Bézier and B-Spline curves

G. Albrecht

Groupe CGAO, Laboratoire LAMAV, Université de Valenciennes, France

Contents

Curves

- Polynomial Bézier curves
- Continuity
- B–Splines curves
- Rational Bézier curves: conic sections

Definition

Let $u_0 < u_1 < \ldots < u_k$ be a partition of the interval $[u_0, u_k]$. We call Bézier curve of degree n a curve $\overrightarrow{x}(u)$ that is composed of Bézier segments of degree n on every subinterval $[u_l, u_{l+1}]$ $(l = 0, \ldots, k-1)$:

$$\overrightarrow{x}(u)|_{u\in[u_l,u_{l+1}]} = \overrightarrow{x}_l(u) = \sum_{i=0}^n \overrightarrow{b}_{nl+i} B_i^n (\frac{u-u_l}{u_{l+1}-u_l}).$$

(ロ) (間) (目) (目) (目) (の)

Theorem (C^r continuity of Bézier segments)

Let

$$\overrightarrow{X}_{l}(u) = \sum_{i=0}^{n} \overrightarrow{b}_{nl+i} B_{i}^{n} (\frac{u - u_{l}}{u_{l+1} - u_{l}}); u \in [u_{l}, u_{l+1}]$$

$$\overrightarrow{X}_{l+1}(u) = \sum_{i=0}^{n} \overrightarrow{b}_{n(l+1)+i} B_{i}^{n} (\frac{u - u_{l+1}}{u_{l+2} - u_{l+1}}); u \in [u_{l+1}, u_{l+2}]$$

be two consecutive Bézier segments and $\delta_k := u_{k+1} - u_k$. Then, the segments $\overrightarrow{\chi}_l(u)$ and $\overrightarrow{\chi}_{l+1}(u)$ join with C^r continuity if and only if

$$\frac{1}{\delta_{i}^{i}}\Delta^{i}\overrightarrow{b}_{n(l+1)-i} = \frac{1}{\delta_{l+1}^{i}}\Delta^{i}\overrightarrow{b}_{n(l+1)}; i = 0, \dots, r$$

◄□▶◀圖▶◀불▶◀불▶ 불 쒸٩♡

Proof.

Calculate derivatives by considering $t = \frac{u - u_l}{u_{l+1} - u_l}$ respectively

$$t = \frac{u - u_{l+1}}{u_{l+2} - u_{l+1}}$$
.

C¹ continuity

 C^1 continuity in $u = u_{l+1}$:

$$\Delta^{1}\overrightarrow{b}_{n(l+1)-1} = \frac{\delta_{l}}{\delta_{l+1}}\Delta^{1}\overrightarrow{b}_{n(l+1)}$$

C¹ continuity

 C^1 continuity in $u = u_{l+1}$:

$$\Delta^{1} \overrightarrow{b}_{n(l+1)-1} = \frac{\delta_{l}}{\delta_{l+1}} \Delta^{1} \overrightarrow{b}_{n(l+1)}$$

$$\overrightarrow{b}_{n(l+1)} - \overrightarrow{b}_{n(l+1)-1} = \frac{\delta_{l}}{\delta_{l+1}} (\overrightarrow{b}_{n(l+1)+1} - \overrightarrow{b}_{n(l+1)})$$

C¹ continuity

 C^1 continuity in $u = u_{l+1}$:

$$\Delta^{1} \overrightarrow{b}_{n(l+1)-1} = \frac{\delta_{l}}{\delta_{l+1}} \Delta^{1} \overrightarrow{b}_{n(l+1)}$$

$$\overrightarrow{b}_{n(l+1)} - \overrightarrow{b}_{n(l+1)-1} = \frac{\delta_{l}}{\delta_{l+1}} (\overrightarrow{b}_{n(l+1)+1} - \overrightarrow{b}_{n(l+1)})$$

Illustration

C² continuity

 C^2 continuity in $u = u_{l+1}$:

$$\Delta^{1} \overrightarrow{b}_{n(l+1)-1} = \frac{\delta_{l}}{\delta_{l+1}} \Delta^{1} \overrightarrow{b}_{n(l+1)} \quad (C^{1}) \text{ and}$$

$$\Delta^{2} \overrightarrow{b}_{n(l+1)-2} = \frac{\delta_{l}^{2}}{\delta_{l+1}^{2}} \Delta^{2} \overrightarrow{b}_{n(l+1)} \quad (C^{2})$$

$$\Delta^{2}\overrightarrow{b}_{n(l+1)-2} = \frac{\delta_{l}^{2}}{\delta_{l+1}^{2}}\Delta^{2}\overrightarrow{b}_{n(l+1)} \quad (C^{2})$$

G. Albrecht

C^2 continuity

 C^2 continuity in $u = u_{l+1}$:

$$\Delta^{1}\overrightarrow{b}_{n(l+1)-1} = \frac{\delta_{l}}{\delta_{l+1}}\Delta^{1}\overrightarrow{b}_{n(l+1)} \quad (C^{1}) \text{ and}$$

$$\Delta^{2}\overrightarrow{b}_{n(l+1)-2} = \frac{\delta_{l}^{2}}{\delta_{l+1}^{2}}\Delta^{2}\overrightarrow{b}_{n(l+1)} \quad (C^{2})$$

$$\begin{array}{ccc} (C^2) & \Leftrightarrow & \Delta^1 \overrightarrow{b}_{n(l+1)-1} - \Delta^1 \overrightarrow{b}_{n(l+1)-2} \\ & = \frac{\delta_l^2}{\delta_{l+1}^2} (\Delta^1 \overrightarrow{b}_{n(l+1)+1} - \Delta^1 \overrightarrow{b}_{n(l+1)}) \end{array}$$

C^2 continuity

$$\Leftrightarrow \Delta^{1} \overrightarrow{b}_{n(l+1)-1} - \Delta^{1} \overrightarrow{b}_{n(l+1)-2}$$

$$= \frac{\delta_{l}^{2}}{\delta_{l+1}^{2}} (\Delta^{1} \overrightarrow{b}_{n(l+1)+1} - \Delta^{1} \overrightarrow{b}_{n(l+1)})$$

C^2 continuity

$$\Leftrightarrow \quad \Delta^{1} \overrightarrow{b}_{n(l+1)-1} - \Delta^{1} \overrightarrow{b}_{n(l+1)-2}$$

$$= \frac{\delta_{l}^{2}}{\delta_{l+1}^{2}} (\Delta^{1} \overrightarrow{b}_{n(l+1)+1} - \Delta^{1} \overrightarrow{b}_{n(l+1)}) \qquad | (C^{1}) \Rightarrow$$

C^2 continuity

$$\Leftrightarrow \Delta^{1} \overrightarrow{b}_{n(l+1)-1} - \Delta^{1} \overrightarrow{b}_{n(l+1)-2}$$

$$= \frac{\delta_{l}^{2}}{\delta_{l+1}^{2}} (\Delta^{1} \overrightarrow{b}_{n(l+1)+1} - \Delta^{1} \overrightarrow{b}_{n(l+1)}) \qquad | (C^{1}) \Rightarrow$$

$$\Leftrightarrow \frac{\delta_{l}}{\delta_{l+1}} \Delta^{1} \overrightarrow{b}_{n(l+1)} - \Delta^{1} \overrightarrow{b}_{n(l+1)-2}$$

$$= \frac{\delta_{l}^{2}}{\delta_{l+1}^{2}} \Delta^{1} \overrightarrow{b}_{n(l+1)+1} - \frac{\delta_{l}}{\delta_{l+1}} \Delta^{1} \overrightarrow{b}_{n(l+1)-1}$$

C^2 continuity

 C^2 continuity in $u = u_{l+1}$, continued:

$$\Leftrightarrow \Delta^{1}\overrightarrow{b}_{n(l+1)-1} - \Delta^{1}\overrightarrow{b}_{n(l+1)-2}$$

$$= \frac{\delta_{l}^{2}}{\delta_{l+1}^{2}} (\Delta^{1}\overrightarrow{b}_{n(l+1)+1} - \Delta^{1}\overrightarrow{b}_{n(l+1)}) \qquad | (C^{1}) \Rightarrow$$

$$\Leftrightarrow \frac{\delta_{l}}{\delta_{l+1}} \Delta^{1}\overrightarrow{b}_{n(l+1)} - \Delta^{1}\overrightarrow{b}_{n(l+1)-2}$$

$$= \frac{\delta_{l}^{2}}{\delta_{l+1}^{2}} \Delta^{1}\overrightarrow{b}_{n(l+1)+1} - \frac{\delta_{l}}{\delta_{l+1}} \Delta^{1}\overrightarrow{b}_{n(l+1)-1}$$

$$\Leftrightarrow \frac{\delta_{l}}{\delta_{l+1}} \Delta^{1}\overrightarrow{b}_{n(l+1)-1} - \Delta^{1}\overrightarrow{b}_{n(l+1)-2}$$

$$= \frac{\delta_{l}^{2}}{\delta_{l+1}^{2}} \Delta^{1}\overrightarrow{b}_{n(l+1)+1} - \frac{\delta_{l}}{\delta_{l+1}} \Delta^{1}\overrightarrow{b}_{n(l+1)}$$

