
Rendering

Rendering

is the ”engine” that

creates

images from

3D scenes and a

virtual camera

Rendering : PART I

• Pipeline Based Rendering (forward rendering)
– Object in scene are rendered in a sequence of steps

called Rendering Pipeline. The real-time graphics
pipeline (GPU)

• Ray-Tracing (backward rendering)
– Project rays through the view plane and assign color to

pixels according to the first ray intersection.

From the screen window process the geometric

primitives which are projected onto it. (CPU/GPU)

Rendering Pipeline

Transform

Illuminate

Transform

Clip

Project

Rasterize

3D scene
& Camera Rendering Pipeline Framebuffer Display

A 3D scene is:

– Geometry (triangles, lines, points, and more)

– Light sources

– Material properties of geometry

– Textures (images to glue onto the geometry)

A virtual camera (Decides what should end up in the final image)

Pipeline Based Rendering: idea

• Take a collection of 2D Polygonal Objects and

draw them onto a framebuffer

• Real-time

• An object is approximated by a number of simple

primitives (points, lines, triangles).

• Use tessellation to convert complex models into

simple geometric primitives

Tessellation

– All curves/surfaces can be broken up

(approximate) into a sequence of

segments/polygons (triangles)

– Triangles are guaranteed to be:

• Planar and convex

Polygonal approximation to a curve

Rendering pipeline:

a functional overview

CPU Application

stage

GPU

Geometry

stage

3D triangles

Pixels frame buffer

2D triangles

Rasterization

stage

Three conceptual stages of the pipeline:

- Application (executed on the CPU)

- Geometry

(hardware/software on the GPU)

- Rasterizer

(hardware/software on the GPU)

The Geometry Stage:

per vertex operations

• Task: ”geometrical” operations on the input data (e.g.

vertices of the triangles)

• Allows:

– Move objects (matrix multiplication)

– Move the camera (matrix multiplication)

– Compute lighting at vertices of triangle

– Project onto screen (3D to 2D)

– Clipping (avoid triangles outside screen)

– Map to window

The Rasterizer Stage:

per pixel operations
• Task: take output from GEOMETRY (2D polys) and turn

into visible pixels on frame buffer (screen)

• Allows:

– Scan conversion

Converts a geometric primitive in a set of fragments

Fragment: location (x,y); depth; color; texture coord.,..

– Interpolation (lighting, texturing, z values, ..)

– Color combining (light and texture colors) and

other pixel operations (alpha, stencil test,..)

– Visibility (depth test)

(frame buffer)

GPU

CPU

Geometry stage: transformations

Application

Model / View

Transform

Lighting

Projection

Transform/ clip

Fragment generation

Rasterization

Fragment

Processing

Z-Buffer

Visibility Test

Final Image

in FRAME BUFFER

Vertices

The primitives are modeled in

object space or object

coord.system OCS

Three geometric transformations:

▪Modeling

▪Viewing

▪Projection

geometry

rasterization

The programmer ”sends” down primitives

to be rendered through the pipeline

(using API calls)

• OCS Object space
– local to each object

• WCS World space
– common to all objects

• VCS Eye space / Camera space
– derived from view frustum

• NDC Clip space / Normalized
Device Coordinates
– [-1,-1,-1] → [1,1,1]

• SCS Screen space
– indexed according

to hardware attributes

Geometry Stage: transformation

of coordinate systems

GPU

CPU

Geometry stage: coords. systems

Application

Model View

Transform

Lighting

Projection

Transform/clip

Fragment generation

Rasterization

Fragment

Processing

Z-Buffer

Visibility Test

Final Image

in FRAME BUFFER

Vertices

geometry

rasterization

Object space

World space

Eye Space /

Camera Space

Clip Space (NDC)

Screen Space

The rendering pipeline:
modeling transforms

3D vertices

INPUT: vertices in object coord. system OCS

OUTPUT:
All vertices of scene in shared 3-D “world” coordinate

system (WCS)

