
Lighting and shading
Part I

Without light … we don’t see much of our scene!
Without shading, objects do not look three dimensional!



Color, depth and photorealism..

From the geometric model.....  Toward  its realistic visualization



Lighting

• In real world the colour of 

the objects that we see is 

the result of the incident light 

which hits the objects and of 

the way the object surface 

reflects the light.

• Wrong assumption: each 

surface is colored with a 

single color-> the object 

appear flat

• Many gradations or shades 

of color give 2D images the 

appearance of being 3D



Two Components of Lighting

When we look at a point on an object, the color that we see

is determined by multiple interactions between light sources

and reflective surfaces.

Light Sources:

- Emittance spectrum (colour)

- Geometry (position and colour)

- Directional attenuation

Surface Properties:

- Reflectance spectrum (colour)

- Geometry (position, orientation, and micro-structure)

- Absorption



Real World Lighting

• Light sources emit photons.

• The incoming light from light sources is partially absorbed, 
partially reflected and partially refracted

• The reflected light defines the object color: if only green is 
reflected, red and blue are absorbed, then object appears green

• Reflectance – a fraction of the incident light that is reflected

Incident 

Light
Reflected Light

camera

Refracted/Transmitted
Light



From conservation of energy:
Light incident at surface = reflected + absorbed + transmitted/refracted

• Opaque object - the majority of incident light is 

either the reflected or absorbed (transmitted light 0)

• Translucent object - significant light transmission

We do not consider: absorption, transmission, diffraction



Lighting models

Empirical: simple approximations to observed phenomena.

Physically-based: model actual physics of light 

interactions.

• Rendering Equation: consider a global energy 

balance, it is a model of the conservation of 

energy that describe how light intercats with 

materials

• Empirical model: we follow rays of lights from a  

point sources that reach the viewer both directly, 

and by interacting  with reflecting surfaces in the 

scene



Build an illumination model to 

describe the interaction 

between materials and lights

To determine the color of a 

point we need to model

- the light sources in the scene

- the reflection properties of the 

surface (material)



Local and Global Models

• Local model: the color of a surface element depends only 

on light from light sources and ignores effects of all other 

objects in the scene

– pro: scene can be rendered much faster

– con: pay a price in lost realism; lose interesting effects of 

light transport



Local and Global Models

• Global model: the color of a surface element depends on 

the light from light sources and from light bounces off other 

objects toward our surface element

• This is not compatible with a rendering pipeline



Light-Material Interactions

The light reflected depends on the surface material 

How the object surface reflects the light

Specular: light perfectly reflected along one  reflection direction

Gloss (Lucide): mixed, partial specularity

Diffuse: light scattered into all directions

+                          +                      =

specular + gloss + diffuse =  reflectance distribution



Material Properties



Material Properties

• Ka ambient Ka,d,s,e in [0,1]

• Kd diffuse - diffuse reflection coefficient:

Defines the fraction of light scattered into all directions, 

Defines the color of the surface

• Ks specular - specular reflection coefficient:

Defines the fraction of light reflected near the mirror 

reflection direction

• Ke emissive

• ns specular reflection exponent 
(grado di specularità per superfici parzialmente speculari)



Light Sources

Each light in the scene needs to have its type

specified (position, direction) as well as any other

relevant properties:

color (RGB), energy (light intensity)

Different Kinds of Light Sources:
1) Ambient      2) Point      3) Directional        4) Spot



1) Ambient Light

Represents a fixed-intensity light source that hits 

all objects equally
• Used to uniformly brighten/darken the entire scene

• Simulate the indirect light

• Coming from all directions

• Useful as a “hacky” model for indirect lighting so 

shadows aren’t completely 



2) Point light
(Luce omnidirezionale-punto luce)

• Point (positional) light source P=[x,y,z,1] 

• By default, radiate in all directions with constant intensity 
(lamp)

Point light located at the viewer position,
there are no shadows

Point light located near the vase



3) Directional light 

Lights all objects equally, but only 

from a specified direction

– Located infinitely far away 

– Simulate distant light sources (Sun)

– Specified as a vector P=[x,y,z,0]



4) Spotlight (luce riflettore)

Light emitted from a single point in space

• Spreads outwards in a cone

whose apex is at Ps, 

which points in the direction ls, and 

whose width is determined by an angle teta.

• Angular subset of a point light

The light intensity is concentrated in the 

center of the cone and it drops off towards (ϑ,-ϑ)

(exponent of attenuation of a spotlight)





Illumination model 

(Reflection Model)
• Different materials reflect light in different 

patterns

• The way a particular material reflects light is 
referred to as a reflection model

• The reflection model takes the direction and
color of the incident light coming from a
particular light source and computes what color
of light is going to be reflected in the direction of
the camera

• Phong’s local illumination model



Phong’s local illumination model

(Phong Bui-Tuong 1975)

1,,,0 

+++=

sdae

ssddaae

kkkk

kIkIkIkI

The model only considers light coming directly from 

light sources (called direct light)

Sum of three components:

diffuse reflection +specular reflection +“ambient”

+ emissive

Phong’s Equation at a surface point:
specular

diffuse

ambient



++

=



Lighting: Emissive component

• Light sources: sun, fire, light bulbs etc.

