
X3D: an introduction

1 . Technical Overview. General introduction of the fundamentals

of X3D, including scene graphs, events, node reuse, file structure

and encodings, components and profiles, and conformance.

2. X3D-Edit

3. Geometry. Primitives, Polygons, NURBS

4. Viewpoints and Navigation

5. Grouping and Transform Nodes. Collecting and positioning

objects in the 3D world.

What are the pieces of the

puzzle?

Standards are needed to make this vision come true…

CREATE Rich Media

Including 3D graphics

DELIVER Rich Media

Including 3D graphics

COMMUNICATE Rich Media

Including 3D graphics

The Micro Universe of 3D Standards

OpenGL ARB
Evolving the capabilities of graphics

hardware to enable real-time,
interactive cinematic realism

Khronos Group

Enabling advanced 3D graphics to
be accelerated on embedded

devices – including cell phones

Web3D Consortium
Enabling the communication of real-
time 3D content across applications,

networks and the web

CREATION

DELIVERY

COMMUNICATION

Note: not ignoring Java!
Java has a community standardization process
These technologies are used by Java applications

OpenGL ES – Embedded Graphics

• Khronos has created a small-footprint subset of OpenGL
• Created with the blessing and cooperation of the OpenGL ARB

• Full functionality for 3D games
• On a wide variety of platforms – including handhelds

Eliminate
Redundancy

Eliminate
Workstation
Functionality

ARB
Feedback and Ratification

Embedded

Focus

Workstation

Focus

Small footprint e.g.
50KB software
engines

The Micro Universe of 3D Standards

ARB

“Creation”

Khronos

“Delivery”

Web3D

“Communication”

Shaders
ARB

Defines how to program shaders using GLSL
Web3D

Works out how to send shaders across a network
Khronos

Figures out how your cell phone will play them

Communicating 3D is our Vital Role

“Open Standards to enable the communication of real-time 3D

across networks

and XML-based web services”

Between

applications

Between

systems

X3D – a Trans-Segment Standard

Markets that need to communicate 3D

Vertical Working Groups use X3D to vertical
market SOLUTIONS

The X3D Working Group defines a
foundation TECHNOLOGY

An extensible, adaptable foundation standard

CAD Medical VizSim Broadcast GIS

Cross Segment Synergy

• Vertical focus is key to enable market segments
• But a cross-segment ecosystem will begin to form to the benefit of all

Communicatin
g 3D in CAD

Markets Communicatin
g 3D in GIS

Markets

Communicating 3D
in Broadcast

Markets

Communicating
3D in Medical

Markets

Communicating
3D in VizSim

Markets Communicatin
g 3D in AEC

Markets

Detailed segment solutions can cross-
fertilize other segments due to the use of
a common foundation technology – X3D

E.g. CAD, H-anim, GIS, AEC
solutions are interoperable for

advanced 3D applications

Motivation to extend X3D for

AR/MR

• Virtual Reality (VR) – Virtual objects/ data

 X3D is a well established application description language to express Virtual

objects and their behaviors in 3D virtual environments

• Augmented Reality (AR) – Virtual objects augmented by sensors

 X3D has partial functionality for AR (Sensor Nodes, Viewpoint node,

Camera node) Going beyond basic geo-location based AR

• Mixed Reality (MR) – Continuum between VR and AR

 X3D currently lacks features needed for MR - Extend X3D accommodate

“real” world objects and represent MR contents

Virtual Objects Real Objects

VR AR

MR

AR Working Group started in June 2011

13

X3D Graphics for Web Authors

Getting Started with X3D

A journey of a thousand miles

begins with a single step.

Chinese proverb

14

What is Extensible 3D (X3D)?

X3D is a royalty-free open-standard file format

• Communicate animated 3D scenes using XML

• Run-time architecture for consistent user interaction

• ISO-ratified standard for storage, retrieval and
playback of real-time graphics content

• Enables real-time communication of 3D data across
applications: archival publishing format for Web

• Rich set of componentized features for engineering
and scientific visualization, CAD and architecture,
medical visualization, training and simulation,
multimedia, entertainment, education, and more

eXtensible 3D (X3D) Graphics

 X3D is the International Organization for Standardization

ISO standard XML-based file format for representing 3D

virtual/augmented world in computer graphics

• The successor to the Virtual Reality Modeling Language (VRML).

VRML, introduced in 1994, is the standard format to describe 3D

contents for WEB, allows for combining 3D, 2D, text, video and audio;

• X3D features extensions to VRML (e.g. Humanoid animation, NURBS,

GeoVRML etc.), integrates scripting functionalities and access to

network resources.

• X3D file, multiple encoding. It can be coded in 3 different way:

 as an XML file (text file .x3d)

 as a VRML file (text file with VRML format .x3dv)

 as a binary file (by suitable conversion .x3db)

Get details in: www.web3d.org

X3D: the Standard Scene graph

• An X3D file describes a 3D scene, a fully interactive 3D

world, viewable on most standard internet browsers.

