
Geometric Modeling:

curves

▪ Bézier Curves

▪ Spline Curves

▪ NURBS

▪ Subdivision curve

How to represent a

‘free form’?

C(t): Curve which interpolates endpoints (0,1) and (1,0)

tangent at x-y axes in (0,1) and (1,0).

Parametric Form:

a,b,c coefficient vectors

Rewrite as:

2()C t at bt c= + +

2
() 1 2 1

()
() 1 0 0

x t
C t t t

y t

−       
= = + +       
       

2 2
1 0 0

() (1) (1)2
0 0 1

C t t t t t
     

= − + − +     
     

The coefficients have a geometric interpretation:

(1,0),(0,0),(0,1) are defined control points. When these

points are connected in the order of their numbering with

straight lines they form the control polygon which

approximates the curve shape.

This curve is defined Bézier curve (P. Bézier).

P0P1

P2
2 2

0 1 2() (1) 2 (1)C t P t P t t P t= − + − +

Advantages in the new

representation form?

Bézier curves of degree 2

Moving the control points gives the user an intuitive

sense of how change/control the shape of the curve

2 2

0 1 2() (1) 2 (1)C t P t P t t P t= − + − +

Bézier Curves

0

() ()
n

n

i i

i

C t PB t
=

=

A Bézier curve of degree n (order m=n+1)

in parametric form is defined by an ordered

sequence of points Pi i=0,..,n,

in d-dimensional space Rd, for d=2,3,4:

where

are Bernstein Basis Functions.

Pierre Étienne Bézier

an engineer at Renault

(1910-1999)

nitt
i

n
tB inin

i ,..,0,)1()(=−









= −

Pi are called control points and the polygon joining

these points is called Control Polygon

Bézier curves of degree n

In R2 , given the control points Pi=(xi,yi)

a Bézier curve is a parametric planar

curve expressed in the Bernstein basis.

Degree n=1

Degree n=2
Degree n=5

0

0

()
()

() (), ()
()

()

n
n

i i

i

nn
n

i i

i

x B t
x t

C t x t y t P
y t

y B t

=

=

 
 

   = =  
  
 
 





Evaluation of a Bézier Curve

• Find the exact values of C(t) for a given value of t.

• Several ways to represent mathematically a
Bézier curve:

– By Bernstein Polynomial basis

– Matrix Form

– de Casteljau Algorithm (linear interpolation)

Bernstein Polynomials

   niin

i

n

i xtB 00
)(==

)!(!

!
,..,0,)1()(

ini

n

i

n
nitt

i

n
tB inin

i
−

=







=−








= −

Bernstein Polynomials are scalar-valued functions of degree n

in the interval [0,1], for

Basis for the linear space of polynomial Pn of degree at

most n

Bernstein Poly of degree 1:

ttBttB =−=)(,1)(1

1

1

0

0 1t 

Bernstein Polynomials

Bernstein Polynomials of degree 2:

Bernstein Polynomials of degree 3:

22

2

2

1

22

0),1(2)(,)1()(tBtttBttB =−=−=

33

3

23

2

23

1

33

0

)(),1(3

,)1(3)(,)1()(

ttBttB

tttBttB

=−=

−=−=

Bernstein Polynomials
of degree n over Arbitrary Parameter Intervals [a,b]

)()1(

)(

))(())((

))(()(

)(

]1,0[],[

,..,0,
)(

)()(
)(

tBtt
i

n

ab

aabtaabtab

i

n

abtaBxB

abtax

tbax

ni
ab

axxb

i

n
xB

n

i

iin

n

iin

n

i

n

i

n

iin
n

i

=−







=

−

−−+−−−








=

=−+=

−+=

→

=
−

−−








=

−

−

−

Poly are translation and scaling invariant

Invariant under an affine reparametrization, or parameter transformation

Polynomial representation using

Bernstein basis

 1,0)()(
0

=
=

ttBbtf
n

i

n

ii

 baxxBbxf
n

i

n

ii ,)()(
0

=
=

The change of variable does not alterate the coefficients.

To evaluate f(x) at x=x, first determine t=(x-a)/(b-a)

then evaluate f(t), finally f(x)=f(t)

Bernstein Polynomials:

PROPERTIES

,0)(tBn

i

P1) They take on positive values in the interval [0,1]

P2) They are a partition of unity

If P2) holds, then for each set of points P0,P1,..,Pn, and for

each t, the formula

is an affine combination of the set of points;

moreover, if t belongs to [0,1], then

P1) holds and f(t) is a convex combination of the points.