200

C^2 continuity

 C^2 continuity in $u = u_{l+1}$, continued:

$$\Leftrightarrow \Delta^{1}\overrightarrow{b}_{n(l+1)-1} - \Delta^{1}\overrightarrow{b}_{n(l+1)-2}$$

$$= \frac{\delta_{l}^{2}}{\delta_{l+1}^{2}} \left(\Delta^{1}\overrightarrow{b}_{n(l+1)+1} - \Delta^{1}\overrightarrow{b}_{n(l+1)} \right) \quad | (C^{1}) \Rightarrow$$

$$\Leftrightarrow \frac{\delta_{l}}{\delta_{l+1}} \Delta^{1}\overrightarrow{b}_{n(l+1)} - \Delta^{1}\overrightarrow{b}_{n(l+1)-2}$$

$$= \frac{\delta_{l}^{2}}{\delta_{l+1}^{2}} \Delta^{1}\overrightarrow{b}_{n(l+1)+1} - \frac{\delta_{l}}{\delta_{l+1}} \Delta^{1}\overrightarrow{b}_{n(l+1)-1}$$

$$\Leftrightarrow \frac{\delta_{l}}{\delta_{l+1}} \Delta^{1}\overrightarrow{b}_{n(l+1)-1} - \Delta^{1}\overrightarrow{b}_{n(l+1)-2}$$

$$= \frac{\delta_{l}^{2}}{\delta_{l+1}^{2}} \Delta^{1}\overrightarrow{b}_{n(l+1)+1} - \frac{\delta_{l}}{\delta_{l+1}} \Delta^{1}\overrightarrow{b}_{n(l+1)} \quad | *\frac{\delta_{l+1}}{\delta_{l}}$$

200

C² continuity

$$(C^{2}) \Leftrightarrow \overrightarrow{b}_{n(l+1)} - \overrightarrow{b}_{n(l+1)-1} - \frac{\delta_{l+1}}{\delta_{l}} \Delta^{1} \overrightarrow{b}_{n(l+1)-2}$$

$$= \frac{\delta_{l}}{\delta_{l+1}} \Delta^{1} \overrightarrow{b}_{n(l+1)+1} - \overrightarrow{b}_{n(l+1)+1} + \overrightarrow{b}_{n(l+1)}$$

C² continuity

$$(C^{2}) \Leftrightarrow \overrightarrow{b}_{n(l+1)} - \overrightarrow{b}_{n(l+1)-1} - \frac{\delta_{l+1}}{\delta_{l}} \Delta^{1} \overrightarrow{b}_{n(l+1)-2}$$

$$= \frac{\delta_{l}}{\delta_{l+1}} \Delta^{1} \overrightarrow{b}_{n(l+1)+1} - \overrightarrow{b}_{n(l+1)+1} + \overrightarrow{b}_{n(l+1)} \quad |*(-1)|$$

C^2 continuity

$$(C^{2}) \Leftrightarrow \overrightarrow{b}_{n(l+1)} - \overrightarrow{b}_{n(l+1)-1} - \frac{\delta_{l+1}}{\delta_{l}} \Delta^{1} \overrightarrow{b}_{n(l+1)-2}$$

$$= \frac{\delta_{l}}{\delta_{l+1}} \Delta^{1} \overrightarrow{b}_{n(l+1)+1} - \overrightarrow{b}_{n(l+1)+1} + \overrightarrow{b}_{n(l+1)} \quad |*(-1)|$$

$$\Leftrightarrow \overrightarrow{b}_{n(l+1)-1} + \frac{\delta_{l+1}}{\delta_{l}} \Delta^{1} \overrightarrow{b}_{n(l+1)-2}$$

$$= \overrightarrow{b}_{n(l+1)+1} - \frac{\delta_{l}}{\delta_{l+1}} \Delta^{1} \overrightarrow{b}_{n(l+1)+1}$$

C^2 continuity

$$(C^{2}) \Leftrightarrow \overrightarrow{b}_{n(l+1)} - \overrightarrow{b}_{n(l+1)-1} - \frac{\delta_{l+1}}{\delta_{l}} \Delta^{1} \overrightarrow{b}_{n(l+1)-2}$$

$$= \frac{\delta_{l}}{\delta_{l+1}} \Delta^{1} \overrightarrow{b}_{n(l+1)+1} - \overrightarrow{b}_{n(l+1)+1} + \overrightarrow{b}_{n(l+1)} \quad |*(-1)|$$

$$\Leftrightarrow \overrightarrow{b}_{n(l+1)-1} + \frac{\delta_{l+1}}{\delta_{l}} \Delta^{1} \overrightarrow{b}_{n(l+1)-2}$$

$$= \overrightarrow{b}_{n(l+1)+1} - \frac{\delta_{l}}{\delta_{l+1}} \Delta^{1} \overrightarrow{b}_{n(l+1)+1} =: \overrightarrow{d}$$

C² continuity

$$\Rightarrow \overrightarrow{d} - \overrightarrow{b}_{n(l+1)-1} = \frac{\delta_{l+1}}{\delta_{l}} \Delta^{1} \overrightarrow{b}_{n(l+1)-2}$$
et $\overrightarrow{b}_{n(l+1)+1} - \overrightarrow{d} = \frac{\delta_{l}}{\delta_{l+1}} \Delta^{1} \overrightarrow{b}_{n(l+1)+1}$

C² continuity

 C^2 continuity in $u = u_{l+1}$, continued:

$$\Rightarrow \overrightarrow{d} - \overrightarrow{b}_{n(l+1)-1} = \frac{\delta_{l+1}}{\delta_{l}} \Delta^{1} \overrightarrow{b}_{n(l+1)-2}$$
et $\overrightarrow{b}_{n(l+1)+1} - \overrightarrow{d} = \frac{\delta_{l}}{\delta_{l+1}} \Delta^{1} \overrightarrow{b}_{n(l+1)+1}$

Illustration

Rational Bézier curves: conic sections

Bézier curve

Remark

The notion of C^r continuity is not invariant with respect to parameter transformations, i.e., it is not a geometric property of the curve.

Example:

$$\overrightarrow{x}(u) = \begin{pmatrix} u \\ 1 \end{pmatrix}, u \in [1, 2]$$

$$\overrightarrow{y}(v) = \begin{pmatrix} v - 1 \\ 1 \end{pmatrix}, v \in [3, 4]$$

$$\overrightarrow{x}_0 = \overrightarrow{x}(2) = \overrightarrow{y}(3)$$

$$\frac{d}{du}\overrightarrow{x}(2) = \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \frac{d}{dv}\overrightarrow{y}(3)$$

Example, continued:

Paramter transformation: $u = f(t) = t^2$

$$\overrightarrow{X}(u) = \begin{pmatrix} u \\ 1 \end{pmatrix} = \begin{pmatrix} t^2 \\ 1 \end{pmatrix} = \overrightarrow{X}(t); \ t \in [1, \sqrt{2}]$$

$$\overrightarrow{X}_0 = \overrightarrow{X}(\sqrt{2}) = \overrightarrow{Y}(3)$$

Example, continued:

Paramter transformation: $u = f(t) = t^2$

$$\overrightarrow{X}(u) = \begin{pmatrix} u \\ 1 \end{pmatrix} = \begin{pmatrix} t^2 \\ 1 \end{pmatrix} = \overrightarrow{X}(t); \ t \in [1, \sqrt{2}]$$

$$\overrightarrow{X}_0 = \overrightarrow{X}(\sqrt{2}) = \overrightarrow{Y}(3)$$

mais:
$$\frac{d}{dt}\overrightarrow{\vec{x}}(\sqrt{2}) = \begin{pmatrix} 2\sqrt{2} \\ 0 \end{pmatrix} \neq \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \frac{d}{dv}\overrightarrow{\vec{y}}(3)$$

Parametric polynomial curves:

$$\overrightarrow{x}(u) = \sum \overrightarrow{a}_i \alpha_i(u)$$

 $\alpha_i(u)$... "blending functions"

Definition (normalized B-Spline)

Let $\pi = \{u_i | u_i \leq u_{i+1}\}_{i=-\infty}^{\infty}$ be a partition. Then, we define by recurrence (de Boor/Cox/Mansfield, 1972):

$$N_i^0(u) = \left\{ egin{array}{l} 1 \,, \; u \in [u_i, u_{i+1}) \ 0 \,, \; \textit{else} \end{array}
ight.$$

$$N_i^n(u) = \frac{u - u_i}{u_{i+n} - u_i} N_i^{n-1}(u) + \frac{u_{i+n+1} - u}{u_{i+n+1} - u_{i+1}} N_{i+1}^{n-1}(u)$$

where " $\frac{0}{0} = 0$ ".

The function $N_i^n(u)$ is called normalized B-Spline of degree n (of order n+1) with the support $[u_i, u_{i+n+1}]$. If $u_i \in \mathbf{Z}$ and $(u_{i+1} = u_i)$ or $u_{i+1} = u_i + 1$) we call $N_i^n(u)$ uniform B-Spline.

G. Albrecht

Definition (normalized B-Spline)

Let $\pi = \{u_i | u_i \le u_{i+1}\}_{i=-\infty}^{\infty}$ be a partition. Then, we define by recurrence (de Boor/Cox/Mansfield, 1972):

$$N_i^0(u) = \left\{ egin{array}{l} 1 \ , \ u \in [u_i, u_{i+1}) \ 0 \ , \ \emph{else} \end{array}
ight.$$

$$N_i^n(u) = \frac{u - u_i}{u_{i+n} - u_i} N_i^{n-1}(u) + \frac{u_{i+n+1} - u}{u_{i+n+1} - u_{i+1}} N_{i+1}^{n-1}(u)$$

where " $\frac{0}{0} = 0$ ".