• X3D represents the 3D scene by means of a graph

(scenegraph)

• Directed acyclic graph (DAG), meaning a tree with a root

node and no loops

• Each aspect of a virtual world from simple 3D primitive

shapes to lighting, animation and sound is considered a

node. Each node will have various parameters

describing how it behaves within the virtual world.

X3D: the Standard Scene graph

Scene graph for real-time interactive delivery

of virtual environments over the web:

• Meshes, lights, materials, textures, shaders

• Integrated video, audio

• Animation

• Interaction

• Scripts & Behaviors

• Nearly all nodes have at least one input field and output field

through which they may communicate with either the browser or

another node.

•X3D Version 3.3 in draft mode includes Volume

rendering, CAD and Geospatial components.

18

Scene graph terminology

Scene graph data file

•contains model description, may refer to data files

Scene graph viewer

•Reads and renders scene-graph models

•Implemented as application or web browser plugin

Scene graph editor

•Special text editor for scene graph development

Executable application

•Specific 3D model capable of running on a specific
operating system

19

Scene graph rendering

The browser traverses the scene graph, updating
any values within nodes and building an image

•New image then replaces previous screen image,
process known as double buffering

•Rapid repetitions are very important

•Frame rate faster than 7-10 Hz (cycles per second)
provides appearance of smooth motion

Rendering is defined as this drawing process

Off-line rendering is performing such
operations to image or movie files, rather than
display

Browser X3D

• Applications able to read an X3D file and

visualize it, also reproducing dynamical

aspects, and interacting with the user

• In general, they are plug-in for Web

browser; thus we have:

– X3D file can be loaded and visualized by URL

– X3D file can be combined with other Web

page contexts

Scene Visualization (view)

• Users explore X3D worlds by choosing

predefined viewpoints and navigating

through 3D space.

• Each point in the world is identified by

real coords. (x,y,z) w.r.t. a global coords.

system with axes X, Y e Z

• Right hand rule for X Y Z order

• The user is represented inside the world

by his/her avatar

• The scene is seen by the camera

located on the (ideal) avatar’s head

How to move into the scene

• Navigation mode:

– WALK: include gravity force (siutable for walking

inside a house)

– FLY: no gravity (suitable for moving in the space)

– EXAMINE: examine specific objects

–

• Each class have several options to control the

position and view orientation

• The movement is obtained by keypress (es.

arrows) or mouse (generally, left mouse click)

View

X3D file structure

X3D scene files have a common file structure

•File header (XML, ClassicVRML, Compressed Binary)

•X3D header statement

•Profile statement

•Component statements (optional)

•Meta statements (optional)

•X3D root node

•X3D scene graph child nodes

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE X3D PUBLIC "ISO//Web3D//DTD X3D 3.2//EN" "http://www.web3d.org/specifications/x3d-3.2.dtd">

<X3D profile='Immersive' version='3.2' >

 <head>

 <meta content='HelloWorld.x3d' name='title'/>

 <meta content='Simple X3D example' name='description'/>

 </head>

 <Scene>

 <Viewpoint description='Hello world!' position='0 -1 7'/>

 <Shape>

 <Sphere/>

 <Appearance>

 <Material DEF='LightBlue' diffuseColor='0.1 0.5 1'/>

 </Appearance>

 </Shape>

 </Scene>

</X3D>

Header X3D

Scenegraph

Header XML

27

Profiles cover common use cases

•Interchange suitable for simple geometry
conversion
•Interactive adds simple user interactivity
(clicking etc.)
•Immersive matches VRML97, plus a bit more:
"implementing immersive virtual worlds with
complete navigational and environmental sensor
control"
•Full profile includes all nodes

Further customization within a scene is always
possible using component statements to
identify the correct level of functional support
beyond the identified profile.

Authors define the expected complexity of scene by defining
profile level in the X3D header. This tells the X3D browser what

level of functional support is needed for run-time operation

28

meta statements

meta statements provide information about the
X3D scene

•Document metadata, not scene metadata

Information provided as name-value pairs

•Example:
 <meta name='created' value='1 January 2008'/>

This approach is thus very general

•Wide variety of metadata can be represented

•Matches same approach used by HTML for regular
hypertext web pages

29

profile, component and meta statements,
XML (.x3d) encoding syntax

<?xml version=''1.0'' encoding=''UTF-8''?>

<!DOCTYPE X3D PUBLIC ''ISO//Web3D//DTD X3D 3.2//EN'' ''http://www.web3d.org/specifications/x3d-3.2.dtd''>

<X3D version=''3.2'' profile=''Immersive'' xmlns:xsd=''http://www.w3.org/2001/XMLSchema-instance''

 xsd:noNamespaceSchemaLocation=''http://www.web3d.org/specifications/x3d-3.2.xsd''>

<head>

<component name='DIS' level='1'/>

<component name='Geospatial' level='1'/>

<component name='H-Anim' level='1'/>

<component name='NURBS' level='4'/>

<meta name='title' content='HeaderProfileComponentMetaExample.x3d'/>

</head>

<Scene>

<!——Scene graph nodes are added here——>

</Scene>

</X3D>

30

XML and X3D correspondence

Elements correspond to X3D nodes

Attributes correspond to X3D simple-type fields

Parent-child relationships define containerField

Validatable XML using X3D DTD, schema

 The Extensible Markup Language (XML) is a
plain-text format used by many Web languages
including Hypertext Markup Language (HTML)

Suggested Exercise 1:

getting start..

