
Geometric Modeling: 

curves 

▪ Bézier Curves

▪ Spline Curves

▪ NURBS

▪ Subdivision curve



How to represent a

‘free form’?



C(t): Curve which interpolates endpoints (0,1) and (1,0) 

tangent  at x-y axes  in (0,1) and (1,0).

Parametric Form:

a,b,c coefficient vectors

Rewrite as:
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The coefficients have a geometric interpretation:

(1,0),(0,0),(0,1) are defined control points. When these

points are connected in the order of their numbering with

straight lines they form the control polygon which

approximates the curve shape.

This curve is defined Bézier curve (P. Bézier).
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Advantages in the new 

representation form? 



Bézier curves of degree 2

Moving the control points gives the user an intuitive 

sense of how change/control the shape of the curve
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Bézier Curves
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A Bézier curve of degree n (order m=n+1) 

in parametric form is defined by an ordered

sequence of points Pi i=0,..,n, 

in d-dimensional space Rd, for d=2,3,4:

where

are Bernstein Basis Functions.

Pierre Étienne Bézier

an engineer at Renault

(1910-1999)
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Pi are called control points and the polygon joining

these points is called Control Polygon



Bézier curves of degree n

In R2 , given the control points  Pi=(xi,yi) 

a Bézier curve is a parametric planar 

curve expressed in the Bernstein basis.
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Evaluation of a Bézier Curve

• Find the exact values of C(t) for a given value of t.

• Several ways to represent mathematically a 
Bézier curve:

– By Bernstein Polynomial basis

– Matrix Form

– de Casteljau Algorithm (linear interpolation)



Bernstein Polynomials
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Bernstein Polynomials are scalar-valued functions of degree n 

in the interval [0,1], for 

Basis for the linear space of polynomial Pn of degree at 

most n

Bernstein Poly of degree 1:
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Bernstein Polynomials

Bernstein Polynomials of degree 2: 

Bernstein Polynomials of degree 3:
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Bernstein Polynomials
of degree n over Arbitrary Parameter Intervals [a,b]
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Poly are translation and scaling invariant

Invariant under an affine reparametrization, or parameter transformation



Polynomial representation using 

Bernstein basis
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The change of variable does not alterate the coefficients.

To evaluate f(x) at x=x, first determine   t=(x-a)/(b-a)

then evaluate f(t), finally f(x)=f(t) 



Bernstein Polynomials: 

PROPERTIES
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P1) They take on positive values in the interval [0,1]

P2) They are a partition of unity

If P2) holds, then for each set of points P0,P1,..,Pn, and for 

each t, the formula

is an affine combination of the set of points; 

moreover, if  t belongs to [0,1], then

P1) holds and f(t) is a convex combination of the points.
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Conversion to the power basis
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Bernstein polynomial in 

matrix form 
A polynomial is a linear combination of Bernstein basis 

functions: 

Using the representation in 

power basis functions:
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Example 

Bernstein polynomial of degree 2:

In fact: 
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Bézier Curve in R3

in matrix form

• C(t)=[x(t)  y(t)  z(t)]

• P = (Px,Py,Pz) vector of control points, 

• M matrix of basis conversion

• T=[1   t   t2  t3 ...  tn]   

x(t)= T • M • Px

y(t)= T• M • Py

z(t)= T• M • Pz



Bézier Curve in R3

in matrix form
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Example: cubic curve, n=3 

4 control points P=[P0 P1 P2 P3] 

C(t)=T• M• P

M matrix of basis conversion



Derivatives of a Bézier curve
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Cubic curve (n=3).

It’s a vector function of 2 or 3 cubic poly components, 

compute the derivatives of each components:
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It’s a Bézier curve of degree 2



Derivatives of a Bézier curve of 

degree n
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The first derivative 

The first derivative of a Bézier curve is itself a Bézier curve 

of degree decreased by one, 

and CP the vectors
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Tangents

• The derivative of a curve represents the tangent 

vector to the curve at some point

• The control polygon of C(t) is tangent to the 

curve at the beginning and end of the curve
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Excercise

A degree n=3 Bézier curve in R2 satisfies 

C(0)=(0,1), C(1)=(3,0)

C’(0)=(3,3), C’(1)=(-3,0)

What are the control points for this curve?

Give a rough freehand sketch of the curve, being 

sure to show the slopes at the beginning and 

end of the curve clearly.



Properties of a Bézier curve

Moving a control point modifies 

the shape of the curve. 