Model View

Transform

Lighting

Projection

Transform/clip

geometry

Fragment generation

Rasterization

Fragment

Processing

Z-Buffer

Visibility Test

rasterization

Modeling transforms

– Originally, an object is in ”model space”

– Move, orient, and transform geometrical objects and parts of

the models w.r.t. each other into ”world space”

– Object coords (OCS) world coords (WCS)

– Multiply each vertex by an affine transf. matrix 4x4 Tm

The user can apply different matrices over time to animate objects

Z

X

Y

X

Z

YOCS WCS

The rendering pipeline:
the view transform

3D vertices

INPUT: vertices in WCS

OUTPUT:
Scene vertices in 3-D “View” or “camera” Coordinate

System (VCS)

Model View

Transform

Lighting

Projection

Transform/clip

geometry

Fragment generation

Rasterization

Fragment

Processing

Z-Buffer

Visibility Test

rasterization
World space

Eye space

Building Viewing Transformation

WCS VCS

• Specifying 3D view—setting up synthetic camera
- The camera is located and oriented in WCS

• Building Viewing Transformation from View
Specification
- Build a transformation matrix Tv

(nothing else but a change of reference system)

• Apply this transformation to every object vertex

View Specification:

Camera “look at”
We need to know four things about our synthetic camera model
in order to make up the view transform

– Point C: Position of the camera in WCS (from where it’s
looking)

– Point A: The Look vector specifies in what direction the
camera is pointing (view direction C-A , A =center of scene)

– field of view FOV (wide angle, normal…)

– depth of field (near distance plane , far distance plane)

C

near

far

A

FOV

x
u

y

z

w

VUP

C

v

A

Define the camera frame in WCS: F(C,u,v,w)

AC

AC
w

−

−
=

• C camera location (view point)

• w-axis (Look Vector)
– the direction the camera is pointing

– by convention the camera looks into a direction −w

• View Up Vector (VUP)

– determines how the camera is rotated around the Look vector

(assume it ‘s parallel to y-axis)

View reference coordinate system

• u-axis (pointing on the right-hand side of the
camera), is orthogonal to both w-axis and VUP.

• In case VUP || y-axis optimize the cross vector:

VUP w
u

VUP w


=



   xz www −= 0010

x
u

y

z

w

C

v

A

VUP

• v axis orthogonal to both w and u axes

• w and u normalized, v is already normalized
(unit length)

uwv =

1*1*190sin == wuv

Remark: there exist other methods for view

specification, like flight simulation, rotating camera,...

Building Viewing Transformation

from View Specification
• Given the frames WCS & VCS,

• Compute the matrix transformation Tv

• For each point Pw in WCS coord., convert its

coordinates in VCS

Pv = Tv Pw

-w

WCS

VCS

1 0 0 0 1 1

0 0 0 1

p u v w e p

p u v w e p

p u v w e p

xyz uvw

xyz uvw

x x x x x u

y y y y y v

z z z z z w

u v w e
P P

P M P

     
     
     =
     
     
     

 
=  
 

=

Given the WCS (o,x,y,z) and VCS (C,u,v,w) represent P:

1

1

1

1 0 0 0 1 1

0 0 0 1

p u v w C p

p u v w C p

p u v w C p

uvw xyz

uvw xyz

u x x x x x

v y y y y y

w z z z z z

u v w e
P P

P M P

−

−

−

     
     
     =
     
     
     

 
=  
 

=

Change of reference systems

(frames) in 3D

• The matrix M maps the WCS to the VCS frame.

• The change of coordinate of a vector/point from
one system to another vw in WCS and vv in VCS is:

vw= M vv

• The inverse matrix (M)-1 from WCS to VCS

vv = (M)-1vw=Tv vw

given a point vw in homogeneous WCS coordinate

provides its corresponding representation vv in

VCS coords.