• Copy the X3D file into a

text file; save it as a

.x3d file;

• Visualize the scene

open it by browser (i.e.
viewer3dscene)

 and try to use the

different modalities to

navigate into the scene

• Add the code ->

 and run

<Scene>

 <Group>

 <Viewpoint description='Hello world!' position='0 -1 7'/>

 <Shape>

 <Sphere/>

 <Appearance>

 <Material DEF='LightBlue' diffuseColor='0.1 0.5 1'/>

 </Appearance>

 </Shape>

 <Transform translation='0 -2 0'>

 <Shape>

 <Text string='“Hello" "world!"'>

 <FontStyle justify='"MIDDLE" "MIDDLE"'/>

 </Text>

 <Appearance>

 <Material USE='LightBlue'/>

 </Appearance>

 </Shape>

 </Transform>

 </Group>

 </Scene>

32

X3D-Edit authoring tool

Software support – it supports the creation,

checking, display and publication of X3D

scenes.

33

X3D-Edit

Available free for any use

•https://savage.nps.edu/X3D-Edit

•Written using Java, XML and X3D

•Windows, MacOSX, Linux, Solaris operating systems

Standalone application with automatic updates
available once installed

Also available for Netbeans as plugin module

•Open integrated development environment (IDE),
primarily (but not exclusively) for Java

•http://www.netbeans.org

https://savage.nps.edu/X3D-Edit
https://savage.nps.edu/X3D-Edit
https://savage.nps.edu/X3D-Edit
https://savage.nps.edu/X3D-Edit
http://www.netbeans.org/
http://www.netbeans.org/

34

X3D-Edit home page

35

X3D-Edit download and installation

Options on X3D-Edit home page

•https://savage.nps.edu/X3D-Edit/#Downloads

Standalone executable application:

•Download and extract X3D-Edit3.2.zip

•https://savage.nps.edu/X3D-Edit/X3D-Edit3.2.zip

•Launch runX3dEditWin.bat on a Windows machine

•Launch runX3dEditMac.sh.command on a Mac

•Successful test reports received for Linux...

•That's all there is to it!

https://savage.nps.edu/X3D-Edit/
https://savage.nps.edu/X3D-Edit/
https://savage.nps.edu/X3D-Edit/
https://savage.nps.edu/X3D-Edit/
https://savage.nps.edu/X3D-Edit/X3D-Edit3.2.zip
https://savage.nps.edu/X3D-Edit/X3D-Edit3.2.zip
https://savage.nps.edu/X3D-Edit/X3D-Edit3.2.zip
https://savage.nps.edu/X3D-Edit/X3D-Edit3.2.zip
https://savage.nps.edu/X3D-Edit/X3D-Edit3.2.zip
https://savage.nps.edu/X3D-Edit/X3D-Edit3.2.zip
https://savage.nps.edu/X3D-Edit/X3D-Edit3.2.zip
https://savage.nps.edu/X3D-Edit/X3D-Edit3.2.zip
https://savage.nps.edu/X3D-Edit/X3D-Edit3.2.zip
https://savage.nps.edu/X3D-Edit/X3D-Edit3.2.zip

36

HelloWorld.x3d in X3D-Edit

37

Field data types
X3D is a strongly typed language

•Each field in each node (i.e. each XML attribute) has a strictly
defined data type

•Data types for boolean, integer, floating point

Types are either single or multiple-value

•Example: SFFloat, SFVec2f, SFVec3f, SFOrientation

Also have arrays for all types

SF = Single Field, MF = Multiple Field (array)

 MF are surrounded by square brackets, e.g. [10 20 30, 4.4 -5.5 6.6]

Failure to match data types correctly is an error!

•During scene validation, loading, or at run time

Viewing and Navigation

39

Viewing and navigation

It is helpful to think of X3D scenes as fixed at
different locations in 3D space

•Viewpoints are like cameras, prepositioned in locations
(and directions) of interest

•Users can move their current camera viewpoint further
and change direction they are looking at

•This process is called navigation

Making navigation easy for users is important

•Authors provide viewpoints of interest with scenes

•Browsers enable camera rotation, pan, zoom, etc.