The function $N_i^n(u)$ is called normalized B–Spline of degree n (of order n+1) with the support $[u_i, u_{i+n+1}]$. If $u_i \in \mathbf{Z}$ and $(u_{i+1} = u_i)$ or $u_{i+1} = u_i + 1$ we call $N_i^n(u)$ uniform B–Spline.

Scheme

Example

$$\pi = \{u_0 = 0, u_1 = 1, u_2 = 2, u_3 = 3\}, n = 2$$

$$N_0^0(u) = \begin{cases} 1, u \in [0, 1) \\ 0, else \end{cases}$$

$$N_1^0(u) = \begin{cases} 1, u \in [1, 2) \\ 0, else \end{cases}$$

$$N_2^0(u) = \begin{cases} 1, u \in [2, 3) \\ 0, else \end{cases}$$

Example, continued

$$\pi = \{u_0 = 0, u_1 = 1, u_2 = 2, u_3 = 3\}, n = 2$$

$$N_0^1(u) =$$

$$N_1^1(u) =$$

Example, continued

$$\pi = \{u_0 = 0, u_1 = 1, u_2 = 2, u_3 = 3\}, n = 2$$

$$N_0^1(u) = \begin{cases} u, u \in [0, 1) \\ 2 - u, u \in [1, 2) \\ 0, else \end{cases}$$

$$N_1^1(u) = \begin{cases} u - 1, u \in [1, 2) \\ 3 - u, u \in [2, 3) \\ 0, else \end{cases}$$

Example, continued

$$\pi = \{u_0 = 0, u_1 = 1, u_2 = 2, u_3 = 3\}, n = 2$$

$$N_0^1(u) = \begin{cases} u, u \in [0, 1) \\ 2 - u, u \in [1, 2) \\ 0, else \end{cases}$$

$$N_1^1(u) = \begin{cases} u - 1, u \in [1, 2) \\ 3 - u, u \in [2, 3) \\ 0, else \end{cases}$$

$$N_0^2(u) = \begin{cases} \frac{u^2}{2}, u \in [0, 1) \\ -u^2 + 3u - \frac{3}{2}, u \in [1, 2) \\ \frac{(3-u)^2}{2}, u \in [2, 3) \\ 0, else \end{cases}$$

G. Albrecht

Theorem (Properties of normalized B–Splines)

The normalized B–Splines $N_i^n(u)$ that are defined with respect to the partition $\pi = \{u_i\}_{i=-\infty}^{\infty}$ satisfy:

Theorem (Properties of normalized B–Splines)

The normalized B–Splines $N_i^n(u)$ that are defined with respect to the partition $\pi = \{u_i\}_{i=-\infty}^{\infty}$ satisfy:

N1) $N_i^n(u)$ is a piecewise polynomial of degree n.

Theorem (Properties of normalized B-Splines)

The normalized B–Splines $N_i^n(u)$ that are defined with respect to the partition $\pi = \{u_i\}_{i=-\infty}^{\infty}$ satisfy:

N1) $N_i^n(u)$ is a piecewise polynomial of degree n.

N2)
$$N_i^n(u)$$
 $\begin{cases} > 0, u \in (u_i, u_{i+n+1}) \\ = 0, else \end{cases}$ \Rightarrow "minimal support": $[u_i, u_{i+n+1}]$

Theorem (Properties of normalized B-Splines)

The normalized B–Splines $N_i^n(u)$ that are defined with respect to the partition $\pi = \{u_i\}_{i=-\infty}^{\infty}$ satisfy:

N1) $N_i^n(u)$ is a piecewise polynomial of degree n.

N2)
$$N_i^n(u)$$
 $\begin{cases} > 0, u \in (u_i, u_{i+n+1}) \\ = 0, else \end{cases}$ \Rightarrow "minimal support": $[u_i, u_{i+n+1}]$

N3)
$$N_i^n(u)|_{[u_l,u_{l+1}]} \neq 0$$
 for $i = l - n, ..., l$

Theorem (Properties of normalized B-Splines)

The normalized B–Splines $N_i^n(u)$ that are defined with respect to the partition $\pi = \{u_i\}_{i=-\infty}^{\infty}$ satisfy:

N1) $N_i^n(u)$ is a piecewise polynomial of degree n.

N2)
$$N_i^n(u)$$
 $\begin{cases} > 0, u \in (u_i, u_{i+n+1}) \\ = 0, else \end{cases}$ \Rightarrow "minimal support": $[u_i, u_{i+n+1}]$

N3)
$$N_i^n(u)|_{[u_l,u_{l+1}]} \neq 0$$
 for $i = l - n, ..., l$

N4)
$$\sum_{i} N_i^n(u) = 1$$

Theorem (Properties of normalized B-Splines)

The normalized B–Splines $N_i^n(u)$ that are defined with respect to the partition $\pi = \{u_i\}_{i=-\infty}^{\infty}$ satisfy:

N1) $N_i^n(u)$ is a piecewise polynomial of degree n.

N2)
$$N_i^n(u)$$
 $\begin{cases} > 0, u \in (u_i, u_{i+n+1}) \\ = 0, else \end{cases}$ \Rightarrow "minimal support": $[u_i, u_{i+n+1}]$

N3)
$$N_i^n(u)|_{[u_l,u_{l+1}]} \neq 0$$
 for $i = l - n, ..., l$

N4)
$$\sum_{i} N_i^n(u) = 1$$

N5) Let I_i be the multiplicity of the knot $u_i \Rightarrow N_i^n(u) \in C^{n-l_i}$

Theorem (Properties of normalized B-Splines)

The normalized B–Splines $N_i^n(u)$ that are defined with respect to the partition $\pi = \{u_i\}_{i=-\infty}^{\infty}$ satisfy:

N1) $N_i^n(u)$ is a piecewise polynomial of degree n.

N2)
$$N_i^n(u)$$
 $\begin{cases} > 0, u \in (u_i, u_{i+n+1}) \\ = 0, else \end{cases}$ \Rightarrow "minimal support": $[u_i, u_{i+n+1}]$

N3)
$$N_i^n(u)|_{[u_l,u_{l+1}]} \neq 0$$
 for $i = l - n, ..., l$

N4)
$$\sum_{i} N_i^n(u) = 1$$

N5) Let l_j be the multiplicity of the knot $u_j \Rightarrow N_i^n(u) \in C^{n-l_j}$ If there are only simple knots $\Rightarrow N_i^n(u) \in C^{n-1}$

Theorem (Properties of normalized B-Splines)

The normalized B–Splines $N_i^n(u)$ that are defined with respect to the partition $\pi = \{u_i\}_{i=-\infty}^{\infty}$ satisfy:

N1) $N_i^n(u)$ is a piecewise polynomial of degree n.

N2)
$$N_i^n(u)$$
 $\begin{cases} > 0, u \in (u_i, u_{i+n+1}) \\ = 0, else \end{cases}$ \Rightarrow "minimal support": $[u_i, u_{i+n+1}]$

N3)
$$N_i^n(u)|_{[u_i,u_{i+1}]} \neq 0$$
 for $i = l - n, ..., l$

N4)
$$\sum_{i} N_i^n(u) = 1$$

N5) Let l_j be the multiplicity of the knot $u_j \Rightarrow N_i^n(u) \in C^{n-l_j}$ If there are only simple knots $\Rightarrow N_i^n(u) \in C^{n-1}$

Proof.

see literature

Rational Bézier curves: conic sections

B-Spline curves

Remarks

- Different notations for B-Splines in literature, for example:
 - $N_i^n(u)$ with support $[u_{i-1}, u_{i+n}]$ (Farin)
 - $N_{i,\mu}(u)$ with support $[u_i,u_{i+\mu}]$, where $\mu=n+1=$ order (Hoschek/Lasser)

Remarks

- Different notations for B-Splines in literature, for example:
 - $N_i^n(u)$ with support $[u_{i-1}, u_{i+n}]$ (Farin)
 - $N_{i,\mu}(u)$ with support $[u_i,u_{i+\mu}]$, where $\mu=n+1=$ order (Hoschek/Lasser)
- Other possibilities for defining B–Splines: among others by
 - truncated power functions
 - intersection volume of an *n*-dimensional simplex with a hyperplane.

