
Geometric Modeling: 

curves 

▪Bézier Curves

▪Spline Curves

▪NURBS

▪Subdivision curve



Courtesy of The Antique Boat Museum.

The term ‘spline’ 

comes from the 

shipbuilding 

industry: long, 

thin strips of 

wood or metal 

would be bent 

and held in place 

by heavy ‘ducks’, 

lead weights 

which acted as 

control points of 

the curve.





Spline curve  of degree 2

Every control point affects the entire curve 

- Not simply a local effect 

- More difficult to control for modelingBézier curve of degree 9



Bézier Curve vs spline Curve
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A Bézier curve of degree n in parametric form is 

defined by ncp=n+1 control points Pi =(xi, yi ) i=0,..,n in R2

A spline curve of degree n in parametric form is 

defined by ncp control points Pi =(xi, yi ) i=1,..,ncp in R2

Polynomial

of degree n

Piecewise

Polynomials

(spline)

of degree n

CP, knot partition, Multeplicity Vector,  Bases
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Partition 

Let [a,b] be a close and limited interval and                     be 

a set of points (knots) such that

I0 I1 Ik

x0              x1       x2                               xk xk+1

a = x0 < x1 < ..... < xk< xk+1 = b

then Δ is a partition of [a,b] and it defines the subintervals

Ii=[xi,xi+1)     Ik=[xk,xk+1]

a
b

 
1i i ,..,k

x
=

 =

The points xi are called KNOT (NODI)



Piecewise polynomials
(polinomi a tratti)

x0 =a x1                                      x2                          x3=b

p0(x)

p2(x)

p1(x)

f(x) is defined in [a,b] and consists into 3 polynomial

pieces of degree n (order m=n+1)

The pieces are joint with continuity C0

 0
0

m k m i i
PP ( ) f / p , .., p P s.t . f ( x ) p ( x ) x I ,i , ..,k =      =

Space of piecewise polynomials

f(x)



Spline Functions s(x)
(Schoenberg 1946)

Space dimension m+K,
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Given a partition Δ

an integer m – order - (degree n, m=n+1)

a vector M of knot multiplicities

M=(m1,m2,..,mk),   mi<=m

we can define a space of spline functions



Special cases

1 1 1
m

M ( , , ..., ) S( P , M , )= 

PP
m

M ( m,m, ..,m ) S( , M , )= 

Continuity C0 at knots

S is the piecewise polynomial space PPm

Max Continuity Cm-1-1 at knots



Extended Partition
(Partizione estesa)

Starting from partition Δ= {xi}i=1,..,k, the extended partition

Δ* = {ti}i=1,…,2m+K is given by 

Δ* = {ti}i=1,…,2m+K
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Add m knots



Extended Partition

Open (o nonperiodico)

First and last knots have multiplicity n+1

Es: n=2     *=[0,0,0,1/2,1,1,1]

Uniform

Equispaced internal knots 

Non uniform otherwise



Spline Functions

Each spline function s(t) of degree n (m=n+1) can be 

represented as a linear combination of Basis Functions

of the spline space

where

is a set of normalized basis functions for 
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B-Spline Bases
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Normalized B-spline functions

Recurrence FORMULA by  Cox-de Boor

Conventionally 0/0=0



Example: 

B-spline Bases,n=1

Number of knots: 

N=Internal Knots K+

External Knots 2*m =8

Nodal vector:

Δ *=(0,0,1,2,3,4,5,5)



Example: 

B-spline Bases, degree 2

n = 2

n = 2



Example: 

B-spline Bases,  degree 3,4

n = 3

n = 4



Example: B-Spline Bases, n=2
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Example: B-Spline Bases, n=2

Knot Vector:   Δ * =(0,0,0,1,2,3,4,4,4)

K (internal knots)+2*m (external knots)



1. Local Support

2. Non-negativity

3. Partition of Unity

B-Spline Bases: properties
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Partition of Unity

Example:

Degree n=2, Knot vector: Δ *=(0,0,0, 1,2,2,2)

, , , ,

t .

N N N N . . . . .