Viewpoint node

Viewpoint nodes let X3D scene authors predefine
locations and orientations of particular interest

 Default Viewpoint position is (0 0 10) -- out 10 m on +Z
axis, looking back towards origin. Any changes to
Viewpoint orientation are made relative to that default
direction (along -Z axis)

 Sometimes viewpoints are animated and moving

Viewpoint list is optional browser-provided feature
that lists currently available viewpoints

•Provides description information for viewpoints

•Simplifies user selection of viewpoints

•Thus supports navigation within a scene

41

KelpForestMain.x3d entry view

42

Navigation model 1

Users can select predefined Viewpoints

•Defines both position and direction of view

Users can further navigate around scene

•Using pointing device or hot keys

•Chosen viewpoint remains bound

•Browser applies offsets using user-driven changes

These are the default navigation key
responses

43

Navigation model 2

User's current view can itself be animated

•ROUTE new position/direction event values to the
Viewpoint itself, or to parent Transform nodes

•User navigation offsets to that view remain in effect

•Thus “over the shoulder” viewpoints can follow a moving
object around, while still allowing user to look around
while in that moving viewpoint

Lefty and Lucy shark in the Kelp Forest Main
scene use this technique as virtual tour guides

44

NavigationInfo type

Primary field is type which indicates which of the
various modes of navigation are relevant

•"EXAMINE" best for rotating solitary objects

•"FLY" allows zooming in, out and around

•"WALK" also allows exploration, but on the ground

•"LOOKAT" use pointer to select geometry of interest

•"ANY" lets user select any mode

•"NONE" gives user zero control of navigation

MFString array default type=' "EXAMINE" "ANY" '

•which gives users plenty of flexibility

Geometry:

1. Primitive Shapes

2. Points, Lines and Polygons

3. Geometry2D Nodes

4. Triangles and Quadrilaterals

5. NURBS

 These are all handled consistently inside a Shape

node with corresponding Appearance

Geometry 1, Primitive Shapes

Common pattern for Shape nodes

–Shape contains geometry node

–Appearance and Material nodes

Five nodes for primitive geometry

– Box, Cone, Cylinder, Sphere, Text

– Text node is flat, not extruded

– Font Style modifies Text node parameters

Shape and geometry

Shape nodes can contain a single geometry node

•For example, one of the five geometry primitive nodes

•Alternatively contains a more-advanced geometry node
(NURBS, Geospatial, programmable shaders,..)

Shape nodes can also contain an Appearance node

•Which in turn contains a Material node for coloring

• Common design pattern throughout X3D:

• Shape

• GeometryNode

• Appearance

• Material (optional) for colors

• ImageTexture (optional) for wrapping an image file

50

Shape parent with geometry child

 Shape must be parent node, can
only hold one geometry node

Appearance and Material nodes
define colors, transparency, etc.

Primitives have simple dimensions

•Typical volume ~1 m radius

All units are in meters

Note parent-child relationships

<Shape>
 <Box size='1 2 3'/>
 <Appearance>
<Material/>
 </Appearance>
</Shape>

<Shape>
 <Sphere radius='1'/>
 <Appearance>
<Material/>
 </Appearance>
</Shape>

51

Sphere node

Circular radius

Centered at local origin

•phi and theta are implicit

•not defined by author

•Browsers decide
implementation details,
including tessellation
(polygon count) and thus
quality

52

Sphere node X3D-Edit

Sphere.x3d

53

Sphere node tooltips

54

•X3D Specification Diagrams

55

Grouping and Transformation

back to Table of Contents

56

Grouping rationale

X3D scenes are directed acyclic graphs, made up
of subgraphs with intermediate & leaf nodes

Grouping nodes help provide sensible structure

•Functionally related nodes collected together

•Grouping nodes can contain other grouping nodes, i.e.
graphs of subgraphs

•Establish common or separate coordinate systems

•Make it easy to label nodes or subgraphs with DEF, then
reference copies of those nodes (or grouped collections
of nodes) with USE

57

Bounding boxes

Provides a hint to browsers about object size

•Does not affect how an object is rendered (drawn) if it is
actually larger than the bounding box

•Are never drawn themselves

•Defined by bboxSize and bboxCenter

Goal is to reduce computational complexity

•browser avoids calculating impossible collisions

•Size accumulates while proceeding up scene graph

Bounding boxes can be ignored by authors

•some authoring tools can provide them if needed

58

Bounding box illustration

59

Transform node

Grouping node that defines a coordinate system
for its children

Root of X3D scene graph is always at (0 0 0)

Transform nodes can

•Translate local origin linearly to another coordinate

•Rotate about any axis

•Scale size, uniformly or separately along x y z axes

Group and Transform are among most commonly
used nodes

60

Transform fields

•translation: x y z movement in meters from origin of
local coordinate system

•rotation: [axis x y z]-angle rotation about origin of local
coordinate system

•scale: x y z (potentially nonuniform) factor for
change in object scale to make it larger or smaller

•center: origin offset prior to applying rotation

•scaleOrientation: rotation to apply prior to scaling

•bboxCenter, bboxSize: bounding box information (if any is
provided by author, optional)