Example: WCS->VCS

• WCS: (x,y,z,O)

• VCS: (xv,yv,zv,C)

• Matrix M represents VCS w.r.t. WCS:

C

v

w

z

x
y

0 0 1

1 0 0

0 1 0

0 0 0 1

x

y

z

C

C
M

C

 
 
 =
 
 
 

u

C
 l

o
ca

ti
o
n
 i

n
 W

C
S

Example

()
1

1

p

p

v

p

x

y
P M

z

−

 
 
 =
 
 
 

• Given a point Pw (xp,yp,zp,1) in WCS

• The coords of Pv in VCS are given by

z

x
y

P

C

v

w
u

Camera Space: VCS

• Let’s say we want to render an image of a chair from a
certain camera’s point of view

• The chair is placed in world space with matrix Tm

• The camera is placed in world space with matrix Tv

• The following transformation takes vertices from the chair’s
object space into world space, and then from world space
into camera space:

• Now that we have the object transformed into a space
relative to the camera, we can focus on the next step, which
is to project this 3D space into a 2D image space

' v mv T T v=  

Projection transformation

3D vertices

INPUT: 3D vertices in VCS

OUTPUT:

2D screen coordinates of visible vertices
Screen space

Model View

Transform

Lighting

Projection

Transform/clip

geometry

Fragment generation

Rasterization

Fragment

Processing

Z-Buffer

Visibility Test

rasterization

• Volume of space between Front and Back clipping planes

defines what camera can see

• Position of planes defined by distance along Look vector

• Objects appearing outside of view volume don’t get drawn

• Objects intersecting view volume get clipped

Clipping

Projection

parallel

(orthographic)
perspective

Leonardo da Vinci (1495)

“L’ultima cena” The Last Supper

Albrecht Dürer (1471-1528)

“Artista che disegna un liuto”

Artist Drawing a Lute

“Invention” of Perspective Geometry
(geometria proiettiva)

The Renaissance

Perspective Projection

Projectors are lines that converge at Center Of

Projection (COP)

Center of

Projection

(COP)

Projection

plane

projectors

A

B

B’

A’

Properties of Perspective

• Diminution – Objects further from viewer are appear

smaller than the same objects closer to the viewer

• Foreshortening – Equal distances along a line are

not projected into equal distances on the image plane

(it is not an affine transformation)

• Angles are preserved only in planes parallel to the

projection plane

• It’s realistic

Orthographic Projection

Center of

Projection

at infinity

Projection

plane

A

B

B’

A’

Viewer at infinity

Projectors are parallel lines orthogonal to projection plane

A

Multi-view Orthographic

Projection (MOP)

• Projection plane is positioned parallel to axis-planes

• Usually form front, top, side views

• Often used for CAD and architecture

• Preserves both distances and angles (affine transf.)

• Not realistic

front sidetop

The projection transformation

Before a real projection 3D -> 2D:

1. Determine the volume of space between Front and Back

clipping planes which defines the bounded space that

camera can “see” (view volume)

The type of projection defines the shape of the view volume

2. Project the view volume into the normalized coord.

system
(cuboid at the origin

coords. lie in [-1,1]3).

Clipping is more efficient in a cuboid axis-aligned: (-1,-1,-1) → (1,1,1)

-w

• Perspective Projection: Truncated Pyramid – Frustum

• Look vector is the center line of the pyramid,

• Aspect Ratio: determines proportion of width to height of
image displayed on screen

Near

Width

Look

View Volume

COP

View volume

aspect = w/h

field of view

(FOV),

• Orthographic Parallel Projection: Truncated View

Volume – Cuboid

• Orthographic parallel projection has no view angle

parameter

Height

Width

Look

vectorNear
distance

Position

Far
distance

Up
vectorx

y

z

View Volume

View volume

Normalization:

Project the view volume into the

normalized coord. system

Transform the view volume into a parallel (cuboid) view

volume (Image Space)

Why do we do it this way?