=

+ + + = + + + =
1 2 2 2 3 2 4 2

0 6

0 16 0 66 0 18 0 0 1 0

N1,2
N2,2 N3,2

N4,2



Spline Functions
Each spline function s(t) of degree n (m=n+1) can be 
represented as

(*)

For the local support property of Ni,n (*) is reduced to:

For each interval, s(t) is the sum of m B-spline Basis
functions at most. Therefore s(t) has a local behaviour:
by changing an arbitrary ci the shape of s(t) changes only
in m (=n+1) intervals.
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Spline Curves
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C( t ) t [ a,b ]
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A parametric curve C(t) in R2 of degree n (m=n+1) in parametric 

form is represented as

If the coordinate functions x(t) and y(t) are spline functions then

the curve is a spline curve

Control points Pi =(xi, yi ) i=1,..,ncp in R2           ncp=K+m

C(t) is Cm-mj-1 continuous in knots with multiplicity mj
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Given the order m, and the number of control points ncp, 

the total number of knots is ncp+m

the number of internal knots is K=ncp-m

Example : Spline Curve m=3

*={0,0,0,1/8,2/8,3/8,4/8,5/8,6/8,7/8,1,1,1}



How to control the shape of a 

spline curve

▪ Change of the degree

▪ Change of the number/position of the control 

points CP

▪ Use multiple coincident CP 

▪ Use internal multiple knots:

If a knot has multiplicity n, then the curve passes 

through the corresponding control point

▪ Modify the knot vector

▪ Uniform

▪ Nonuniform



Degree elevation

n=3

n=4

n=5

n=6

the curve shape is unchanged



Move control points

Example cubic spline (n=3)

Nodal vector: Δ*={0,0,0,0,1/4,1/2,3/4,1,1,1,1}

Move control point P4 in P4’, the curve changes in the
interval [1/4,1)



Multiple control points

• m-1 coincident vertices are required for the curve to pass 

through the vertices

• The curve smoothly transitions through the coincident 

vertices with Cm−mi-1 continuity

Example cubic spline (m=4)



N2,2

Multiple knots

Example: degree n=2, knot vector with internal multiple knots

In t =1 we have N2,2=0 , N3,2=1 , N4,2=0 , C(1)=P3, the curve interpolates P3, the 

continuity is reduced C3-2-1

4 5
4     t [ t ,t )= *= (0,0,0,1,2,3,3,3)

*= (0,0,0,1,1,3,3,3)
t1 t2m+K
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N1,2
N3,2

N2,2 N4,2

N5,2 N3,2 N5,2N1,2

N2,2
N4,2



Modify the knot

vector

Examples:

Same CP but 

different order m 

and knot vector

m=3

m=5

m=5

m=7

m=3



Convex hull (Guscio convesso)

▪ Degree n=1, order m=2, the curve is the control polygon

▪ Degree n=2, order m=3, the curve lies in the union of the 

convex hulls

(CH=m consecutive CP)

m=2

m=3



Convex hull

▪ Degree n=3, order m=4, the curve lies in inside the union 

of the convex hulls

▪ Degree n=5, order m=6, higher degrees involve larger 

convex hull

The higher the order the less closely the B-spline curve 

follows the control polygon

m=4

m=6



Close Spline Curve

Cubic Spline continuous  Cm-2 ( C2 ), close, 

defined on the knot vector: 

[3 3 3 3 4 5 6 7 8 8 8 8]

P6

P7

P1=P8

P5

P4

P3P2

Close Curve: 
First and last CP are the same

External knots coincide in
1 m K

P P
+



*



Periodic Spline Curve

Cubic n=3 spline continuous  Cm-2 ( C2 ), periodic, 

defined on the knot vector: 

[0 1 2 3 4 5 6 7 8 9 10 11]

P2=P7

P1=P6 P5

P4

P3=P8

Close and Periodic Curve: 
The first n control points coincide 

with the last n, 

Same external knot intervals

C2 also in the joint knot



Knot insertion

Add a new knot in the Nodal Vector does not 

change neither the degree nor the curve shape.