0
() 1, [0,1]

n n

ii
B t t

=
= 

n n n

n n
f (t) P B (t) P B (t) ... P B (t)= + + +

0 0 1 1

1 () 0,n

iB t 

Conversion to the power basis

1

1

() (1) ,

(),i

n
n k i k

i

k i

n
n

i

k i

n k
B t t

k i

k n
t B t

i i

−

=

−

= −

  
= −   

  

  
=   

  





i
n

i

i

n

i

n

i

i tatBctf 
==

==
00

)()(

   2

0
1, , ,..., ,

n
n n

i
i

t t t B
=

Bernstein polynomial in

matrix form
A polynomial is a linear combination of Bernstein basis

functions:

Using the representation in

power basis functions:

0

1

0 1() () () ... ()
...

n n n

n

n

c

c
f t B t B t B t

c

 
 
  =    
 
 

0 0 1 1() () () ...n n n

n nf t c B t c B t c B= + + +

00 0

10 11 12

0 1

0 0 0

... 0
() 1 ...

... 0 ...

...

n

n n nn n

b c

b b c
f t t t t

b b b c

   
   
    =      
   
   

Example

Bernstein polynomial of degree 2:

In fact:

2 2 2

0 0 1 1 2 2() () ()f t c B t c B t c B= + +

0

2

1

2

0

2 2

1

2

1 0 0

() 1 2 2 0

1 2 1

() [(1) 2 (1)]

c

f t t t c

c

c

f t t t t t c

c

   
    = −     

−      

 
 = − −
 
  

Bézier Curve in R3

in matrix form

• C(t)=[x(t) y(t) z(t)]

• P = (Px,Py,Pz) vector of control points,

• M matrix of basis conversion

• T=[1 t t2 t3 ... tn]

x(t)= T • M • Px

y(t)= T• M • Py

z(t)= T• M • Pz

Bézier Curve in R3

in matrix form

0 0 0

1 1 12 3

2 2 2

3 3 3

1 0 0 0

3 3 0 0
() 1

3 6 3 0

1 3 3 1

x y z

x y z

x y z

x y z

p p p

p p p
C t t t t

p p p

p p p

  
  

−    =      −
  

− −     

Example: cubic curve, n=3

4 control points P=[P0 P1 P2 P3]

C(t)=T• M• P

M matrix of basis conversion

Derivatives of a Bézier curve

3 3 3 3

0 0 1 1 2 2 3 3
3 2 2 3

0 1 2 3

() () () () ()

(1) 3(1) 3(1)

C t B t P B t P B t P B t P

t P t t P t t P t P

= + + +

= − + − + − +

Cubic curve (n=3).

It’s a vector function of 2 or 3 cubic poly components,

compute the derivatives of each components:

2 2 2 2

0 1 1 2 2 3

2 2

1 0 2 1 3 2

2 2 2

0 1 0 1 2 1 2 3 2

()
3(1) 6(1) 3(1) 3 6(1) 3

()
3(1) () 6(1) () 3 ()

3 ()() 3 () 3 ()

dC t
t P t t P t P t P t tP t P

dt
dC t

t P P t t P P t P P
dt

B t P P B P P B P P

= − − − − + − − + − +

= − − + − − + −

= − + − + −

It’s a Bézier curve of degree 2

Derivatives of a Bézier curve of

degree n

1
1

0

1

()
'() ()

: ()

n
n

i i

i

i i i

dC t
C t n P B t

dt

P P P

−
−

=

+

= = 

 = −



The first derivative

The first derivative of a Bézier curve is itself a Bézier curve

of degree decreased by one,

and CP the vectors

The r-th derivative

where ()
0

1 1 0

1

!
() ()

()!

: :

n r
r r n r

i i

i

r r r

i i i i i

n
C t P B t

n r

P P P P P

−
−

=

− −

+

= 
−

 =  −  =



Tangents

• The derivative of a curve represents the tangent

vector to the curve at some point

• The control polygon of C(t) is tangent to the

curve at the beginning and end of the curve

()
dC

t
dt()C t

2 2

1 0 2 1 3 2

1 0 3 2

()
'() 3(1) () 6(1) () 3 ()

'(0) 3() '(1) 3()

dC t
C t t P P t t P P t P P

dt
C P P C P P

= = − − + − − + −

 = − = −

Excercise

A degree n=3 Bézier curve in R2 satisfies

C(0)=(0,1), C(1)=(3,0)

C’(0)=(3,3), C’(1)=(-3,0)

What are the control points for this curve?