Definition (B-Spline curve)

Let $m \ge n \in IN$, $\pi_f = \{u_0 \le u_1 \le \ldots \le u_{m+n+1}\}$ be a finite partition, and $D_0(\overrightarrow{d}_0), \ldots, D_m(\overrightarrow{d}_m) \in E^d(d \in \{2,3\})$. Then, the curve

$$\overrightarrow{s}(u) = \sum_{i=0}^{m} \overrightarrow{d}_{i} N_{i}^{n}(u); \ u \in [u_{0}, u_{m+n+1})$$

is called B–Spline curve (of degree n with respect to the partition π_f) with the de Boor points or control points D_0, \ldots, D_m . short:

$$\overrightarrow{s}(u) = \sum_{i} \overrightarrow{d}_{i} N_{i}^{n}(u); \ \pi = \{u_{i}\}_{i=-\infty}^{\infty}$$

Theorem (Properties of a B-Spline curve)

C1) Affine invariance:

$$D_0, \ldots, D_m \leftrightarrow \overrightarrow{s}(u)$$
 affinely invariant

Theorem (Properties of a B-Spline curve)

C1) Affine invariance:

$$D_0, \ldots, D_m \leftrightarrow \overrightarrow{s}(u)$$
 affinely invariant

C2) Moving a control point $D_l \to modification$ of the curve $\overrightarrow{s}(u)$ only for $u \in [u_l, u_{l+n+1})$

Theorem (Properties of a B-Spline curve)

C1) Affine invariance:

$$D_0, \ldots, D_m \leftrightarrow \overrightarrow{s}(u)$$
 affinely invariant

- C2) Moving a control point $D_l o modification of the curve <math>\overrightarrow{s}(u)$ only for $u \in [u_l, u_{l+n+1})$
- C3)

$$\overrightarrow{s}(u)|_{u\in[u_l,u_{l+1})}=\sum_{i=l-n}^l\overrightarrow{d}_iN_i^n(u)$$

Theorem (Properties of a B-Spline curve)

C1) Affine invariance:

$$D_0, \ldots, D_m \leftrightarrow \overrightarrow{s}(u)$$
 affinely invariant

C2) Moving a control point $D_l o modification of the curve <math>\overrightarrow{s}(u)$ only for $u \in [u_l, u_{l+n+1})$

C3)

$$\overrightarrow{s}(u)|_{u\in[u_l,u_{l+1})}=\sum_{i-l-n}^l\overrightarrow{d}_iN_i^n(u)$$

C4) Convex hull property:

$$\overrightarrow{s}(u)|_{u\in[u_l,u_{l+1})}\subset H(D_{l-n},\ldots,D_l)$$

Theorem (Properties of a B-Spline curve, continued)

C5) Variation Diminishing Property: The number of intersection points of the curve $\overrightarrow{s}(u)$ with an arbitrary plane is \leq than the number of intersection points of the control polygon with the same plane.

Theorem (Properties of a B-Spline curve, continued)

- C5) Variation Diminishing Property: The number of intersection points of the curve $\overrightarrow{s}(u)$ with an arbitrary plane is \leq than the number of intersection points of the control polygon with the same plane.
- C6) If k control points $D_{l-k} = D_{l-k+1} = \dots = D_{l-1}$ coincide and if the multiplicity of the knot u_l is between n-k+1 and n, then the B–Spline curve $\overrightarrow{s}(u)$ contains the point D_{l-1} : $\overrightarrow{s}(u_l) = \overrightarrow{d}_{l-1}$.

Bézier and B-Spline curves

Theorem (Properties of a B-Spline curve, continued)

- C5) Variation Diminishing Property: The number of intersection points of the curve $\overrightarrow{s}(u)$ with an arbitrary plane is \leq than the number of intersection points of the control polygon with the same plane.
- C6) If k control points $D_{l-k} = D_{l-k+1} = \dots = D_{l-1}$ coincide and if the multiplicity of the knot u_l is between n-k+1 and n, then the B–Spline curve $\overrightarrow{s}(u)$ contains the point D_{l-1} : $\overrightarrow{s}(u_l) = \overrightarrow{d}_{l-1}$.
- C7) If n+1 control points $D_{l-n}, \ldots D_l$ are collinear, then the B–Spline curve $\overrightarrow{s}(u)$ contains part of the straight line (different from a point if $u_l \neq u_{l+1}$) that passes through $D_{l-n}, \ldots D_l$.

4□ > 4□ > 4 = > 4 = > = 90

Theorem (Properties of a B-Spline curve, continued)

- C5) Variation Diminishing Property: The number of intersection points of the curve $\overrightarrow{s}(u)$ with an arbitrary plane is \leq than the number of intersection points of the control polygon with the same plane.
- C6) If k control points $D_{l-k} = D_{l-k+1} = \ldots = D_{l-1}$ coincide and if the multiplicity of the knot u_l is between n-k+1 and n, then the B–Spline curve $\overrightarrow{s}(u)$ contains the point D_{l-1} : $\overrightarrow{s}(u_l) = \overrightarrow{d}_{l-1}$.
- C7) If n+1 control points $D_{l-n}, \ldots D_l$ are collinear, then the B–Spline curve $\overrightarrow{s}(u)$ contains part of the straight line (different from a point if $u_l \neq u_{l+1}$) that passes through $D_{l-n}, \ldots D_l$.
- C8) If n control points $D_{l-n}, \ldots D_{l-1}$ are collinear and the multiplicity of the knot $u_l \le n-1$, then the straight line that passes through $D_{l-n}, \ldots D_{l-1}$ is tangent to the B–Spline curve $\overrightarrow{s}(u)$ in $\overrightarrow{s}(u_l)$.

Theorem (Properties of a B-Spline curve, continued)

C9) First derivative of $\overrightarrow{s}(u)$:

$$\frac{d}{du}\overrightarrow{s}(u) = \sum_{i=1}^{m} \overrightarrow{d}_{i}^{(1)} N_{i}^{n-1}(u), \text{ where } \overrightarrow{d}_{i}^{(1)} = n \frac{\overrightarrow{d}_{i} - \overrightarrow{d}_{i-1}}{u_{i+n} - u_{i}}$$

Theorem (Properties of a B-Spline curve, continued)

C9) First derivative of $\overrightarrow{s}(u)$:

$$\frac{d}{du}\overrightarrow{s}(u) = \sum_{i=1}^{m} \overrightarrow{d}_{i}^{(1)} N_{i}^{n-1}(u), \text{ where } \overrightarrow{d}_{i}^{(1)} = n \frac{\overrightarrow{d}_{i} - \overrightarrow{d}_{i-1}}{u_{i+n} - u_{i}}$$

Démonstration

C1) - C4): using the properties of normalized B-Splines, C5): later

C6)
$$D_{l-k} = \ldots = D_{l-1}$$
 and $n-k+1 \le$ multiplicity of the knot $u_l \le n$

C6)
$$D_{l-k} = \ldots = D_{l-1}$$
 and $n-k+1 \le \text{multiplicity of the knot } u_l \le n$

$$\Rightarrow \overrightarrow{S}(u_l) = \sum_{i=1}^{l} \overrightarrow{d}_i N_i^n(u_l)$$

C6)
$$D_{l-k} = \ldots = D_{l-1}$$
 and $n-k+1 \le \text{multiplicity of the knot } u_l \le n$

$$\Rightarrow \overrightarrow{s}(u_l) = \sum_{i=l-n}^{l} \overrightarrow{d}_i N_i^n(u_l)$$

$$= \sum_{i=l-n}^{l-1} \overrightarrow{d}_i N_i^n(u_l)$$

Demonstration, continued

C6)
$$D_{l-k} = \dots = D_{l-1}$$
 and $n-k+1 \le \text{multiplicity of the knot } u_l \le n$

$$\Rightarrow \overrightarrow{s}(u_l) = \sum_{i=l-n}^{l} \overrightarrow{d}_i N_i^n(u_l)$$

$$= \sum_{i=l-n}^{l-1} \overrightarrow{d}_i N_i^n(u_l)$$

$$= \sum_{i=l-n}^{l-k-1} \overrightarrow{d}_i \underbrace{N_i^n(u_l)}_{i=l-k} + \sum_{i=l-k}^{l-1} \overrightarrow{d}_i N_i^n(u_l)$$

G. Albrecht

Demonstration, continued

C6)
$$D_{l-k} = \ldots = D_{l-1}$$
 and $n-k+1 \le \text{multiplicity of the knot } u_l \le n$

$$\Rightarrow \overrightarrow{s}(u_l) = \sum_{i=l-n}^{l} \overrightarrow{d}_i N_i^n(u_l)$$

$$= \sum_{i=l-n}^{l-1} \overrightarrow{d}_i N_i^n(u_l)$$

$$= \sum_{i=l-n}^{l-k-1} \overrightarrow{d}_i \underbrace{N_i^n(u_l)}_{=0} + \sum_{i=l-k}^{l-1} \overrightarrow{d}_i N_i^n(u_l)$$

G. Albrecht

Demonstration, continued

C6)
$$D_{l-k} = \dots = D_{l-1}$$
 and $n-k+1 \le \text{multiplicity of the knot } u_l \le n$

$$\Rightarrow \overrightarrow{s}(u_l) = \sum_{i=l-n}^{l} \overrightarrow{d}_i N_i^n(u_l)$$

$$= \sum_{i=l-n}^{l-1} \overrightarrow{d}_i N_i^n(u_l)$$

$$= \sum_{i=l-n}^{l-k-1} \overrightarrow{d}_i \underbrace{N_i^n(u_l)}_{=0} + \sum_{i=l-k}^{l-1} \overrightarrow{d}_i N_i^n(u_l)$$

$$= \overrightarrow{d}_{l-1} \underbrace{\sum_{i=l-k}^{l-1} N_i^n(u_l)}_{=l-k}$$

◄□▶◀圖▶◀불▶◀불▶ 불 쒸٩♡

Demonstration, continued

C6)
$$D_{l-k} = \ldots = D_{l-1}$$
 and $n-k+1 \le \text{multiplicity of the knot } u_l \le n$

$$\Rightarrow \overrightarrow{s}(u_l) = \sum_{i=l-n}^{l} \overrightarrow{d}_i N_i^n(u_l)$$

$$= \sum_{i=l-n}^{l-1} \overrightarrow{d}_i N_i^n(u_l)$$

$$= \sum_{i=l-n}^{l-k-1} \overrightarrow{d}_i \underbrace{N_i^n(u_l)}_{=0} + \sum_{i=l-k}^{l-1} \overrightarrow{d}_i N_i^n(u_l)$$

$$= \overrightarrow{d}_{l-1} \underbrace{\sum_{i=l-k}^{l-1} N_i^n(u_l)}_{-1}$$

Bézier and B-Spline curves G. Albrecht

C6)
$$D_{l-k} = \ldots = D_{l-1}$$
 and $n-k+1 \le \text{multiplicity of the knot } u_l \le n$

$$\Rightarrow \overrightarrow{s}(u_l) = \sum_{i=l-n}^{l} \overrightarrow{d}_i N_i^n(u_l)$$

$$= \sum_{i=l-n}^{l-1} \overrightarrow{d}_i N_i^n(u_l)$$

$$= \sum_{i=l-n}^{l-k-1} \overrightarrow{d}_i \underbrace{N_i^n(u_l)}_{=0} + \sum_{i=l-k}^{l-1} \overrightarrow{d}_i N_i^n(u_l)$$

$$= \overrightarrow{d}_{l-1} \underbrace{\sum_{i=l-k}^{l-1} N_i^n(u_l)}_{=1} = \overrightarrow{d}_{l-1}$$

