica

(se x_0 è sufficientemente vicino alla soluzione)

Varianti del Metodo di Newton-Raphson

La valutazione dello Jacobiano richiede di conoscere o poter valutare n² derivate parziali.

Alcune varianti al metodo per migliorarne l'efficienza:

1. Approssimazione con rapporti incrementali:

$$\frac{\partial f_j}{\partial x_i}\Big|_{x=x_k} \approx (J^k)_{ij} = \frac{f_j(x_k + e_i s_{ij}) - f_j(x_k)}{s_{ij}}$$

 e_i i – esimo vettore della base canonica R^n

 s_{ii} incrementi scelti ad ogni passo k

Il metodo che si ottiene è l'analogo n-dimensionale di quello delle secanti

Varianti del Metodo di Newton-Raphson

2. Metodo della corda:

si utilizza il medesimo Jacobiano o una sua approssimazione $J(x_0)$ o $A(x_0)$ per tutte le iterazioni k. Si potrebbe quindi fattorizzare $J(x_0)=LU$ e utilizzare i medesimi L ed U per ogni iterazione

3. Metodo di Shamanskii

Si valuta lo Jacobiano ogni m iterazioni, e quindi lo si utilizza per le m iterazioni successive:

$$J^{k+l} = J^k \quad l = 1,..,m$$

Giunti ad x_{k+m+1} si rivaluta lo Jacobiano,...

Minimizzazione di una funzione

Problema di ottimizzazione non vincolato

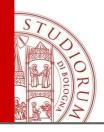
Data $f: \mathbb{R}^n \to \mathbb{R}$, $f \in \mathbb{C}^2$ due volte continuamente differenziabile, trovare $x \in \mathbb{R}^n$ tale che

$$\min_{x \in R^n} f$$

$$x = (x_1, x_2, ..., x_n)^T$$

Se f è C¹(Rⁿ) i punti di stazionarietà locale x* (massimi, minimi, sella) sono soluzione del seguente sistema (non lineare):

$$\nabla f(x^*) = 0$$



Minimizzazione di una funzione

Applichiamo il metodo di Newton-Raphson al sistema non

lineare:

$$\nabla f(x) = 0 \implies \begin{cases} \frac{\partial f(x)}{\partial x_1} = 0\\ \dots\\ \frac{\partial f(x)}{\partial x_n} = 0 \end{cases}$$

Per verificare poi se tale punto è un massimo, un minimo oppure un punto di sella, occorrerà in generale esaminare la matrice hessiana $H(x) = \nabla^2 f(x)$

$$(H(x))_{ij} = \frac{\partial^2 f(x)}{\partial x_i \partial x_j}, \quad i, j = 1,...,n$$

Metodo di Newton-Raphson per MINIMIZZAZIONE

Algoritmo

Dato $x_0 \in \mathbb{R}^n$ e f, per ogni iterazione k :

- 1. Valutare $\nabla^2 f(x_k)$
- 1. Risolvere il sistema lineare

$$\nabla^2 f(x_k) s_k = -\nabla f(x_k)$$

2. Porre

$$x_{k+1} = x_k + s_k$$

 s_k definisce una direzione di discesa da x_k a x_{k+1}