P1

P1’▪ Shape Control



Properties of a Bézier curve

• The curve interpolates only its first and last control 

points

• It’s variation diminishing (without undesired 

oscillations) it has no more intersections with a line 

than its control polygon 
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Properties of a Bézier curve

• It’s invariant under an affine transformation 
(translation, rotation, scaling, or shear): apply an 
affine transformation to the control points and 
then evaluate the curve represented by these 
transformed control points at ti, is the same as 
apply an affine transformation to the point C(ti)

• The curve is smooth with smooth derivatives

• The curve is tangent at the first and last control 
points, to the first and last line segments of the 
control polygon.



Properties of a Bézier curve

• The curve is contained into the convex hull of 

the control points, that is inside the smallest 

polygon formed by its control points

A convex hull is the smallest convex set that 

contains a given set

All points on a Bézier curve lie within the convex 

hull of the control polygon.
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Convex hull



Properties of a Bézier curve

• Linear Precision: when all the control 

points lie on a line, then the Bézier curve 

is the segment line interpolating the points. 

(from convex hull property)



Bézier Curve Evaluation

Compute the value f(t) 

for a given parameter value t 
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f(t)
•



de Casteljau’s Algorithm

• Given a parameter value t, evaluate the 
poly value f(t) by geometric construction

• Apply the algorithm to each curve 
component (x(t),y(t),z(t))

• Plot the curve by means of a sequence of 
recursive linear interpolations



Linear Interpolation (Lerp)

• Linear interpolation (Lerp) compute a value inbetween

two values

• A value could be a scalar number, a vector, a color,..

• The linear interpolant between points a and b with  

parameter t is given by
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de Casteljau’s Algorithm

Given t evaluate C(t) 

Consider a cubic Bézier curve, a similar 
construction applies to Bézier curves of any 
degree )

• Let’s start with 

– Control points (A cubic Bézier curve has 4 CP)

– A parameter value t (ex. t=0.4)
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de Casteljau’s Algorithm
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p2
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Bézier Curve

C(0.4)
•
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Repeating this process for other values of t in [0,1] 

generates a sequence of points that define the curve.

A similar construction applies to Bézier curve of degree 

n, by simply applying n-1 recursive Lerp steps.

de Casteljau’s Algorithm



point on the curve
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Recursive linear interpolation
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To prove it, let’s expand the Lerp
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This reduces to a Bézier curve in 

Bernstein basis form
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Bézier curve in 

Bernstein basis form
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Curve Subdivision

It’s the process of splitting a single Bézier curve of degree n 

into two subcurves of the degree n. de Casteljau’s algorithm 

is used to perform the splitting.  

Good for: 

-Refinement

-Curve/curve

intersection

t0

C(t0)



Subdivide a Bézier curve at t by 

applying de Casteljau’s method
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Subdivide the curve C(t) defined in [0,1]

at t=t0, by applying the 

de Casteljau’s algorithm.

We get the two subcurves:

C1 in [0,t0] and

C2 in [t0,1] such that:

C1(t)=C(t*t0)

C2(t)=C(t0+(1-t0)t)



Ex. Subdivide a cubic curve at t=0.5 

by applying de Casteljau’s method

C(0.5)
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Subdivision: matrix form
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Curve  in [0,1/2]

C(t)=C(t/2)



Subdivision: matrix form

0

12 3 1

1

2

3

1

[0,1/2]

1 [0,1/2] [0,1/2]

( ) 1

1 0 0 0

1 / 2 1 / 2 0 0

1 / 4 1 / 2 1 / 4 0

1 / 8 3 / 8 3 / 8 1 / 8

( )

P

P
C t t t t MM SM

P

P

S M S M

C t TMS P BS P

−

−

 
 
  =    
 
 

 
 
 = =
 
 
 

= =

The subcurve is represented in Bernstein basis 

form [0,1/2]:

T  M =B



Subdivision: matrix form

1 [0,1/2]

0

0
0 1

1

[0,1/2]

2 0 1 2

3

0 1 2 3

( )

1 11 0 0 0

2 21 / 2 1 / 2 0 0
1 1 1

1 / 4 1 / 2 1 / 4 0
4 2 4

1 / 8 3 / 8 3 / 8 1 / 8
1 3 3 1

8 8 8 8

new
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 
 

    +
    
    = = =
   + + 
    

     
+ + +  

In a similar way for the second subcurve in [1/2,1]

we get CP of the new subcurve C2(t)=C(1/2+(1-1/2)/2)

S[0,1/2] is a subdivision matrix applied to 

the original CP to produce the CP of 

the new subcurve



Rendering a Bézier curve 

Draw a Bézier curve as a series of straight 

line segments

• Uniform method

Discretize the parametric interval into N 

equidistant points, then plot the polygonal joining 

corresponding evaluated points on the curve

• Adaptive Subdivision method



Adaptive subdivision: 

main idea
l(u) with CP={l0, l1, l2, l3} and r(u) with CP={r0, r1, r2, r3} 

have a convex hull that is closer to C(u) than the convex 

hull of C(u) defined by the CP {p0, p1, p2, p3}

The red polyline from l0 to l3 (= r0) to r3 is an approximation 

to C(u). Repeating recursively we get better approximations.