Rational Bézier curves: conic sections

B–Spline curves

Demonstration, continued

C7) follows with C4)

Demonstration, continued

C7) follows with C4)

- C7) follows with C4)
- C8) D_{l-n}, \ldots, D_{l-1} collinear

$$\Rightarrow \overrightarrow{d}_{i} = \overrightarrow{d}_{l-1} + t_{i}(\overrightarrow{d}_{l-n} - \overrightarrow{d}_{l-1}); i = l-n, \dots, l-1 \quad (*)$$

Demonstration, continued

C7) follows with C4)

$$\Rightarrow \overrightarrow{d}_{i} = \overrightarrow{d}_{l-1} + t_{i}(\overrightarrow{d}_{l-n} - \overrightarrow{d}_{l-1}); i = l-n, \dots, l-1 \quad (*)$$

$$\Rightarrow \overrightarrow{s}(u_l) = \sum_{i-l-n}^{l} \overrightarrow{d}_i N_i^n(u_l)$$

Demonstration, continued

C7) follows with C4)

$$\Rightarrow \overrightarrow{d}_{i} = \overrightarrow{d}_{l-1} + t_{i}(\overrightarrow{d}_{l-n} - \overrightarrow{d}_{l-1}); i = l-n, \dots, l-1 \quad (*)$$

$$\Rightarrow \overrightarrow{s}(u_l) = \sum_{i-l-n}^{l} \overrightarrow{d}_i N_i^n(u_l) \mid (*) \Rightarrow$$

Demonstration, continued

C7) follows with C4)

$$\Rightarrow \overrightarrow{d}_{i} = \overrightarrow{d}_{l-1} + t_{i}(\overrightarrow{d}_{l-n} - \overrightarrow{d}_{l-1}); i = l-n, \dots, l-1 \quad (*)$$

$$\Rightarrow \overrightarrow{s}(u_l) = \sum_{i=l-n}^{l} \overrightarrow{d}_i N_i^n(u_l) | (*) \Rightarrow$$

$$= \sum_{i=l-n}^{l} (\overrightarrow{d}_{l-1} + t_i (\overrightarrow{d}_{l-n} - \overrightarrow{d}_{l-1})) N_i^n(u_l)$$

Demonstration, continued

C7) follows with C4)

$$\Rightarrow \overrightarrow{d}_i = \overrightarrow{d}_{l-1} + t_i (\overrightarrow{d}_{l-n} - \overrightarrow{d}_{l-1}); i = l-n, \dots, l-1 \quad (*)$$

$$\Rightarrow \overrightarrow{s}(u_{l}) = \sum_{i=l-n}^{l} \overrightarrow{d}_{i} N_{i}^{n}(u_{l}) | (*) \Rightarrow$$

$$= \sum_{i=l-n}^{l} (\overrightarrow{d}_{l-1} + t_{i} (\overrightarrow{d}_{l-n} - \overrightarrow{d}_{l-1})) N_{i}^{n}(u_{l})$$

$$= \overrightarrow{d}_{l-1} \sum_{i=l-n}^{l} N_{i}^{n}(u_{l}) + (\overrightarrow{d}_{l-n} - \overrightarrow{d}_{l-1}) \sum_{i=l-n}^{l} t_{i} N_{i}^{n}(u_{l})$$

Demonstration, continued

C7) follows with C4)

$$\Rightarrow \overrightarrow{d}_i = \overrightarrow{d}_{l-1} + t_i(\overrightarrow{d}_{l-n} - \overrightarrow{d}_{l-1}); i = l-n, \dots, l-1 \quad (*)$$

$$\Rightarrow \overrightarrow{s}(u_{l}) = \sum_{i=l-n}^{l} \overrightarrow{d}_{i} N_{i}^{n}(u_{l}) | (*) \Rightarrow$$

$$= \sum_{i=l-n}^{l} (\overrightarrow{d}_{l-1} + t_{i} (\overrightarrow{d}_{l-n} - \overrightarrow{d}_{l-1})) N_{i}^{n}(u_{l})$$

$$= \overrightarrow{d}_{l-1} \sum_{i=l-n}^{l} N_{i}^{n}(u_{l}) + (\overrightarrow{d}_{l-n} - \overrightarrow{d}_{l-1}) \sum_{i=l-n}^{l} t_{i} N_{i}^{n}(u_{l})$$

- C7) follows with C4)
- C8) D_{l-n}, \ldots, D_{l-1} collinear

$$\Rightarrow \overrightarrow{d}_{i} = \overrightarrow{d}_{l-1} + t_{i}(\overrightarrow{d}_{l-n} - \overrightarrow{d}_{l-1}); i = l-n, \dots, l-1 \quad (*)$$

$$\Rightarrow \overrightarrow{s}(u_{l}) = \sum_{i=l-n}^{l} \overrightarrow{d}_{i} N_{i}^{n}(u_{l}) \quad |(*) \Rightarrow$$

$$= \sum_{i=l-n}^{l} (\overrightarrow{d}_{l-1} + t_{i} (\overrightarrow{d}_{l-n} - \overrightarrow{d}_{l-1})) N_{i}^{n}(u_{l})$$

$$= \overrightarrow{d}_{l-1} \sum_{i=l-n}^{l} N_{i}^{n}(u_{l}) + (\overrightarrow{d}_{l-n} - \overrightarrow{d}_{l-1}) \sum_{i=l-n}^{l} t_{i} N_{i}^{n}(u_{l})$$

Proof.

C8)

$$\Rightarrow \overrightarrow{s}(u_l) = \overrightarrow{d}_{l-1} + \lambda (\overrightarrow{d}_{l-n} - \overrightarrow{d}_{l-1})$$

B-Spline curves

Proof.

$$\Rightarrow \overrightarrow{s}(u_l) = \overrightarrow{d}_{l-1} + \lambda (\overrightarrow{d}_{l-n} - \overrightarrow{d}_{l-1})$$
$$\Rightarrow \overrightarrow{s}(u_l) \in (D_{l-n}D_{l-1})$$

B-Spline curves

Proof.

$$\Rightarrow \overrightarrow{s}(u_l) = \overrightarrow{d}_{l-1} + \lambda (\overrightarrow{d}_{l-n} - \overrightarrow{d}_{l-1})$$

$$\Rightarrow \overrightarrow{s}(u_l) \in (D_{l-n}D_{l-1})$$

Furthermore we know:

B–Spline curves

Proof.

$$\Rightarrow \overrightarrow{s}(u_l) = \overrightarrow{d}_{l-1} + \lambda (\overrightarrow{d}_{l-n} - \overrightarrow{d}_{l-1})$$

$$\Rightarrow \overrightarrow{s}(u_l) \in (D_{l-n}D_{l-1})$$

Furthermore we know:

$$\bullet$$
 $\overrightarrow{s}(u) \in C^1$ for $u = u_l$

B–Spline curves

Proof.

$$\Rightarrow \overrightarrow{s}(u_l) = \overrightarrow{d}_{l-1} + \lambda (\overrightarrow{d}_{l-n} - \overrightarrow{d}_{l-1})$$

$$\Rightarrow \overrightarrow{s}(u_l) \in (D_{l-n}D_{l-1})$$

Furthermore we know:

- - $\overrightarrow{s}(u) \in C^1$ for $u = u_l$ C4) \Rightarrow

B-Spline curves

Proof.

C8)

$$\Rightarrow \overrightarrow{s}(u_l) = \overrightarrow{d}_{l-1} + \lambda (\overrightarrow{d}_{l-n} - \overrightarrow{d}_{l-1})$$

$$\Rightarrow \overrightarrow{s}(u_l) \in (D_{l-n}D_{l-1})$$

Furthermore we know:

- \bullet $\overrightarrow{s}(u) \in C^1$ for $u = u_l$
- C4) ⇒

$$\bullet$$
 $\overrightarrow{s}(u)|_{u \in [u_l, u_{l+1})} \subset H(D_{l-n}, \dots, D_l) = H(D_{l-n}, D_{l-1}, D_l)$

B–Spline curves

Proof.

