

Introduction to Geometric Modeling

Computer graphics is rooted in the ability to mathematically describe reality.

CG & Modeling

- Editing a shape/scene
 - Easy/Intuitive
 - fast
- Visualize a shape/scene
 - Fast

Geometric Primitives

- > 0 dimension: points
- ▶1 dimension: lines/curves
- >2 dimension: mesh/surfaces
- >3 dimension: volumes

Representation:

There are many ways to describe geometry:

- Implicit
- Explicit, Parametric

Points: implicit representation

Points x are defined by an implicit function g(x) such that

$$\emptyset(x) = 0$$
 (isocontour)

Interface (points)

$$\partial \Omega = \{-1,1\}$$

In 1D, the interface is a point which split R into two subdomains (pos. e neg.)

Curve: implicit representation

- The curve is described by the set of points (x,y) which satisfy $\emptyset(x,y) = 0$ (isocontour)
- Example:

$$\emptyset(x,y) = x^2 + y^2 - 1.$$

Interface (curve) $\partial \Omega = \{x/||x|| = 1\}$

In 2D, the interface is a curve which separates R² into two subdomains.

Gradient of an implicit function

$$\nabla \phi(x,y) = \left(\frac{\partial \phi}{\partial x}, \frac{\partial \phi}{\partial y}\right)$$

- The gradient is perpendicular to the isolevels
- The gradient has the direction of the outward normal N of the interface $\nabla \phi$

$$\vec{V} = \frac{\nabla \phi}{|\nabla \phi|}$$

Explicit Representation

- Point: represented by its 2D/3D coords
- Curve: explicitly define points on it

Curve: defined by moving a point in space with 1 degree of freedom

1) Function Representation

Most familiar form of curve in 2D

$$y=f(x)$$

2) Parametric Equation

Curves: function representation

- Cannot represent all curves
- Vertical lines
- Circles

-Single-valued,
-no transformations

Curve: parametric form

A parametric curve in space is a vector function C(t)=(x(t),y(t),z(t)) of the parameter $t \in [a,b]$ Upon variation of t, the coordinates (x(t), y(t), z(t)) represent a point that moves on the curve.

In geometric modeling curves and surfaces are described in parametric form

Tangent vector

 $C(t)=(x(t),y(t)), t \in [0,1]$ parametric domain

point motion speed on the curve :

derivatives at t C'(t)=(x'(t),y'(t))

Example

Parametric Curve of degree n (n=3)

$$C(t) = \begin{pmatrix} x(t) \\ y(t) \end{pmatrix} = \begin{pmatrix} 6 \\ 0 \end{pmatrix} t + \begin{pmatrix} -9 \\ -3 \end{pmatrix} t^2 + \begin{pmatrix} 4 \\ 4 \end{pmatrix} t^3$$

Derivative of a parametric curve (hodograph)

$$C'(t) = \begin{pmatrix} x'(t) \\ y'(t) \end{pmatrix} = \begin{pmatrix} 6 \\ 0 \end{pmatrix} + \begin{pmatrix} -18 \\ -6 \end{pmatrix} t + \begin{pmatrix} 12 \\ 12 \end{pmatrix} t^2$$

It 's a parametric curve of degree n-1

Function curves are special cases of parametric curves

$$y = f(x) \Leftrightarrow C(t) = \begin{pmatrix} x(t) \\ y(t) \end{pmatrix} = \begin{pmatrix} t \\ f(t) \end{pmatrix}$$

From parametric to implicit curves f(x,y)=0

$$C(t) = \begin{pmatrix} x(t) = x0 + t(x1 - x0) \\ y(t) = y0 + t(y1 - y0) \end{pmatrix} = \begin{pmatrix} t = \frac{x - x0}{x1 - x0} \\ t = \frac{y - y0}{y1 - y0} \end{pmatrix}$$

$$\Rightarrow \frac{x - x0}{x1 - x0} = \frac{y - y0}{y1 - y0}$$

Parametric form

Line

$$C(t) = P_0 + tv, \quad t \in (0, +\infty)$$

Segment: parametric form

$$C(t)=P_0+t(P_1-P_0)$$
, t in [0,1]

Circle: parametric form

Upon variation of t, the coordinates (x(t),y(t)) represent a point that moves on the circle.

Both parametric forms represent the unit circle:

What, then, do they differ?

The parameterization, the motion of the point is different even if the path (the curve) is the same.

Physical model: a particle moving in time.

At each instant t, the position of the particle is (x(t), y(t), z(t)); two paths (curves) may be identical even if the velocity (parameterization) is different.

3D Geometric Primitives

≥2D/3D polygons

In 3D: poly must be planar!

Polygonal mesh

Set of edges, vertices and faces connected in such a way that: each edge is shared by at most two adjacent faces, one side connects two vertices, the faces are sequences of closed sides, a vertex is shared by at least two sides.