61

Transform nodes
position each Shape
so that they do not
obscure each other

<Scene>
 <Transform translation='-5 0 0'>
 <Shape DEF='DefaultShape'>
 <Box DEF='DefaultBox' size='2 2 2'/>
 <Appearance>
 <Material diffuseColor='1 0.2 0.2'/>
 </Appearance>
 </Shape>
 </Transform>
 <Transform translation='-2.5 0 0'>
 <Shape>
 <Cone DEF='DefaultCone' bottom='true' bottomRadius='1' height='2' side='true'/>
 <Appearance>
 <Material diffuseColor='0.2 1 0.2'/>
 </Appearance>
 </Shape>
 </Transform>
 <Transform translation='0 0 0'>
 <Shape>
 <Cylinder DEF='DefaultCylinder' bottom='true' height='2' radius='1' side='true' top='true'/>
 <Appearance>
 <Material diffuseColor='0.2 0.2 1'/>
 </Appearance>
 </Shape>
 </Transform>
 <Transform translation='2.5 0 0'>
 <Shape>
 <Sphere DEF='DefaultSphere' radius='1'/>
 <Appearance>
 <Material diffuseColor='1 1 0.2'/>
 </Appearance>
 </Shape>
 </Transform>
 <Transform translation='4 0 0'>
 <Shape>
 <Text DEF='DefaultText' string='"hello" "X3D!"'>
 <FontStyle DEF='DefaultFontStyle'/>
 </Text>
 <Appearance DEF='DefaultAppearance'>
 <Material DEF='DefaultMaterial'/>
 </Appearance>
 </Shape>
 </Transform>
 </Scene>

GeometryPrimitiveNodes.x3d

62

Transforming shapes

Transform.x3d

63

Transform node X3D-Edit

64

Order of transformation operations

The ordering of transformation operations is
important and not symmetric. Algorithm:

•Apply reverse center offset to set up for properly
centered scaling and orientation operations

•Apply reverse scaleOrientation, then apply scale
operation, then apply forward scaleOrientation to regain
initial frame

•Apply rotation to final direction, then apply forward
center offset to regain initial origin

•Apply translation to final location of new coordinate
frame

65

Comparing out-of-order operations

Case 1

Case 2

66

Equivalent transformations
Transform {

center C

rotation R

scale S

scaleOrientation SR

translation T

children [...]

}

Using matrix transformation notation, where

•C (center),

•SR (scaleOrientation),

•T (translation),

•R (rotation), and

•S (scale)

are the equivalent transformation matrices, then

•P' is transformed child point P

•P' = T · C · R · SR · S · −SR · −C · P

 Transform {

translation T

children Transform {

translation C

children Transform {

rotation R

children Transform {

rotation SR

children Transform {

 scale S

 children Transform {

 rotation -SR

 children Transform {

 translation -C

 children [...]

 }

 }

}

}

}

}

 }

67

Suggested Exercise 2
With X3D-Edit

•Create a new X3D scene, Save As using a new filename
of your choosing

•Iconize the <head> element by clicking margin '+'

•Drag and drop nodes to build the scene

•Create a simple object using only primitive geometric shapes

•Edit by typing, and by using node editors

•Make sure you maintain valid XML as you go

•Save, view, repeat as necessary

•Right-click to launch external viewer

This matches how we build many X3D scenes

Geometry:

1. Primitive Shapes

2. Points, Lines and Polygons

3. Geometry2D Nodes

4. Triangles and Quadrilaterals

5. NURBS

69

Overview: Points, Lines and Polygons

Triangles, single-sided polygons, normal vectors

Common fields: ccw, convex, creaseAngle, etc.

Geometry nodes, part 2:

•Coordinate and CoordinateDouble

• Color and ColorRGBA

•PointSet

•IndexedLineSet and LineSet

•IndexedFaceSet

•ElevationGrid

•Extrusion

IndexedLineSet node

IndexedLineSet creates an array of line segments

•Contains Coordinate node for point data

•Can be discontinuous or share points repeatedly

•Each set of connected line segments is a polyline

Lines are not lit, use no texture-mapped images,
and do not participate in collision detection

Color can be set in one of two ways

•Uniformly via Material emissiveColor value

•Individually via contained Color/ColorRGBA node;
applied either by individual points, or by each segment,
as determined by colorPerVertex

Not
diffuseColor!

71

Coordinate node

Provide array of x-y-z point values

•Required – otherwise no geometry to draw!

•Type MFVec3f array of 3-tuple values, each with 32-bit
single-precision floating point

Coordinate point values define all of the vertices
needed to build polygonal geometry

•coordIndex array in parent geometry node indicates
connectivity for each individual polygon

•coordIndex value -1 indicates end of one polygon, next
coordIndex value indicates vertex point that begins a
new polygon/polyline

72

IndexedLineSet node X3D-Edit

Closed
loop

73

IndexedFaceSet node 1

IndexedFaceSet creates a set of polygons (faces)

•Contains Coordinate node for point data

•Can be discontinuous or share points repeatedly

•You can essentially create any geometry with IFS

Color can be set in one of two ways

•Uniformly via sibling Material fields

•Individually via contained Color/ColorRGBA node;
applied either by individual points, or by each polygon, as
determined by colorPerVertex

74

IndexedFaceSet node 2

Many fields and features apply

•ccw, convex, solid, creaseAngle as before

•colorPerVertex, normalPerVertex as before

•colorIndex, normalIndex as before

•texCoordIndex applies texture coordinates to
map texture images to individual geometry points

Contained nodes (0 or 1 of each)