C8)

$$\Rightarrow \overrightarrow{s}(u_l) = \overrightarrow{d}_{l-1} + \lambda (\overrightarrow{d}_{l-n} - \overrightarrow{d}_{l-1})$$

$$\Rightarrow \overrightarrow{s}(u_l) \in (D_{l-n}D_{l-1})$$

Furthermore we know:

- $\overrightarrow{s}(u) \in C^1$ for $u = u_l$
- C4) ⇒
 - \bullet $\overrightarrow{s}(u)|_{u\in[u_{l},u_{l+1})}\subset H(D_{l-n},\ldots,D_{l})=H(D_{l-n},D_{l-1},D_{l})$
 - $\bullet \overrightarrow{s}(u)|_{u \in [u_{l-1}, u_l)} \subset H(D_{l-n-1}, \dots, D_{l-1}) = H(D_{l-n-1}, D_{l-n}, D_{l-1})$

B–Spline curves

Proof.

C8)

$$\Rightarrow \overrightarrow{s}(u_l) = \overrightarrow{d}_{l-1} + \lambda (\overrightarrow{d}_{l-n} - \overrightarrow{d}_{l-1})$$

$$\Rightarrow \overrightarrow{s}(u_l) \in (D_{l-n}D_{l-1})$$

Furthermore we know:

- \bullet $\overrightarrow{s}(u) \in C^1$ for $u = u_l$
- C4) ⇒
 - $\overrightarrow{s}(u)|_{u\in[u_{l},u_{l+1})}\subset H(D_{l-n},\ldots,D_{l})=H(D_{l-n},D_{l-1},D_{l})$
 - $\bullet \overrightarrow{s}(u)|_{u \in [u_{l-1}, u_l)} \subset H(D_{l-n-1}, \dots, D_{l-1}) = H(D_{l-n-1}, D_{l-n}, D_{l-1})$
- C9) follows with:

$$\frac{d}{du}N_i^n(u) = n(\frac{N_i^{n-1}(u)}{u_{i+n}-u_i} - \frac{N_{i+1}^{n-1}(u)}{u_{i+n+1}-u_{i+1}})$$

Demonstration by recurrence with respect to *n*

Curve point computation according to de Boor

given:

$$\overrightarrow{s}(u) = \sum_{i} \overrightarrow{d}_{i} N_{i}^{n}(u); \ \pi = \{u_{i}\}_{i=-\infty}^{\infty}$$

Curve point computation according to de Boor

given:

$$\overrightarrow{s}(u) = \sum_{i} \overrightarrow{d}_{i} N_{i}^{n}(u); \ \pi = \{u_{i}\}_{i=-\infty}^{\infty}$$

we look for:

$$\overrightarrow{s}(x)$$
; $x \in [u_l, u_{l+1})$ fixed

Rational Bézier curves: conic sections

$$\overrightarrow{s}(x) = \sum_{i=l-n}^{l} \overrightarrow{d}_i N_i^n(x)$$

$$\overrightarrow{s}(x) = \sum_{i=l-n}^{l} \overrightarrow{d}_{i} N_{i}^{n}(x)$$

$$= \sum_{i=l-n}^{l} \overrightarrow{d}_{i} \left(\frac{x - u_{i}}{u_{i+n} - u_{i}} N_{i}^{n-1}(x) + \frac{u_{i+n+1} - x}{u_{i+n+1} - u_{i+1}} N_{i+1}^{n-1}(x) \right)$$

Rational Bézier curves: conic sections

$$\overrightarrow{s}(x) = \sum_{i=l-n}^{l} \overrightarrow{d}_{i} N_{i}^{n}(x)
= \sum_{i=l-n}^{l} \overrightarrow{d}_{i} \left(\frac{x - u_{i}}{u_{i+n} - u_{i}} N_{i}^{n-1}(x) + \frac{u_{i+n+1} - x}{u_{i+n+1} - u_{i+1}} N_{i+1}^{n-1}(x) \right)
= \sum_{i=l-n+1}^{l} \overrightarrow{d}_{i} \frac{x - u_{i}}{u_{i+n} - u_{i}} N_{i}^{n-1}(x)$$

$$\overrightarrow{S}(x) = \sum_{i=l-n}^{l} \overrightarrow{d}_{i} N_{i}^{n}(x)
= \sum_{i=l-n}^{l} \overrightarrow{d}_{i} \left(\frac{x - u_{i}}{u_{i+n} - u_{i}} N_{i}^{n-1}(x) + \frac{u_{i+n+1} - x}{u_{i+n+1} - u_{i+1}} N_{i+1}^{n-1}(x) \right)
= \sum_{i=l-n+1}^{l} \overrightarrow{d}_{i} \frac{x - u_{i}}{u_{i+n} - u_{i}} N_{i}^{n-1}(x)
+ \sum_{i=l-n+1}^{l+1} \overrightarrow{d}_{i-1} \frac{u_{i+n} - x}{u_{i+n} - u_{i}} N_{i}^{n-1}(x)$$

G. Albrecht

$$= \sum_{i=l-n+1}^{l} \left(\underbrace{\frac{x-u_i}{u_{i+n}-u_i}} \overrightarrow{d}_i + \underbrace{\frac{u_{i+n}-x}{u_{i+n}-u_i}} \overrightarrow{d}_{i-1} \right) N_i^{n-1}(x)$$

$$= \sum_{i=l-n+1}^{l} \left(\underbrace{\frac{x-u_i}{u_{i+n}-u_i}}_{=:\alpha_i^1} \overrightarrow{d}_i + \underbrace{\frac{u_{i+n}-x}{u_{i+n}-u_i}}_{=:\alpha_i^1} \overrightarrow{d}_{i-1} \right) N_i^{n-1}(x)$$

$$= \sum_{i=l-n+1}^{l} \left(\underbrace{\frac{x-u_i}{u_{i+n}-u_i}}_{=:\alpha_i^1} \overrightarrow{d}_i + \underbrace{\frac{u_{i+n}-x}{u_{i+n}-u_i}}_{=1-\alpha_i^1} \overrightarrow{d}_{i-1} \right) N_i^{n-1}(x)$$

$$= \sum_{i=l-n+1}^{l} \left(\underbrace{\underbrace{\underbrace{u_{i+n} - u_{i}}_{i-1} \overrightarrow{d}_{i}}_{=:\alpha_{i}^{1}} \overrightarrow{d}_{i} + \underbrace{\underbrace{u_{i+n} - x}_{u_{i+n} - u_{i}} \overrightarrow{d}_{i-1}}_{=:\overrightarrow{d}_{i}^{1}} \right) N_{i}^{n-1}(x)$$

$$= \sum_{i=l-n+1}^{l} \underbrace{\left(\frac{x-u_i}{u_{i+n}-u_i}\overrightarrow{d}_i + \frac{u_{i+n}-x}{u_{i+n}-u_i}\overrightarrow{d}_{i-1}\right)N_i^{n-1}(x)}_{=:\overrightarrow{d}_i^{\frac{1}{l}}}$$

$$= \sum_{i=l-n+1}^{l} \overrightarrow{d}_i^{\frac{1}{l}}N_i^{n-1}(x)$$

$$\overrightarrow{s}(x) = \sum_{i=l-n}^{l} \overrightarrow{d}_{i}^{0} N_{i}^{n}(x)$$

$$\overrightarrow{s}(x) = \sum_{i=l-n}^{l} \overrightarrow{d}_{i}^{0} N_{i}^{n}(x)$$

$$= \sum_{i=l-n+1}^{l} \overrightarrow{d}_{i}^{1} N_{i}^{n-1}(x)$$

$$\overrightarrow{s}(x) = \sum_{i=l-n}^{l} \overrightarrow{d}_{i}^{0} N_{i}^{n}(x)$$

$$= \sum_{i=l-n+1}^{l} \overrightarrow{d}_{i}^{1} N_{i}^{n-1}(x)$$

$$= \dots$$

$$= \sum_{i=l-n+n}^{l} \overrightarrow{d}_{i}^{n} N_{i}^{n-n}(x)$$

$$\overrightarrow{s}(x) = \sum_{i=l-n}^{l} \overrightarrow{d}_{i}^{0} N_{i}^{n}(x)$$

$$= \sum_{i=l-n+1}^{l} \overrightarrow{d}_{i}^{1} N_{i}^{n-1}(x)$$

$$= \dots$$

$$= \sum_{i=l-n+n}^{l} \overrightarrow{d}_{i}^{n} N_{i}^{n-n}(x)$$

de Boor algorithm:

$$\alpha_i^k := \frac{X - U_i}{U_{i+n-k+1} - U_i}$$

de Boor algorithm:

$$\alpha_i^k := \frac{x - u_i}{u_{i+n-k+1} - u_i}$$

$$\overrightarrow{d}_i^k := \alpha_i^k \overrightarrow{d}_i^{k-1} + (1 - \alpha_i^k) \overrightarrow{d}_{i-1}^{k-1}$$

$$i = l - n + k, \dots, l, k = 1, \dots, n.$$

de Boor algorithm:

$$\alpha_i^k := \frac{x - u_i}{u_{i+n-k+1} - u_i}$$

$$\overrightarrow{d}_i^k := \alpha_i^k \overrightarrow{d}_i^{k-1} + (1 - \alpha_i^k) \overrightarrow{d}_{i-1}^{k-1}$$

$$i = l - n + k, \dots, l, k = 1, \dots, n.$$

Scheme and Illustration

Remarks:

• Property C9) of B–Spline curves $\Rightarrow \overrightarrow{d}_{l}^{n-1} - \overrightarrow{d}_{l-1}^{n-1}$ yields the tangent direction in $\overrightarrow{d}_{l}^{n}$ (curve point!)