Give a rough freehand sketch of the curve, being

sure to show the slopes at the beginning and

end of the curve clearly.

Properties of a Bézier curve

Moving a control point modifies

the shape of the curve.

P1

P1’▪ Shape Control

Properties of a Bézier curve

• The curve interpolates only its first and last control

points

• It’s variation diminishing (without undesired

oscillations) it has no more intersections with a line

than its control polygon

0(0) (1) nC P C P= =

3 2 2 3

0 1 2 3

0 3

() (1) 3(1) 3(1)

0 (0) 1 (1)

C t t P t t P t t P t P

t C P t C P

= − + − + − +

= = = =

Properties of a Bézier curve

• It’s invariant under an affine transformation
(translation, rotation, scaling, or shear): apply an
affine transformation to the control points and
then evaluate the curve represented by these
transformed control points at ti, is the same as
apply an affine transformation to the point C(ti)

• The curve is smooth with smooth derivatives

• The curve is tangent at the first and last control
points, to the first and last line segments of the
control polygon.

Properties of a Bézier curve

• The curve is contained into the convex hull of

the control points, that is inside the smallest

polygon formed by its control points

A convex hull is the smallest convex set that

contains a given set

All points on a Bézier curve lie within the convex

hull of the control polygon.

p0

p1

p2

p3

Convex hull

Properties of a Bézier curve

• Linear Precision: when all the control

points lie on a line, then the Bézier curve

is the segment line interpolating the points.

(from convex hull property)

Bézier Curve Evaluation

Compute the value f(t)

for a given parameter value t

p0

p1

p2

p3

f(t)
•

de Casteljau’s Algorithm

• Given a parameter value t, evaluate the
poly value f(t) by geometric construction

• Apply the algorithm to each curve
component (x(t),y(t),z(t))

• Plot the curve by means of a sequence of
recursive linear interpolations

Linear Interpolation (Lerp)

• Linear interpolation (Lerp) compute a value inbetween

two values

• A value could be a scalar number, a vector, a color,..

• The linear interpolant between points a and b with

parameter t is given by

() () baba tttLerp +−= 1,,

a

b

t=1

.

. 0<t<1
t=0

de Casteljau’s Algorithm

Given t evaluate C(t)

Consider a cubic Bézier curve, a similar
construction applies to Bézier curves of any
degree)

• Let’s start with

– Control points (A cubic Bézier curve has 4 CP)

– A parameter value t (ex. t=0.4)

p0

p1

p2

p3

de Casteljau’s Algorithm

p0

p1
0

p1

p2

p3

p1
2

()
()
()

1

0 0 1

1

1 1 2

1

2 2 3

, ,

, ,

, ,

p Lerp t

p Lerp t

p Lerp t

=

=

=

p p

p p

p p

Step 1 p1
1

()
()

1

2 1 1

0 0 1

2 1 1

1 2

, ,

, ,

p Lerp t p p

p Lerp t p p

=

=

Step 2 p1
0

p1
2

p1
1

p2
0

p2
1

de Casteljau’s Algorithm

p2
1

p2
0
•

()3 2 2

0 0 1, ,p Lerp t p p=

p0
3 is the value of the Bézier curve f(0.4)

Step 3
p0

3

de Casteljau’s Algorithm

Bézier Curve

C(0.4)
•

p0

p1

p2

p3

Repeating this process for other values of t in [0,1]

generates a sequence of points that define the curve.