• Coordinate/CoordinateDouble (essential, required)

• Color/ColorRGBA

•Normal, TextureCoordinate

75

Coordinate node X3D-Edit

Geometry:

1. Primitive Shapes

2. Points, Lines and Polygons

3. Geometry2D Nodes

4. Triangles and Quadrilaterals

5. NURBS

77

Overview: Geometry2D Nodes

These are simple utility (convenience) nodes

Geometry2D nodes

●Arc2D lines

●ArcClose2D polygonal shape

●Circle2D lines

●Disk2D polygonal shape

●Polyline2D lines

●Polypoint2D points

●Rectangle2D polygonal shape

●TriangleSet2D polygonal shapes

Geometry:

1. Primitive Shapes

2. Points, Lines and Polygons

3. Geometry2D Nodes

4. Triangles and Quadrilaterals

5. NURBS

Normal

TriangleSet

TriangleStripSet

TriangleFanSet

QuadSet

IndexedTriangleSet

IndexedTriangleStripSet

IndexedTriangleFanSet

IndexedQuadSet

Geometry:

1. Primitive Shapes

2. Points, Lines and Polygons

3. Geometry2D Nodes

4. Triangles and Quadrilaterals

5. NURBS

NURBS nodes

Non-uniform Rational B-Spline (NURBS) nodes
define parametric surfaces

• Precise, accurate, terse, scalable representations
since mathematically defined

• Can be tessellated as high-fidelity polygonal surface
at a resolution appropriate to viewer distance

• Difficult to author without special tools
• X3D NURBS nodes include: Contour2D, ContourPolyline2D,

CoordinateDouble, NurbsCurve, NurbsCurve2D,
NurbsOrientationInterpolator, NurbsPatchSurface,
NurbsPositionInterpolator, NurbsSet, NurbsSurfaceInterpolator,
NurbsSweptSurface, NurbsSwungSurface, NurbsTextureCoordinate,
NurbsTrimmedSurface

Head: this surface is
created by 24 points in the
u direction and 30 points in
the v direction for a total of
720 control points.

Construction techniques

A) special cases of NURBS surfaces such as sphere,

cylinder or Bézier surfaces;

B) Extrusion/swept surfaces, constructed given a spine

curve and a cross-section curve either or both of which

can be NURBS curves;

C) surfaces of revolution, constructed given a circle/arc and

a NURBS cross-section curve;

D) skinned surfaces constructed from a set of curves;

E) Gordon surfaces interpolating two sets of curves;

F) Coons patches, a bi-cubic blended surface constructed

from four border curves;

G) Surfaces interpolating a set of points.

NurbsCurve
NurbsCurve : X3DParametricGeometryNode {

 SFNode [in,out] controlPoint [] [X3DCoordinateNode]

 SFNode [in,out] metadata NULL [X3DMetadataObject]

 SFInt32 [in,out] tessellation 0 (-&,&)

 MFDouble [in,out] weight [] (0,&)

 SFBoolean [] closed FALSE

 MFDouble [] knot [] (-&,&)

 SFInt32 [] order 3 [2,&)

}

The NurbsCurve node is a geometry node

defining a parametric curve in 3D space

knots defines the knot vector.

•The number of knots shall be equal to the number of

control points plus the order of the curve.

•The order shall be non-decreasing.

•Within the knot vector there may not be more than

order−1 consecutive knots of equal value.

Control points are in

homogeneous coordinates

 • The control point is actually a 4D vector (x, y, z, weight), which means

that it's actual 3D position is (x/weight, y/weight, z/weight). Instead of:
P(u) = (sum of basis * control point * weight)/(sum of basis * weight)

X3D uses a simpler equation:
P(u) = (sum of basis * control point) / (sum of basis * weight)

That is, "X3D control point" (as specified in X3D file) is assumed to be

already multiplied by weight.

• If you want to intuitively pull the curve toward the control point, you should

– Calculate "normal control point" (3D, not in homogeneous coordinates) as "X3D control

point / weight".

– Increase the weight (to pull the curve toward "normal control point"), or decrease (to

push the curve away from it).

– Calculate new "X3D control point" as "normal control point * new weight".

• In other words, if you just want to increase the weight 2 times, then the

corresponding control point should also be multiplied * 2, to make things

behave intuitive.

<Shape>

 <Appearance>

 <Material emissiveColor="1 1 0" />

 </Appearance>

 <NurbsCurve tessellation="40"

 weight="1 0.25 1 1 1">

 <Coordinate containerField="controlPoint"

 point="-5 0 2 -2.5 5 2 0 0 2 2.5 -5 2 5 0 2" />

 </NurbsCurve>

</Shape>

<Shape>

 <Appearance>

 <Material emissiveColor="1 1 0" />

 </Appearance>

 <NurbsCurve tessellation="40"

 weight="1 0.25 1 1 1">

 <Coordinate containerField="controlPoint"

 point="-5 0 2 -0.625 1.25 0.5 0 0 2 2.5 -5 2 5 0 2" />

 </NurbsCurve>

</Shape>

A closed Spline curve can be specified by repeating the limiting

control points, specifying a periodic knot vector, and setting the

closed field to TRUE.