Remarks:

- Property C9) of B–Spline curves $\Rightarrow \overrightarrow{d}_{i}^{n-1} \overrightarrow{d}_{i-1}^{n-1}$ yields the tangent direction in $\overrightarrow{d}_{l}^{n}$ (curve point!)
- Derivative computation: By applying de Boor's algorithm to the B-Spline representation of the derivative.

given:

$$\overrightarrow{s}(u) = \sum_{i} \overrightarrow{d}_{i} N_{i}^{n}(u); \ \pi = \{u_{i}\}_{i=-\infty}^{\infty}$$

given:

$$\overrightarrow{s}(u) = \sum_{i} \overrightarrow{d}_{i} N_{i}^{n}(u); \ \pi = \{u_{i}\}_{i=-\infty}^{\infty}$$

 $x \in [u_l, u_{l+1}) \dots$ knot to be inserted

given:

$$\overrightarrow{s}(u) = \sum_{i} \overrightarrow{d}_{i} N_{i}^{n}(u); \ \pi = \{u_{i}\}_{i=-\infty}^{\infty}$$

 $x \in [u_l, u_{l+1}) \dots$ knot to be inserted

 \Rightarrow new partition $\pi^1 = \{u_i^1\}_{i=-\infty}^{\infty}$ where

$$u_i^1 :=$$

given:

$$\overrightarrow{s}(u) = \sum_{i} \overrightarrow{d}_{i} N_{i}^{n}(u); \ \pi = \{u_{i}\}_{i=-\infty}^{\infty}$$

 $x \in [u_l, u_{l+1}) \dots$ knot to be inserted

 \Rightarrow new partition $\pi^1 = \{u_i^1\}_{i=-\infty}^{\infty}$ where

$$u_i^1 := \left\{ \begin{array}{c} u_i & i \leq l \\ x & i = l+1 \\ u_{i-1}, & i \geq l+2 \end{array} \right.$$

given:

$$\overrightarrow{s}(u) = \sum_{i} \overrightarrow{d}_{i} N_{i}^{n}(u); \ \pi = \{u_{i}\}_{i=-\infty}^{\infty}$$

 $x \in [u_l, u_{l+1}) \dots$ knot to be inserted

 \Rightarrow new partition $\pi^1 = \{u_i^1\}_{i=-\infty}^{\infty}$ where

$$u_i^1 := \begin{cases} u_i & i \leq l \\ x & i = l+1 \\ u_{i-1}, & i \geq l+2 \end{cases}$$

we look for:

$$\overrightarrow{s}(u) = \sum_{i} \overrightarrow{d}_{i}^{(1)} \hat{N}_{i}^{n}(u) \text{ sur } \pi^{1}$$

Bézier and B-Soline curves

G. Albrecht

Determination of the new de Boor points $D_i^1(\overrightarrow{d}_i^1)$:

Determination of the new de Boor points $D_i^1(\overrightarrow{d}_i^1)$: Property N3) of normalized B–Splines \Rightarrow

$$N_i^n(u) =$$

Determination of the new de Boor points $D_i^1(\overrightarrow{d}_i^1)$: Property N3) of normalized B–Splines \Rightarrow

$$N_i^n(u) = \begin{cases} \hat{N}_i^n(u) , i \leq l-n-1 \end{cases}$$

Determination of the new de Boor points $D_i^1(\overrightarrow{d}_i^1)$: Property N3) of normalized B–Splines \Rightarrow

$$N_i^n(u) = \begin{cases} \hat{N}_i^n(u), & i \leq l-n-1 \\ \hat{N}_{i+1}^n(u), & i \geq l+1 \end{cases}$$

Determination of the new de Boor points $D_i^1(\overrightarrow{d}_i^1)$: Property N3) of normalized B–Splines \Rightarrow

$$N_{i}^{n}(u) = \begin{cases} \hat{N}_{i}^{n}(u), & i \leq l-n-1 \\ \frac{XXXX}{N}, & i = l-n, \dots, l \\ \hat{N}_{i+1}^{n}(u), & i \geq l+1 \end{cases}$$

Theorem

for I - n < i < I we have:

$$N_i^n(u) = \beta_i^1 \hat{N}_i^n(u) + (1 - \beta_{i+1}^1) \hat{N}_{i+1}^n(u)$$

where
$$\beta_j^1 := \frac{u_{l+1}^1 - u_j^1}{u_{j+n+1}^1 - u_j^1}$$
.

Theorem

for l - n < i < l we have:

$$N_i^n(u) = \beta_i^1 \hat{N}_i^n(u) + (1 - \beta_{i+1}^1) \hat{N}_{i+1}^n(u)$$

where
$$\beta_j^1 := \frac{u_{l+1}^1 - u_j^1}{u_{j+n+1}^1 - u_j^1}$$
.

Proof.

by recurrence with respect to n by using the recurrence formula for normalized B–Splines

Theorem

for l - n < i < l we have:

$$N_i^n(u) = \beta_i^1 \hat{N}_i^n(u) + (1 - \beta_{i+1}^1) \hat{N}_{i+1}^n(u)$$

where
$$\beta_j^1 := \frac{u_{l+1}^1 - u_j^1}{u_{j+n+1}^1 - u_j^1}$$
.

Proof.

by recurrence with respect to n by using the recurrence formula for normalized B–Splines

We have:

$$\beta_{l-n}^1 = , \beta_{l+1}^1 =$$

200

Theorem

for l - n < i < l we have:

$$N_i^n(u) = \beta_i^1 \hat{N}_i^n(u) + (1 - \beta_{i+1}^1) \hat{N}_{i+1}^n(u)$$

where
$$\beta_j^1 := \frac{u_{l+1}^1 - u_j^1}{u_{j+n+1}^1 - u_j^1}$$
.

Proof.

by recurrence with respect to n by using the recurrence formula for normalized B–Splines

We have:

$$\beta_{l-n}^1 = 1 \; , \; \beta_{l+1}^1 =$$

990

Theorem

for l - n < i < l we have:

$$N_i^n(u) = \beta_i^1 \hat{N}_i^n(u) + (1 - \beta_{i+1}^1) \hat{N}_{i+1}^n(u)$$

where
$$\beta_j^1 := \frac{u_{l+1}^1 - u_j^1}{u_{j+n+1}^1 - u_j^1}$$
.

Proof.

by recurrence with respect to n by using the recurrence formula for normalized B-Splines

We have:

$$\beta_{l-n}^1 = 1 \, , \ \beta_{l+1}^1 = 0$$

4) Q (4

$$\overrightarrow{s}(u) = \sum_{i} \overrightarrow{d}_{i} N_{i}^{n}(u)$$

G. Albrecht

$$\overrightarrow{s}(u) = \sum_{i} \overrightarrow{d}_{i} N_{i}^{n}(u)$$

$$= \sum_{i \leq l-n-1} \overrightarrow{d}_{i} \hat{N}_{i}^{n}(u) + \sum_{i=l-n}^{l} \overrightarrow{d}_{i} (\beta_{i}^{1} \hat{N}_{i}^{n}(u) + (1 - \beta_{i+1}^{1}) \hat{N}_{i+1}^{n}(u))$$

$$+ \sum_{i > l+1} \overrightarrow{d}_{i} \hat{N}_{i+1}^{n}(u)$$

$$\vec{s}(u) = \sum_{i} \vec{d}_{i} N_{i}^{n}(u)
= \sum_{i \leq l-n-1} \vec{d}_{i} \hat{N}_{i}^{n}(u) + \sum_{i=l-n}^{l} \vec{d}_{i} (\beta_{i}^{1} \hat{N}_{i}^{n}(u) + (1 - \beta_{i+1}^{1}) \hat{N}_{i+1}^{n}(u))
+ \sum_{i \geq l+1} \vec{d}_{i} \hat{N}_{i+1}^{n}(u)
= \sum_{i \leq l-n} \vec{d}_{i} \hat{N}_{i}^{n}(u) + \sum_{i=l-n+1}^{l} \vec{d}_{i} \beta_{i}^{1} \hat{N}_{i}^{n}(u)
+ \sum_{i=l-n+1}^{l} \vec{d}_{i-1} (1 - \beta_{i}^{1}) \hat{N}_{i}^{n}(u)) + \sum_{i \geq l+1} \vec{d}_{i-1} \hat{N}_{i}^{n}(u)$$

$$= \sum_{i \leq l-n} \overrightarrow{d}_{i} \hat{N}_{i}^{n}(u) + \sum_{i=l-n+1}^{l} (\beta_{i}^{1} \overrightarrow{d}_{i} + (1 - \beta_{i}^{1}) \overrightarrow{d}_{i-1}) \hat{N}_{i}^{n}(u)$$

$$+ \sum_{i \geq l+1} \overrightarrow{d}_{i-1} \hat{N}_{i}^{n}(u)$$

$$= \sum_{i \leq l-n} \overrightarrow{d}_{i} \hat{N}_{i}^{n}(u) + \sum_{i=l-n+1}^{l} (\beta_{i}^{1} \overrightarrow{d}_{i} + (1 - \beta_{i}^{1}) \overrightarrow{d}_{i-1}) \hat{N}_{i}^{n}(u)$$

$$+ \sum_{i \geq l+1} \overrightarrow{d}_{i-1} \hat{N}_{i}^{n}(u)$$

$$=: \sum_{i} \overrightarrow{d}_{i}^{1} \hat{N}_{i}^{n}(u)$$

$$= \sum_{i \leq l-n} \overrightarrow{d}_{i} \hat{N}_{i}^{n}(u) + \sum_{i=l-n+1}^{l} (\beta_{i}^{1} \overrightarrow{d}_{i} + (1 - \beta_{i}^{1}) \overrightarrow{d}_{i-1}) \hat{N}_{i}^{n}(u)$$