• Normalization allows for a single pipeline for both

perspective and orthogonal viewing

• We stay in four dimensional homogeneous coordinates

as long as possible to retain three-dimensional

information needed for hidden-surface removal and

shading

• We simplify both clipping and projection

Project the view volume into the

normalized coord. system (Image Space)
Image Space

The scene is bounded by a cuboid at the origin with coord. x,y that
lie in [-1, 1] and the z coordinate will also range from -1 to 1 and will
represent the depth (1 being nearest and -1 being farthest)

◼ The final 2D view of the 3D scene (the final image) will be finally
computed by projecting the portion of scene contained in the
Canonical view volume into a window in the image plane

Z = 1

Z = -1

Canonical view volume

4

4

Orthogonal normalization

Find transformation to convert specified clipping volume

to the Canonical View Volume

z

Orthogonal Matrix

• Two steps

– Move center to origin

T(-(left+right)/2, -(bottom+top)/2,(near+far)/2))

– Scale to have sides of length 2

S(2/(right-left),2/(top-bottom),2/(near-far))

(), , , , ,

v mT T

left right top bottom near far

 =   

=

v P v

P

2
0 0

2
0 0

2
0 0

0 0 0 1

right left

right left right left

top bottom

top bottom top bottom

far near

near far far near

+ 
− − −

 
+ 

−
 − −
 

+ 
 − −
 
  

Perspective projection

Analogously for y:
y

y

z

p
q d

p
= −

d>0

zx

x

p

d

p

q −
=

Consider top view:

z

x
x

p

p
dq −= Based on

similar triangles

Perspective Projection

1 0 0 0

0 1 0 0

0 0 1 0

0 0 1 / 0

p

d

 
 
 =
 
 

− 

P q p= P p

1 0 0 0

0 1 0 0

0 0 1 0

0 0 1 / 0 1

x

y

p

z

p

p

p

d

  
  
  =
  
  

−  

P p 





















−

=

dp

p

p

p

z

z

y

x

/

/

/

/

1

1

x

zx z

yy z

zz z

p
d

pdp p

pdp p
d

pdp p

d

 
− −   

 
 −

  −= =  
 −  
 

 − 
 
 

q

z

x
x

p

p
dq −=

z

y

y
p

p
dq −=

• The ”arrow” is the

homogenization process

In homogeneous coords we express projection as 4x4 transform matrix

Perspective projection
• In a sense, we can think of this

view frustrum as a distorted
cube, since it has six faces, each
with 4 sides

• The perspective projection
leaves points on the z=n plane
unchanged and maps the large
z=f rectangle at the back of the
perspective volume to the small
rectangle at the back of the
orthographic volume

• We need a way to represent this
transformation mathematically

M

Ppers = Portho M

(left,bottom,near)

Perspective

Projection

From frustum

to canonical

view volume

(cuboid)

-1 <=x,y,z<=1

(-1,-1,1)

(1,1,-1)

(4)v' P v

P(, , , , ,)

2
0 0

2
0 0

2
0 0

0 0 1 0

D v mT T

left right top bottom near far

near left right

right left left right

near bottom top

top bottom bottom top

far near far near

near far far near

=   

=

+ 
 − −
 

+ 
 − −
 

+ 
 − −
 
  

(right, top, far)

z= near

z= far

z=-1

z=1

2

2

2

0 0

0 0

0 0

0 0 0 1

r l
r l r l

t b
t b t b

f n

f n f n

O

+
- -

+
- -

+-
- -

æ ö
ç ÷
ç ÷=
ç ÷
ç ÷ç ÷
è ø

Orthographic View Perspective View

2

2

() 2

0 0

0 0

0 0

0 0 1 0

n r l
r l r l

n t b
t b t b

f n fn

f n f n

P

+
- -

+
- -

- + -

- -

æ ö
ç ÷
ç ÷=
ç ÷
ç ÷ç ÷-è ø

Effects of the Perspective Projection on

points in homogeneous coord.