A similar construction applies to Bézier curve of degree

n, by simply applying n-1 recursive Lerp steps.

de Casteljau’s Algorithm

point on the curve

0

1 1

1

0

: ,

()

1,..,

0,..,

() (1) () ()

() ()

i

i i

i i i

j j j

n

input p t

p t p

for i n

for j n i

p t t p t tp t

end

end

f t p t

− −

+

=

=

= −

= − +

=

n degree of the curve

pi control points i=0,..,n

t evaluation parameter

de Casteljau’s Algorithm

Recursive linear interpolation

()
()
()

1

0 0 1

1

1 1 2

1

2 2 3

, ,

, ,

, ,

p Lerp t

p Lerp t

p Lerp t

=

=

=

p p

p p

p p

()
()

2 1 1

0 0 1

2 1 1

1 1 2

, ,

, ,

p Lerp t p p

p Lerp t p p

=

=
()3 2 2

0 0 1, ,p Lerp t p p=

3

2

1

0

p

p

p

p

To prove it, let’s expand the Lerp

() ()
() ()
() ()

() () ()() ()()
() () ()() ()()

() () () ()() ()

1

0 0 1 0 1

1

1 1 2 1 2

1

2 2 3 2 3

2 1 1

0 0 1 0 1 1 2

2 1 1

1 1 2 1 2 2 3

3 2 2

0 0 1 0 1 1

, , 1

, , 1

, , 1

, , 1 1 1

, , 1 1 1

, , 1 1 1 1

p Lerp t t t

p Lerp t t t

p Lerp t t t

p Lerp t p p t t t t t t

p Lerp t p p t t t t t t

p Lerp t p p t t t t t t t

= = − +

= = − +

= = − +

= = − − + + − +

= = − − + + − +

= = − − − + + − +

p p p p

p p p p

p p p p

p p p p

p p p p

p p p p()()
() ()() ()()()

2

1 2 2 31 1 1t t t t t t t+ − − + + − +p p p p

This reduces to a Bézier curve in

Bernstein basis form

() () ()() ()()()
() ()() ()()()

() () ()

() () () ()

0 1 1 2

1 2 2 3

3 2 2 3

0 1 2 3

3 3 3 3

0 0 1 1 2 2 3 3

() 1 1 1 1

1 1 1

() 1 3 1 3 1

()

f t t t t t t t t

t t t t t t t

f t t t t t t t

f t B t B t B t B t

= − − − + + − +

+ − − + + − +

= − + − + − +

= + + +

p p p p

p p p p

p p p p

p p p p

Bézier curve in

Bernstein basis form

() ()
() ()

() () () ()

()
()
()
()

3 2 3 2

0 1

3 2 3

2 3

3 3 3 3

0 0 1 1 2 2 3 3

3 3 2

0

3 3 2

1

3 3 2

2

3 3

3

() 3 3 1 3 6 3

3 3

()

3 3 1

3 6 3

3 3

f t t t t t t t

t t t

f t B t B t B t B t

B t t t t

B t t t t

B t t t

B t t

= − + − + + − +

+ − + +

= + + +

= − + − +

= − +

= − +

=

p p

p p

p p p p

Curve Subdivision

It’s the process of splitting a single Bézier curve of degree n

into two subcurves of the degree n. de Casteljau’s algorithm

is used to perform the splitting.

Good for:

-Refinement

-Curve/curve

intersection

t0

C(t0)

Subdivide a Bézier curve at t by

applying de Casteljau’s method

p0

p1 p2

p3

p2
0

p1
0

p0
3

p2
1

p1
2

p1
1

•

•

•

Subdivide the curve C(t) defined in [0,1]

at t=t0, by applying the

de Casteljau’s algorithm.

We get the two subcurves:

C1 in [0,t0] and

C2 in [t0,1] such that:

C1(t)=C(t*t0)

C2(t)=C(t0+(1-t0)t)

Ex. Subdivide a cubic curve at t=0.5

by applying de Casteljau’s method

C(0.5)

p0

p1 p2

p3

 

()

()

()

()

()

0 1 2 3

1

0 0 1 0 1

1

1 1 2 1 2

1

2 2 3 2 3

2 1 1

0 0 1 0 1 1 2 0 1 2

2 1 1

1 1 2 1 2 2

, , ,

1 1
, ,

2 2
1 1

, ,
2 2
1 1

, ,
2 2

1 1 1 1 1 1 1 1 1
, ,

2 2 2 2 2 2 4 2 4

1 1 1 1 1
, ,

2 2 2 2 2

CP

p Lerp t

p Lerp t

p Lerp t

p Lerp t p p

p Lerp t p p

=

= = +

= = +

= = +

   
= = + + + = + +   

   

 
= = + + + 

 

p p p p

p p p p

p p p p

p p p p

p p p p p p p

p p p

()