NurbsCurve2D
NurbsCurve2D : X3DNurbsControlCurveNode {

MFVec2d [in,out] controlPoint [] (-&,&)

SFNode [in,out] metadata NULL [X3DMetadataObject]

SFInt32 [in,out] tessellation 0 (-&,&)

MFDouble [in,out] weight [] (0,&)

SFBool [] closed FALSE

MFDouble [] knot [] (-&,&)

SFInt32 [] order 3 [2,&)

}

X3DNurbsControlCurveNode
X3DNurbsControlCurveNode : X3DNode {

 MFVec2d [in,out] controlPoint [] (-&,&)

 SFNode [in,out] metadata NULL [X3DMetadataObject]

}

The control points are defined in 2D coordinate space and interpreted

according to the descendent node type as well as the user of this
node instance.

X3DNurbsSurfaceGeometryNode
X3DNurbsSurfaceGeometryNode : X3DParametricGeometryNode {

SFNode [in,out] controlPoint [] [X3DCoordinateNode]

SFNode [in,out] metadata NULL [X3DMetadataObject]

SFNode [in,out] texCoord []

 [X3DTextureCoordinateNode|NurbsTextureCoordinate]

SFInt32 [in,out] uTessellation 0 (-&,&) % if 0, the number of tessellation points is:

SFInt32 [in,out] vTessellation 0 (-&,&) % (2 ×(u/v)dimension)+1

MFDouble [in,out] weight [] (0,&)

SFBool [] solid TRUE %visible when viewed from the inside

SFBool [] uClosed FALSE

SFInt32 [] uDimension 0 [0,&) % number of CP in u.

MFDouble [] uKnot [] (-&,&)

SFInt32 [] uOrder 3 [2,&)

SFBool [] vClosed FALSE

SFInt32 [] vDimension 0 [0,&) % number of CP in v.

MFDouble [] vKnot [] (-&,&)

SFInt32 [] vOrder 3 [2,&)

}

The X3DNurbsSurfaceGeometryNode represents a geometry node

defining a parametric surface for all types of NURBS surfaces

• The geometry of the patch is specified by an array of control

points with NR rows and NC columns, orders DR ,DC

• The definition of the spline functions requires that the spline

parameters and dimensions of the control points array satisfy:

• KR = NR + DR KC = NC + DC

• The weights and control point arrays are flattened into lists by

traversing the arrays in column major order.

• controlPoint ← P0,0, P1,0, P2,0, ...P4,0,P0,1,...,P4,1 ;

 each P a SFVec3f value.

• weight ← w0,0, w1,0, w2,0, ...w4,0,w0,1,...,w4,1 ;

 each w a SFFloat value.

• uKnot ← row-parameter knot vector, of length KR=8

• uDimension ← NR=5

• uOrder ← DR=3

• vKnot ← column-parameter knot vector, of length KC=4

• vDimension ← NC=2

• vOrder ← DC=2

The control vertex corresponding to the control point P[i,j]

on the control grid is in column major order :

P[i,j].x = controlPoint[i + (j × uDimension)].x

P[i,j].y = controlPoint[i + (j × uDimension)].y

P[i,j].z = controlPoint[i + (j × uDimension)].z

P[i,j].w = weight[i + (j × uDimension)]

where 0 ≤ i < uDimension and

 0 ≤ j < vDimension.

<Shape>

 <NurbsPatchSurface DEF='NS' solid='false' uDimension='5' uOrder='4' uTessellation='30' vDimension='5'

vOrder='4' vTessellation='30'>

 <Coordinate containerField='controlPoint' point='-10 -10 0 -10 -5 0 -10 0 0 -10 5 0 -10 10 0 -5 -10 0 -5 -5 2.5 -5 0

5 -5 5 2.5 -5 10 0 0 -10 0 0 -5 2.5 0 0 5 0 5 2.5 0 10 0 5 -10 0 5 -5 2.5 5 0 15 5 5 2.5 5 10 0 10 -10 0 10 -5 0 10 0 0

10 5 0 10 10 0'/>

 </NurbsPatchSurface>

 <Appearance>

 <ImageTexture url='"PearlHarborLowResolution.jpg“ />

 </Appearance>

 </Shape>

The higher the tessellation, the smoother the surf will appear on screen, however the

more computationally expensive the surf becomes.

NurbsSweptSurface

NurbsSweptSurface : X3DParametricGeometryNode {

 SFNode [in,out] crossSectionCurve [] X3DNurbsControlCurveNode]

 SFNode [in,out] metadata NULL [X3DMetadataObject]

 SFNode [in,out] trajectoryCurve [] [NurbsCurve]

 SFBool [] ccw TRUE

 SFBool [] solid TRUE

}

Conceptually it is the NURBS equivalent

of the Extrusion

To have the polygons' normals facing

away from the axis, the trajectory curve

should be oriented so that it is moving

counterclockwise when looking down the

−Y axis, thus defining a concept of

"inside" and "outside".