• If we look at the perspective matrix, we see that it

doesn’t have [0 0 0 1] on the bottom row

• This means that when we transform a 3D position vector

[vx vy vz 1], we will not necessarily end up with a 1 in the

4th component of the result vector

• Instead, we end up with a true 4D vector [vx′ vy′ vz′ vw′]

• The final step of perspective projection is to map this 4D

vector back into the 3D w=1 subspace:

 1
y yx z x z

x y z w

w w w w w w

v vv v v v
v v v v

v v v v v v

   
       

   

()4

1

v mD

yx z

w w w

T T

vv v

v v v

 =   

  
 =  

   
 = 

v P v

v

v D v
D ??

Window Transformation and

Window-viewport Transformation

1 0 0 0

0 1 0 0

0 0 0 0 0

0 0 0 1 1 1

x x

y y

ortho ortho

z

p p

p p
P P

p

     
     
     =  =
     
     
     

• The final 2D image is obtained by merely dropping the z

coordinate after orthogonal projection into plane z=0

• Window transformation is an orthogonal projection that maps

points in NCS (x,y,z) in [-1,1]3 (image space 3D) into a

rectangular region (x,y) in [-1,1]2(window 2D)

• Projected points into the view plane (z=0) maintain the x,y,
coord. but z=0

Windowing Transformation

Windowing Transformation

(2)D ortho v mP T T =    v P v

• The depth value (z) is usually mapped to a 32 bit fixed

point value ranging from 0 (near) to 0xffffffff (far)

• Finally, transformation window-viewport..

VCS

Date

S
to

ck
 P

ri
ce

Date

S
to

ck
 P

ri
ce

NDC

DateS
to

ck
 P

ri
ce

Viewport

Coordinates

Window:

Normalized Device Coord. system

(NDC) in [-1,1]2

-1,-1

1,1

w pixels

h pixels

Window and viewport are 2D

rectangular regions.

Viewport is a 2D integer coordinate

region of screen space to which the

window contents are mapped.

Viewport:

(Screen Coord. System in pixel)

Window-Viewport Transformation

translate

scale

translate

(xwmax,ywmax)

(xwmin,ywmin)

window

viewport

(xvmax,yvmax)

(xvmin,yvmin)

Window-Viewport Transformation

• Every y-coord in

window is up side

down in viewport

(xvmin,yvmin)

(xvmax,yvmax)

))((

))((

maxmin

minmin

vwwyv

vwwxv

yyySceily

xxxSceilx

+−=

+−=

max min max min

max min max min

v v v v
x y

w w w w

x x y y
S S

x x y y

− −
= =

− −

Window-Viewport Transformation

min min

min min

min min

min min

1 0 0 0 1 0

0 1 0 0 0 1

0 0 1 0 0 1 0 0 1

0

0

0 0 1

v x w

wv v y w

x v x w

y v y w

x S x

T y S y

S x S x

S y S y

−     
     = − =
     
          

− 
 = − =
 
  

In matrix form:

Window-Viewport Transformation

min max max w min

w max w min

min max max w min

w max w min

0

0

0 0 1

v w v
x

v w v
y

x x x x
S

x x

y y y y
S

y y

− 
 −
 

− 
 −
 
 
 
 

Window-Viewport Transformation:

the infamous half pixel

The infamous half pixel
x y

x max min y max min

: (,) pixels

[-1,1] [-1,1] [-0.5,n 0.5] [-0.5,n 0.5]

n ,n

1
0 0

2 2

1 (,)
0 0

2 20 0

0 0 0 01 1

0 0 0 1

x y

window viewport

v v v v

x x

v w

y y w wv w

viewport n n

x x y y

n n

x x

n n x y winy y

  −  −

= − = −

− 
    
    −     =
    
    
    
  

()

(,)v v

screen wv ortho v m

dow

x y viewport

v T P P T T v



=     

Each pixel owns a unit square

centered at integer coordinates

• Inverse Transform viewport-window??

• Select points on the screen

• Simulate zooming in a viewport region

• Panning

Serena Morigi
Dipartimento di Matematica

serena.morigi@unibo.it

http://www.dm.unibo.it/morigi

mailto:serena.morigi@unibo.it