3 1 2 3

3 2 2

0 0 1 0 1 1 2

1 2 2 3 0 1 2 3

1 1 1 1

2 4 2 4

1 1 1 1 1 1 1
, ,

2 2 2 2 2 2 2

1 1 1 1 1 1 1 1 3 3 1

2 2 2 2 2 2 2 8 8 8 8

p Lerp t p p

 
= + + 

 

    
= = + + +    

    

    
+ + + + = + +    

    

p p p p

p p p p

p p p p p p p p

p1
0

p0
3

p2
1

p1
2

p1
1

•

•

•

p2
0

Subdivision: matrix form

02 3

1 1

2

3

0

2 3

1

2

3

2 3

1 0 0 0

3 3 0 0
() 1

3 6 3 02 2 2

1 3 3 1

1 0 0 0 1 0 0 0

0 1/ 2 0 0 3 3 0 0
1

0 0 1/ 4 0 3 6 3 0

0 0 0 1/ 8 1 3 3 1

1

P
t t t

C t P

P

P

P

t t t P

P

P

t t t

 
 

 
   −       =         −       
 

 − − 
 

 
   

 
   

−  
    = =      −  
   

 − −   
 

 =  

0

1

2

3

P

P
SM

P

P

 
 
 
 
 
 

Curve in [0,1/2]

C(t)=C(t/2)

Subdivision: matrix form

0

12 3 1

1

2

3

1

[0,1/2]

1 [0,1/2] [0,1/2]

() 1

1 0 0 0

1 / 2 1 / 2 0 0

1 / 4 1 / 2 1 / 4 0

1 / 8 3 / 8 3 / 8 1 / 8

()

P

P
C t t t t MM SM

P

P

S M S M

C t TMS P BS P

−

−

 
 
  =    
 
 

 
 
 = =
 
 
 

= =

The subcurve is represented in Bernstein basis

form [0,1/2]:

T  M =B

Subdivision: matrix form

1 [0,1/2]

0

0
0 1

1

[0,1/2]

2 0 1 2

3

0 1 2 3

()

1 11 0 0 0

2 21 / 2 1 / 2 0 0
1 1 1

1 / 4 1 / 2 1 / 4 0
4 2 4

1 / 8 3 / 8 3 / 8 1 / 8
1 3 3 1

8 8 8 8

new

new

C t B S P B P

P

P P P
P

P S P
P P P P

P

P P P P

= =

 
 

    +
    
    = = =
   + + 
    

     
+ + +  

In a similar way for the second subcurve in [1/2,1]

we get CP of the new subcurve C2(t)=C(1/2+(1-1/2)/2)

S[0,1/2] is a subdivision matrix applied to

the original CP to produce the CP of

the new subcurve

Rendering a Bézier curve

Draw a Bézier curve as a series of straight

line segments

• Uniform method

Discretize the parametric interval into N

equidistant points, then plot the polygonal joining

corresponding evaluated points on the curve

• Adaptive Subdivision method

Adaptive subdivision:

main idea
l(u) with CP={l0, l1, l2, l3} and r(u) with CP={r0, r1, r2, r3}

have a convex hull that is closer to C(u) than the convex

hull of C(u) defined by the CP {p0, p1, p2, p3}

The red polyline from l0 to l3 (= r0) to r3 is an approximation

to C(u). Repeating recursively we get better approximations.

Adaptive Subdivision Method

It’s an optimization rendering method based on adaptive
subdivisions of the curve: break a curve into smaller an
smaller subcurves until each subcurve is sufficiently close to
being a straight line, so that rendering the subcurves as
straight lines gives adequate results.

Flat test for a subcurve:

For every internal CP compute distance d to the chord

If both d2 and d3 are less of a given tolerance Tol>0, the
subcurve is considered flat, and it is approximated by the
straight line P1P4

d2
d3

P1

P4
P2

P3

Iterate:

Apply FlatTest to C(t)

OK: Draw the segment between the curve CPend-points

KO: Subdivide the curve C(t) into 2 halves (t=0.5)

Apply FlatTest to C1(t) and C2(t)

(the two generated subcurves).

Stopping criterium: all the subcurve segments are flat

Bézier curves: limits

• Local Control vs. Global
Control

• One would the degree of the
curve to be independent on
the number of control points

Bézier curves may be
joined end-to-end to form a
composite curve

Connecting Bézier curves

• How to impose continuity/

discontinuity at the joints?