NurbsSwungSurface

NurbsSwungSurface : X3DParametricGeometryNode {

SFNode [in,out] metadata NULL [X3DMetadataObject]

SFNode [in,out] profileCurve [] [X3DNurbsControlCurveNode]

SFNode [in,out] trajectoryCurve [] [X3DNurbsControlCurveNode]

SFBool [] ccw TRUE

SFBool [] solid TRUE

}

Defines a path and constant cross

section of the path

The profile curve is a 2D curve in the

yz-plane that describes the cross-

sectional shape of the object.

The trajectory curve is a 2D curve in

the xz-plane that describes the path
over which to trace the cross-section.

NurbsTrimmedSurface
X3DNurbsSurfaceGeometryNode {

MFNode [in] addTrimmingContour [Contour2D]

MFNode [in] removeTrimmingContour [Contour2D]

SFNode [in,out] controlPoint [] [X3DCoordinateNode]

SFNode [in,out] metadata NULL [X3DMetadataObject]

SFNode [in,out] texCoord [] [X3DTextureCoordinateNode|NurbsTextureCoordinate]

MFNode [in,out] trimmingContour [] [Contour2D]

SFInt32 [in,out] uTessellation 0 (-&,&)

SFInt32 [in,out] vTessellation 0 (-&,&)

MFDouble [in,out] weight [] (0,&)

SFBool [] solid TRUE

SFBool [] uClosed FALSE

SFInt32 [] uDimension 0 [0,&)

MFDouble [] uKnot [] (-&,&)

SFInt32 [] uOrder 3 [2,&)

SFBool [] vClosed FALSE

SFInt32 [] vDimension 0 [0,&)

MFDouble [] vKnot [] (-&,&)

SFInt32 [] vOrder 3 [2,&)

}

The trimming curve specifies a NURBS-curve that limits the NURBS surface in

order to create NURBS surfaces that contain holes or have smooth boundaries.

Trimming curves are curves in the parametric space of the surface..

NurbsTrimmedSurface

• A trimming region is defined by a set

of closed trimming loops in the

parameter space of a surface.

• A trimming loop consists of a closed

and connected sequence of NURBS

curves and piecewise linear curves.

• Loops may be nested, but a nested

loop must be oriented oppositely from

the loop that contains it. The

outermost loop must be oriented

counter-clockwise.

• Trimming loops are Contour2D node

Contour2D

Contour2D : X3DNode {

MFNode [in] addChildren [NurbsCurve2D|ContourPolyline2D]

MFNode [in] removeChildren [NurbsCurve2D|ContourPolyline2D]

MFNode [in,out] children [] [NurbsCurve2D|ContourPolyline2D]

SFNode [in,out] metadata NULL [X3DMetadataObject]

}

The Contour2D node groups a set of curve segments to a

composite contour.

The children shall form a closed loop with the first point of the

first child repeated as the last point of the last child and the

last point of a segment repeated as the first point of the

consecutive one.

Example

Instant Player browser has made a different mapping of the defined patch coordinates:

v • row-parameter , u column-parameter

controlPoint=' 0.0000e+00 0.0000e+00,

 1.0000e+00 0.0000e+00,

 7.5000e-01 5.0000e-01,

 1.0000e+00 5.0000e-01,

 1.0000e+00 1.0000e+00,

 0.0000e+00 1.0000e+00,

 0.0000e+00 0.0000e+00‘

Since this loop is traversed counter-clockwise it would

be expected that the concave side of the surface should

be visible

Nurbs Position Interpolator

NurbsPositionInterpolator : X3DInterpolatorNode {

 SFFloat [in] set_fraction (-∞ ,∞)

 SFBool [in,out] fractionAbsolute TRUE

 MFDouble [in,out] key [](-∞ ,∞)

 MFVec3f [in,out] keyValue [](-∞ ,∞)

 MFDouble [in,out] weight [] (-∞ ,∞)

 MFDouble [in,out] knot [] (-∞ ,∞)

 SFInt32 [in,out] order 3 (2,∞)

 SFVec3f [out] value_changed

}

The true power of a NurbsCurve is the ability to animate an object

along the curve as an animation path.

However, there are no control points specified. Instead, control vertices

are found in the keyValue field. The “key” field defines time points at

which the value in the keyValue field will be reached.

The only control points (keyValues) that the path is guaranteed to touch

are the first and last.

99

Inline node

Loads another X3D world within current scene

•Supported formats depend on user's X3D browser

•XML .x3d, ClassicVRML .x3dv,

•Compressed binary .x3db, possibly VRML97 .wrl

Inline scene is positioned, rotated and scaled to
match the local coordinate frame

•Local reference frame determined by parent
Transformation node hierarchy

•User's viewpoint does not change automatically to the
loaded Inline scene's default Viewpoint

100

Suggested Exercise 3

•Use existing model from another tool (e.g. Blender)

•Save as in XML as .x3d file

•Load (or import) into X3D-Edit, fix bugs (if any)

•Create parent scene that loads first via Inline

•Add further X3D content to parent scene

•Create a simple object using only NURBS surface shapes