Adaptive Subdivision Method

It’s an optimization rendering method based on adaptive
subdivisions of the curve: break a curve into smaller an
smaller subcurves until each subcurve is sufficiently close to
being a straight line, so that rendering the subcurves as
straight lines gives adequate results.

Flat test for a subcurve:

For every internal CP compute distance d to the chord

If both d2 and d3 are less of a given tolerance Tol>0, the 
subcurve is considered flat, and it is approximated by the 
straight line P1P4

d2
d3

P1

P4
P2

P3



Iterate: 

Apply FlatTest to C(t)

OK:  Draw the segment between the curve CPend-points

KO:  Subdivide the curve C(t) into 2 halves (t=0.5) 

Apply FlatTest to C1(t) and C2(t) 

(the two generated subcurves).

Stopping criterium: all the subcurve segments are flat



Bézier curves: limits

• Local Control vs. Global 
Control

• One would the degree of the 
curve to be independent on 
the number of control points

Bézier curves may be 
joined end-to-end to form a 
composite curve 



Connecting Bézier curves

• How to impose continuity/ 

discontinuity at the joints?

1) Piecewise Bézier curves

Piecewise polynomial, 

geometric relationship of 

the CP adjacent to the 

joints determines the 

continuity conditions 

2) Polynomial Spline

Piecewise polynomial  

with given regularity 

conditions at the joints



Piecewise Bézier curves

Definition:

Let t0<t1<.. <tk be a partition of [t0,tk]. A composite Bézier 

curve of degree n is a piecewise Bézier curve, where 

each curve segment Ci(t) on the interval [ti,ti+1] (i=0,..,k-1) 

corresponds to a Bézier curve of degree n :

* 1

0 1

( ) ( ) ( ) [ , )
n

n i
i n i j j i i

j i i

t t
C t C t P B t t t

t t
+ +

= +

−
= = 

−


Piecewise

Bézier
single 

Bézier

!! Only C0 continuity is naturally satisfied



Parametric and Geometry 

Continuity
• C0 = continuous

The joint can be a sharp kink 

• C1 = parametric continuity

Tangents are the same at the joint 

• G1 = geometric continuity

Tangents have the same directions 

• C2 = curvature continuity

Tangents and their derivatives are the 

same



Parametric Continuity C1

"A curve is C0 if it can be

drawn without lifting the pen

off the paper sheet”

If the derived curve is 

continuous then the curve is 

also C1

The parametric continuity ensures that only the motion of

the particle moving along the curve is continuous, i.e. there

are no sudden jumps in speed, it does not say that the path

(the curve) is smooth.

Example: straight line with velocity jump. Is not C1, but the

curve is certainly smooth



Geometry Continuity G1

If the direction tangent to a parametric curve varies in a 

continuous manner then it is continuous G1

Its magnitude can also have discontinuous jumps, but the 

curve is still G1. Then the particle moving along the curve 

varies its speed to rush but still along a continuous curve if 

its direction continuously changes.



Geometry continuity between 

two curves

▪Parametric Continuity  C1

The directions v1, v2 and modules of the tangent vectors of 

the two curve segments in the contact point are equal

▪Geometry Continuity G1:
The directions v1, v2 of the tangent vectors of the two curve 

segments in the contact point are equal

In general C1 implies G1, the reverse is not true in general

0,21 = kvkv



Example: 4 pieces of curves



Connecting two Bézier curves

• Consider two Bézier curves defined by p0…p3 and v0…v3

• If p3=v0, then they will have C0 continuity

• If (p3-p2)=(v1-v0), then they will have C1 continuity

• C2 continuity is more difficult…

p0

p0

p1

p2

P3

P3

p2

p1

v0

v1

v2

v3

v3

v2

v1

v0

C0 C1



Bézier curves with G1 –CONTINUITY

Two curves join at one end-point and have 

tangent vectors at that point with same direction.

CPs on the common tangent vectors are collinear.

Less severe than the C1-Continuity condition.

C0=G0
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Cr-Continuity of 

composed Bézier curves
Theorem

Let

be two adjacent Bézier curve segments.Then the two 

segments join Cr-continuity at ti+1, if and only if
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Example r = 2: C2 –Continuity at t1
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P2 P3  P4
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