1) Piecewise Bézier curves

Piecewise polynomial,

geometric relationship of

the CP adjacent to the

joints determines the

continuity conditions

2) Polynomial Spline

Piecewise polynomial

with given regularity

conditions at the joints

Piecewise Bézier curves

Definition:

Let t0<t1<.. <tk be a partition of [t0,tk]. A composite Bézier

curve of degree n is a piecewise Bézier curve, where

each curve segment Ci(t) on the interval [ti,ti+1] (i=0,..,k-1)

corresponds to a Bézier curve of degree n :

* 1

0 1

() () () [,)
n

n i
i n i j j i i

j i i

t t
C t C t P B t t t

t t
+ +

= +

−
= = 

−


Piecewise

Bézier
single

Bézier

!! Only C0 continuity is naturally satisfied

Parametric and Geometry

Continuity
• C0 = continuous

The joint can be a sharp kink

• C1 = parametric continuity

Tangents are the same at the joint

• G1 = geometric continuity

Tangents have the same directions

• C2 = curvature continuity

Tangents and their derivatives are the

same

Parametric Continuity C1

"A curve is C0 if it can be

drawn without lifting the pen

off the paper sheet”

If the derived curve is

continuous then the curve is

also C1

The parametric continuity ensures that only the motion of

the particle moving along the curve is continuous, i.e. there

are no sudden jumps in speed, it does not say that the path

(the curve) is smooth.

Example: straight line with velocity jump. Is not C1, but the

curve is certainly smooth

Geometry Continuity G1

If the direction tangent to a parametric curve varies in a

continuous manner then it is continuous G1

Its magnitude can also have discontinuous jumps, but the

curve is still G1. Then the particle moving along the curve

varies its speed to rush but still along a continuous curve if

its direction continuously changes.

Geometry continuity between

two curves

▪Parametric Continuity C1

The directions v1, v2 and modules of the tangent vectors of

the two curve segments in the contact point are equal

▪Geometry Continuity G1:
The directions v1, v2 of the tangent vectors of the two curve

segments in the contact point are equal

In general C1 implies G1, the reverse is not true in general

0,21 = kvkv

Example: 4 pieces of curves

Connecting two Bézier curves

• Consider two Bézier curves defined by p0…p3 and v0…v3

• If p3=v0, then they will have C0 continuity

• If (p3-p2)=(v1-v0), then they will have C1 continuity

• C2 continuity is more difficult…

p0

p0

p1

p2

P3

P3

p2

p1

v0

v1

v2

v3

v3

v2

v1

v0

C0 C1

Bézier curves with G1 –CONTINUITY

Two curves join at one end-point and have

tangent vectors at that point with same direction.

CPs on the common tangent vectors are collinear.

Less severe than the C1-Continuity condition.

C0=G0

* 1

0 1

1
1 *(1) 1 2

0 2 1

(1) (1)

1

0 1 1

1 1

1

() (); [,]

() (); [,]

1 1
; 0,..,

,

:

n
n i

i n i j j i i

j i i

n
n i

i n i j j i i

j i i

l l

n i l n il l

i i

l l l

i i i i i i i i

i i i

t t
C t P B t t t

t t

t t
C t P B t t t

t t

P P l r

P P P P P P P P

t t

 



+ +

= +

+
+ + + + +

= + +

+ − +

+

− −

+ +

+

−
= 

−

−
= 

−

 =  =

 =  = −  =  − 

= −





Cr-Continuity of

composed Bézier curves
Theorem

Let

be two adjacent Bézier curve segments.Then the two

segments join Cr-continuity at ti+1, if and only if

0 1 1 1 3

3 2 4 3

1 0 2 1

3 2 1 5 4 3

2 2

1 0 2 1

0 () ()

() ()
1

() ()

(2) (2)
2

() ()

l C t C t P

P P P P
l

t t t t

P P P P P P
l

t t t t

= = =

− −
= =

− −

− + − +
= =

− −

Example r = 2: C2 –Continuity at t1

P0P1

P2 P3 P4

P5 P6

[]
t1t0 t2

0 0 1 1 1 2() [,] () [,]C t in t t C t in t t

Serena Morigi
Dipartimento di Matematica

serena.morigi@unibo.it

http://www.dm.unibo.it/morigi

mailto:serena.morigi@unibo.it