Limits of Polygonal Meshes

- flat facets
- fixed resolution
- difficult editing
- no natural parameterization

- Explicit / Implicit

Smooth Surfaces - Naturally curved

- Closed / open
- Defined by control points /curves / interpolation / approximation

- planes

- Bézier Patch
- Spline Surfaces/NURBS

Surface: implicit representation

• Implicit surfaces represent a surface as a particular isocontour of a higher dimensional embedding function on $\Re^3 \phi(x,y,z)=0$

E.g., unit sphere is all points x such that $x^2+y^2+z^2=1$

• The inside region Ω -,the outside region is Ω +, and the surface $\partial\Omega$ are all defined by the function:

 $\phi(x,y,z) < 0$ inside $\phi(x,y,z) > 0$ outside $\phi(x,y,z) = 0$ on

Types of Implicit Surfaces

- Polynomial or Algebraic
- Non polynomial or Transcendental
 - Exponential, trigonometric, etc.
- Computational
 - Interpolation:
 - Generate surfaces that interpolate boundary points
 - PDEs

$$|\nabla d(x)| = 1, \quad d(x) = 0, \quad x \in S$$

Surfaces:

Explicit representation

a) function form z = f(x, y)

z is the high of the point on the plane (x, y):

- single-valued
- No vertical tangent planes
- No changes

- Extend parametric curves
- Parametric variables u and v

$$f: \mathbb{R}^2 \to \mathbb{R}^3; \quad (u, v) \to (x(u, v), y(u, v), z(u, v))$$

Parametric Surface

Derivatives

The two tangent vectors define a tangent plane at (u,v) To calculate the normal to the surface at a point (u,v), we compute the two tangents in this point and evaluate their cross product (normalized)

$$\mathbf{n}^* = \frac{\partial \mathbf{x}}{\partial u} \times \frac{\partial \mathbf{x}}{\partial v}$$

$$\mathbf{n} = \frac{\mathbf{n}^*}{\left|\mathbf{n}^*\right|}$$

Useful to understand what is the outer side of a face

Continuity

- C⁰ curves/surfaces
 - without holes
 - "watertight"
- C¹ curves/surfaces
 - with continuous derivatives
 - "smooth, no faced"
- C² curves/surfaces
 - with continuous second derivatives
 - Important for shading and CAD/CAM

Visual surface analysis

Visually evaluates surface smoothness and continuity using a stripe map

- Position continuity G⁰⁼ C⁰
- If the stripes have kinks or jump sideways as they cross the connection from one surface to the next
- Tangent continuity G¹
- If the stripes line up as they cross the connection but turn sharply at the connection, the position and tangency between the surfaces match
- Curvature continuity G²
- If the stripes match and continue smoothly over the connection, this means that the position, tangency, and curvature between the surfaces

Surfaces: Explicit vs. Implicit form

- Evaluation:
 - (I) Grid vs. (E) explicit evaluation
- □ Classification of points as inside/outside to a given interface:
 - (I) check the sign of $\emptyset(x)$
 - (E) no easy for explicit form
- □ Boolean Operation
 - (I) easy
 - (E) no easy for explicit form
- □ Editing

Implicit: Evaluation

Implicit: Classification

Check if this point is inside the unit sphere

How about the point (3/4, 1/2, 1/4)?

Implicit surfaces make other tasks easy (like inside/outside tests).

Sampling an explicit surface

My surface is f(u, v) = (1.23, u, v).

Just plug in any values (u,v)!

Explicit surfaces make some tasks easy (like sampling).

Explicit

Check if this point is inside the torus

My surface is $f(u,v) = (2+\cos(u))\cos(v), 2+\cos(u))\sin(v), \sin(u)$ How about the point $(1,\sqrt{3},5/4)$? \uparrow y

Explicit surfaces make other tasks hard (like inside/outside tests).

Detect changes in topology

Implicit surfaces are good for handling complicated surfaces

like water

whereas a triangle representation has issues with editing, merging and pinching, overturning waves, etc.

Implicit: Boolean Operations

UNION DIFFERENCE

 $A \cup B \quad min(\phi_A(x), \phi_B(x))$ INTERSECTION $A \cap B$ $max(\phi_A(x), \phi_B(x))$ $A-B \quad max(\phi_A(x), -\phi_B(x))$

Create complex objects using boolean operators on simple objects

Difference A - B

Union

what's the best way to encode geometry on a computer?

Some representations work better than others—depends on the task!

Useful Resources

There are many <u>modeling programs</u> that are designed to help you create and modify models

- <u>Blender(free)</u>
- SketchUp(free)
- Meshlab(free)

Other modeling programs include Autodesk 3DSMax, Maya, Rhinoceros, AutoCAD, Lightwave, Bryce, Hexagon, etc.

Model Database

- Aim@Shape
- Archive3D (everyday objects, e.g., desks, chairs, sofa, etc)
- GrabCAD (mechanical objects, e.g., robots, planes, cars, warships, etc)
- •<u>TurboSquid</u> (largest model database in the world, but only part of them are free)
- •3DWarehouse (architecture, e.g. buildings, bridges, furniture, etc.)

Serena Morigi

Dipartimento di Matematica

serena.morigi@unibo.it

http://www.dm.unibo.it/~morigi