$$+ \sum_{i \geq l+1} \overrightarrow{d}_{i-1} \hat{N}_{i}^{n}(u)$$

$$=: \sum_{i} \overrightarrow{d}_{i}^{1} \hat{N}_{i}^{n}(u)$$

where

$$\overrightarrow{d}_{i}^{1} = \beta_{i}^{1} \overrightarrow{d}_{i} + (1 - \beta_{i}^{1}) \overrightarrow{d}_{i-1}$$

with

$$\beta_i^1 := \begin{cases} 1, & i \leq l - n \\ \frac{u_{l+1}^1 - u_i^1}{u_{l+n+1}^1 - u_i^1}, & i = l - n + 1, \dots, l \\ 0, & i \geq l + 1 \end{cases}$$

with

$$\beta_{i}^{1} := \begin{cases} 1, & i \leq l-n \\ \frac{u_{l+1}^{1} - u_{i}^{1}}{u_{i+n+1}^{1} - u_{i}^{1}} = \frac{x - u_{i}}{u_{i+n} - u_{i}}, & i = l-n+1, \dots, l \\ 0, & i \geq l+1 \end{cases}$$

with

$$\beta_i^1 := \begin{cases} 1, & i \leq I - n \\ \frac{u_{l+1}^1 - u_i^1}{u_{l+n+1}^1 - u_i^1} = \frac{x - u_i}{u_{l+n} - u_i} = \alpha_i^1, & i = I - n + 1, \dots, I \\ 0, & i \geq I + 1 \end{cases}$$

with

$$\beta_{i}^{1} := \begin{cases} 1, & i \leq l-n \\ \frac{u_{l+1}^{1} - u_{i}^{1}}{u_{i+n+1}^{1} - u_{i}^{1}} = \frac{x - u_{i}}{u_{i+n} - u_{i}} = \alpha_{i}^{1}, & i = l-n+1, \dots, l \\ 0, & i \geq l+1 \end{cases}$$

Scheme and Example

Remarks:

1) Successive refinement of the partition π , i.e., successive knot insertion \Rightarrow the successive control polygons converge towards the curve.

Remarks:

- 1) Successive refinement of the partition π , i.e., successive knot insertion \Rightarrow the successive control polygons converge towards the curve.
- 2) In practice often:

$$\overrightarrow{s}(u) = \sum_{i=0}^{m} \overrightarrow{d}_{i} N_{i}^{n}(u); \quad u \in [u_{0}, u_{m+n+1}); \quad \pi = \{u_{i}\}_{i=0}^{m+n+1}$$

Remarks:

- Successive refinement of the partition π, i.e., successive knot insertion ⇒ the successive control polygons converge towards the curve.
- 2) In practice often:

$$\overrightarrow{s}(u) = \sum_{i=0}^{m} \overrightarrow{d}_{i} N_{i}^{n}(u); \quad u \in [u_{0}, u_{m+n+1}); \quad \pi = \{u_{i}\}_{i=0}^{m+n+1}$$

where

- either $u_1 = \ldots = u_n$ and $u_{m+1} = \ldots = u_{m+n}$
- or $u_0 = u_1 = \ldots = u_n$ and $u_{m+1} = \ldots = u_{m+n} = u_{m+n+1}$

Remarks, continued:

Consequences of this choice of knots:

Remarks, continued:

Consequences of this choice of knots:

i) Property C6) of the theorem on the properties of B–Spline curves $\Rightarrow \overrightarrow{s}(u_1) = \overrightarrow{s}(u_{m+1}) =$

Remarks, continued:

Consequences of this choice of knots:

i) Property C6) of the theorem on the properties of B–Spline curves $\Rightarrow \overrightarrow{s}(u_1) = \overrightarrow{d}_0$, $\overrightarrow{s}(u_{m+1}) = \overrightarrow{d}_m$

Remarks, continued:

Consequences of this choice of knots:

i) Property C6) of the theorem on the properties of B–Spline curves $\Rightarrow \overrightarrow{s}(u_1) = \overrightarrow{d}_0$, $\overrightarrow{s}(u_{m+1}) = \overrightarrow{d}_m$

$$N_0^n(u)|_{u \in [u_n, u_{n+1})} =$$

$$N_m^n(u)|_{u \in [u_m, u_{m+1})} =$$

Remarks, continued:

Consequences of this choice of knots:

i) Property C6) of the theorem on the properties of B–Spline curves $\Rightarrow \overrightarrow{s}(u_1) = \overrightarrow{d}_0$, $\overrightarrow{s}(u_{m+1}) = \overrightarrow{d}_m$

$$N_0^n(u)|_{u \in [u_n, u_{n+1})} = B_0^n(\frac{u - u_n}{u_{n+1} - u_n})$$

$$N_m^n(u)|_{u \in [u_m, u_{m+1})} = B_n^n(\frac{u - u_m}{u_{m+1} - u_m})$$

Remarks, continued:

Consequences of this choice of knots:

i) Property C6) of the theorem on the properties of B–Spline curves $\Rightarrow \overrightarrow{s}(u_1) = \overrightarrow{d}_0$, $\overrightarrow{s}(u_{m+1}) = \overrightarrow{d}_m$

$$N_0^n(u)|_{u \in [u_n, u_{n+1})} = B_0^n(\frac{u - u_n}{u_{n+1} - u_n})$$

$$N_m^n(u)|_{u \in [u_m, u_{m+1})} = B_n^n(\frac{u - u_m}{u_{m+1} - u_m})$$

iii)
$$(D_0D_1)\dots$$

 $(D_{m-1}D_m)\dots$

Remarks, continued:

Consequences of this choice of knots:

i) Property C6) of the theorem on the properties of B–Spline curves $\Rightarrow \overrightarrow{s}(u_1) = \overrightarrow{d}_0$, $\overrightarrow{s}(u_{m+1}) = \overrightarrow{d}_m$

$$N_0^n(u)|_{u \in [u_n, u_{n+1})} = B_0^n(\frac{u - u_n}{u_{n+1} - u_n})$$

$$N_m^n(u)|_{u \in [u_m, u_{m+1})} = B_n^n(\frac{u - u_m}{u_{m+1} - u_m})$$

iii)
$$(D_0D_1)\dots$$
 tangent of $\overrightarrow{s}(u)$ in D_0
 $(D_{m-1}D_m)\dots$

Remarks, continued:

Consequences of this choice of knots:

i) Property C6) of the theorem on the properties of B–Spline curves $\Rightarrow \overrightarrow{s}(u_1) = \overrightarrow{d}_0$, $\overrightarrow{s}(u_{m+1}) = \overrightarrow{d}_m$

ii)

$$\begin{array}{lcl} N_0^n(u)|_{u\in[u_n,u_{n+1})} & = & B_0^n(\frac{u-u_n}{u_{n+1}-u_n}) \\ N_m^n(u)|_{u\in[u_m,u_{m+1})} & = & B_n^n(\frac{u-u_m}{u_{m+1}-u_m}) \end{array}$$

iii) $(D_0D_1)\dots$ tangent of $\overrightarrow{s}(u)$ in D_0 $(D_{m-1}D_m)\dots$ tangent of $\overrightarrow{s}(u)$ in D_m

Remarks, continued:

$$\overrightarrow{s}(u) = \sum_{i} \overrightarrow{d}_{i} N_{i}^{n}(u); \quad \pi = \{u_{i}\}_{i=-\infty}^{\infty}$$

Remarks, continued:

3)

$$\overrightarrow{s}(u) = \sum_{i} \overrightarrow{d}_{i} N_{i}^{n}(u); \quad \pi = \{u_{i}\}_{i=-\infty}^{\infty}$$

Remarks, continued:

3)

$$\overrightarrow{s}(u) = \sum_{i} \overrightarrow{d}_{i} N_{i}^{n}(u); \quad \pi = \{u_{i}\}_{i=-\infty}^{\infty}$$

Increasing the multiplicities of the knots u_i to n has the following consequences:

de Boor points = Bézier points

Remarks, continued:

3)

$$\overrightarrow{s}(u) = \sum_{i} \overrightarrow{d}_{i} N_{i}^{n}(u); \quad \pi = \{u_{i}\}_{i=-\infty}^{\infty}$$

- de Boor points = Bézier points
- B-Spline curve = Bézier curve (composition of Bézier segments)

Remarks, continued:

3)

$$\overrightarrow{s}(u) = \sum_{i} \overrightarrow{d}_{i} N_{i}^{n}(u); \quad \pi = \{u_{i}\}_{i=-\infty}^{\infty}$$

- de Boor points = Bézier points
- B–Spline curve = Bézier curve (composition of Bézier segments)
- de Boor algorithm = de Casteljau algorithm

Remarks, continued:

3)

$$\overrightarrow{s}(u) = \sum_{i} \overrightarrow{d}_{i} N_{i}^{n}(u); \quad \pi = \{u_{i}\}_{i=-\infty}^{\infty}$$

- de Boor points = Bézier points
- B-Spline curve = Bézier curve (composition of Bézier segments)
- de Boor algorithm = de Casteljau algorithm
- variation diminishing property for B-Spline curves (property C5) of the theorem on the properties of B-Spline curves)