Each new inserted knot leads to a new CP.

Useful for:

▪ Curve Evaluation/Editing 

▪ Control over the curve continuity 

▪ Convert spline to piecewise Bézier curves

▪ Draw the curve (the control polygon approaches to the 

curve) 

▪ Compatibility between two curves (same knot vectors)



Knot insertion: Bohm’s Method
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Example

t = 73/4 l=8 

[0,1,2,3,4,5,6,7,8,9,10,11]  [0,1,2,3,4,5,6,7,73/4,8,9,10,11] 

* * →



Knot insertion: Bohm’s Method
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Example n=3

5 6
0 0 0 0 2 3 3 3 3  [t ,t )2* { } insert t = = 

={0 0 0 0 2 2 3 3 3 3}*

1 1p̂ p=

2 2p̂ p=

3p̂

44p̂

5p̂

6 5p̂ p=

modify  p
i

n i−  



Bézier Curves are special cases  

of spline curves
Example: n=2, order m=3

▪ Nodal vector: [0,0,0,1,1,1]

▪ Basis Functions

▪ The spline curve is the Bézier curve of degree 2 with the 

same CP
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From spline curve to piecewise 

Bézier Curve

▪ Convert a degree n spline curve to a piecewise Bézier

curve of degree n

▪ Each Bézier curve piece is a polynomial of degree n

ALGORITHM:
Insert knots in Δ in order to have all the internal knots 

with multiplicity mj=n (continuity Cm-mj-1 = C0) and 

external knots with multiplicity n+1.



Spline Function Evaluation

▪ Given t, evaluate s(t)

▪ Determine the interval which contains t; 

(dicotomic search)

▪ Then use:

Algorithm 1 via Basis Functions or

Algorithm 2 via coefficients (de Boor)

(repeat knot insertion at t multiple (n) times)
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Algorithm 1: Basis Functions

▪ 1. Find l , index of the interval [tl,tl+1) 

▪ 2. Compute the nonvanishing Basis Functions Ni,n in the 

interval;

▪ 3. Compute the linear combinations:
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Algorithm 2: coefficient formula  

(de Boor)



Algorithm 2: coefficient formula  

(de Boor)
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Perspective projection

( )WYXPw ,,=

Perspective projection of a point in nD space to a plane 

which is parallel to n-1 axes.

Homogeneous point in 3D:

Projection to 2D
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Rational Curve 

( )( ) ( ), ( ), ( )wC t x t y t w t=

Perspective projection of each point of a 3D curve

into the 2D plane:

Rational curve
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C t
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NURBS curves
(NonUniform Rational Bspline)
(Ken Versprille)

Given a non-rational

spline curve 

Apply perspective projection

3D -> 2D

get a rational spline (NURBS)
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NURBS

ncp
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The weight wi >0 is associated to the Control Point Pi and 

give  more flexibility

Non-uniform = different spacing between the knots

rational = ratio of polynomials 

Given a partition Δ

an integer m – order - (degree n, m=n+1)

a vector M of knot multiplicities M=(m1,m2,..,mk), mi<=m

a vector W of weights W=(w1,w2,..,wk),  wi>0

A NURBS curve of degree n is represented as



Weights as shape parameters
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wi affects the curve locally in [ti,ti+m)

When wi=1 for all i , then the spline is nonrational



Why NURBS?

▪ Conic sections (Quadrics) are a special case of NURBS

(es. Circle, ellipse, sphere, ..)

▪ Spline Curves and Bézier curves are NURBS

they have all their properties

▪ More degree of freedom for design



NURBS Circle

Circle 7 points:
Δ* ={0,0,0,1/3,1/3,2/3,2/3,1,1,1}

wi={1,1/2,1,1/2,1,1/2,1}, w1=cos(120)=1/2

Conic Sections are represented exactly by  NURBS of degree 2

Circle 9 points:
Δ* ={0,0,0,1/4,1/4,1/2,1/2,3/4,3/4,1,1,1}

wi={1,2/2,1,2/2,1, 2/2,1, 2/2,1}
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