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1. Scene graph
2. Coordinate systems and transformations
3. Homogeneous coordinates and 

projective geometry
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World: 
• People (hands, eyes, …)
• Objects (subparts, tracked targets, …)
• Trackers

Representation of the world: 
• Individual description of objects (independently of their

current position in the world)
• Replication of objects (or parts) without having to 

(re)describe all geometric details
• Determination of an object’s current position with respect to 

different reference frames
» A tracker
» The world
» The user
» A display

Describe the world as an interrelated system of coordinate systems
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Scene graph

Source:[2]
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Most important components of a scene graph:

• Nodes: coordinate systems of 
• object parts
• groups of objects
• scene
• camera (eye)

• Directed edges: geometric transformations such as changes in
• position
• orientation
• scale
• perspective 

of a node relative to its predecessor}
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Scene graph in graphics:
typically a tree

Scene graph in AR:
can be a true graph, Spatial Relationship Graph (SRG)

Source:[2]
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Rendering the scene
= traversing the corresponding scene graph

In practice:
realizing 3D transformations between

• object coordinates
• world coordinates
• camera coordinates

Source:[2]
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Coordinate systems:

Right-handed Left-handed

Right-handed rotations:

Counterclockwise rotation around respective axis Source:[2]
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2D transformations:

Source:[2]
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No uniform matrix representation of these transformations
in affine coordinates

In homogeneous coordinates: simple matrix multiplication
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Euclidean geometry Affine geometry

Projective geometry
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= set of one-dimensional vector spaces of
3R2PProjective plane

Source:[1]
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scoordinate affine ... ) ,( yx

scoordinate shomogeneouor  projective ... ),,( 321 xxx

pointsproper  ... 03 ≠x

infinityat  points ... 03 =x
forming the line at infinity

affine plane = projective plane \ line at infinity
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}; , ,{ 321 EEEE

Projective coordinate system:

Role of the point E:

Normalization of representing vectors 321 ,, eee
rrr

321 ),( ),( where eeeeeEeE ii

rrrrrr ++=

Points EEEE ,,, 321
have to be in general position, i.e., not any
three of them have to be collinear

Source:[1]
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}; , ,{ 321 EEEE

Projective coordinate system:

321 ),( ),( where eeeeeEeE ii

rrrrrr ++=

Corresponding affine coordinate system:

Source:[1]
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Examples for points in homogeneous coordinates:

Source:[2]
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0332211 =++ xuxuxu

Equation of a straight line in homogeneous coordinates:

),,( 321 xxx variable point coordinates

),,( 321 uuu constant

),,,( 321 uuu� A line can be identified by its line coordinates.

Dual interpretation:

),,( 321 uuu variable line coordinates

),,( 321 xxx constant

),,,( 321 xxx� A point can be identified by its point coordinates.
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0332211 =++ xuxuxu

Prinicple of duality of projective geometry:

line=junction of points point=intersection of lines
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Line joining the points P and Q:

Point at the intersection of the lines g and h:
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Interpretation in 3-space:

Situation in 2D:

Source:[2]
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Examples for lines in homogeneous coordinates:

Source:[2]
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Line joining two points:

Source:[2]
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Intersection of two lines:

Source:[2]
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Intersection of two parallel lines:

Source:[2]
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Intersection of parallel lines:

Source:[2]
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00 33 =⇔= yx

Consider: 
all those projective maps
that do not change the 
line at infinity, i.e., 
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scoordinate affine ... ), ,( zyx

scoordinate shomogeneouor  projective ... ),,,( 4321 xxxx

pointsproper  ... 04 ≠x

infinityat  points ... 04 =x
forming the plane at infinity

affine 3-space = projective 3-space \ plane at infinity

Generalization to 3D:
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3D translation:

3D transformations in homogeneous coordiantes:

3D scaling:
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),,(  glScale zyx sss

OpenGL
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3D rotation:

3D transformations in homogeneous coordiantes:
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)1,0,0,(  glRotate α

)0,1,0,(  glRotate α

OpenGL

)0,0,1,(  glRotate α
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OpenGL

Source:[2]
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OpenGL

Source:[2]
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A sample OpenGL program

Source:[2]