• Objects can emit light by self-emission

• The object is a point light source that emits 

light uniformly in all directions  

• ke emissive coefficient
(luminosità intrinseca dell’oggetto)

10 = ee kkI



Lighting: Ambient component

10 = aaa kkII

• Ambient light component accounts for non-specific global 

light (indirect light from other objects) scattered in all 

directions, to guarantee a minimum uniform light level in 

the scene

• It does not depends on the viewer position or surface 

position, it is constant 

Ia ambient intensity, identical at every point in the scene, and it is 
the same at every point on the surface. Some of this light is 
absorbed and some is reflected. The amount reflected is given by 

ka ambient reflection coefficient and is characteristic of a given material



Lighting: Diffuse component

• An ideal diffuse surface is, at the 

microscopic level, a very rough surface.

– Example: chalk, clay, some paints, wood

• Amount of light reflected from a 

point on the surface is 

equal in all directions

Surface



Lighting: 

Diffuse component
• Reflection dependent on

– orientation of surface

– light source position

• light is reflected equally in 

all directions

• The brightness is 

independent of the viewing 

direction (camera position)

Surface

n



Lighting: 

Diffuse component

Normal n = (nx, ny, nz)
Direction of the light source l = (lx, ly, lz)

Surface


l

n

Ideal diffuse reflectors reflect light according to 

Lambert's cosine law. Lambert's law determines how much of the

incoming light energy is reflected. Reflected intensity:

d

I

k

 Angle between normal and light direction

Source light intensity

Material diffuse coefficient

 cos

( )

d d d

d

I I k k I

k l n I

  = = =

= 



Lighting: 

Diffuse component

• For the Lambert's law the reflected intensity increases 
for angles approach to zero.

• Angle in [-90,90]; 

• if the dot product is negative, indicating that the light is 
on the wrong side of the surface, we clamp it to zero

• For point light the vector l changes

from point to point on the surface

• For directional light is constant

max(0, )dI k l n I = 



Lighting: Specular component

– Highlights that we see reflected from shiny objects

– An ideal mirror surface reflects the light in the ideal 

reflection direction  only. 

– Ideal mirror reflector

the light is reflected in the ideal reflection direction r , 

which is obtained by reflecting l (light direction) with 

respect to n (surface normal) 

– Examples: mirrors, highly polished metals, plastics.

Surface


l

n

r




Lighting: Specular component

ss n

s

n

sss rvIkIkkII )(cos ===  

View dependent

How much light is reflected?
Depends on the angle 
between the ideal 
reflection direction r and 
the viewer direction v.

Max =0 (r=v) and it
decreases for increasing 
angle  .

 

Surface

l

n
r

v


camera



Non-ideal Reflectors

Real materials tend to deviate significantly from 
ideal mirror reflectors because of microscopic 
surface variations.

We might expect some of the light to be 
reflected just slightly offset from the ideal 
reflected ray. 

Specular: simulates a highlight

HIGHLIGHT (bright spot) in shiny 
surface: area which reflects the incident 
light colour and is not affected by the 
material colour



Non-ideal Reflectors

• The reflected light is scattered near the ideal reflection

direction – Highlight is blurry

• Specular lobe: The farther away the viewing direction 
v is from the reflection direction r, the less light 

reflected is visible (the highlight descreses)



Shininess coefficient or 

Phong’s exponent ns





ns shininess coefficient of the material (Specular exponent)

As ns is increasing, the reflected light is concentrated in 
a narrower region centered on the perfect reflector



Phong model – the effect of ns

As ns goes to infinity, we get a mirror, 
ns in [100,500] metallic surfaces, ns  <100 broad highlights



Kd

Ks

(0,0)

Ka =0.7



Putting it all together..
The complete Phong Illumination Model

[ cos cos ]sn

a a l d sI I k I k k  = + +

Ambient Diffuse

Specular



Extend the Phong’s model

1

1

1

[ ( ) ( ) ]

[ ( ) ( ) ]

[ ( ) ( ) ]

s

r r

s

g g

s

b b

lights
n

r a a l dr s

l
lights

n

g a a l dg s

l
lights

n

b a a l db s

l

I I k I k n l k v r

I I k I k n l k v r

I I k I k n l k v r







=

=

=

= +  + 

= +  + 

= +  + 







1

[ ( ) ( ) ]s

lights
n

a a l d s

l

I I k I k n l k v r
=

= +  + 

To account for multiple lights, we just sum up the contribution 
from each individual light

Extend to colored light source and object

The specular reflected coefficient Ks is constant for white light



Attenuation term

For point lights: 

• To account for attenuation of the intensity 

light as the light travels a distance s from 

the source to the surface, 

• Attenuation is inversely proportional to the 

quadratic of the distance

2
1

[ ( ) ( ) ]s

lights
nl

a a d s

l

I
I I k k n l k v r

s


=

= +  + 



Determination of the 

Reflected Vector 

Surface


l

n


r

r

2  cos  

2( )

l + =

=  −

r l n

r n l n l

Calculate r from n, l via

(twice the projection of l onto n)



Blinn-Torrance 

Variation of Phong

In Phong shading, one must continually recalculate the dot 

product (r,v). If instead one uses the “halfway vector” h 

between l and v:

then the reflected light in Phong’s model is given by

l v
h

l v

+

+
=

( )

(cos )

s

s

n

l s

n

l s

I k n h

I k 



The angle β is half of the 

angle represented by 

Phong's dot product

r



Lighting vs shading
Illumination: transport of luminous flux from light sources via 

direct & indirect paths.

Lighting (per vertex): process of computing the luminous 

intensity (i.e., outgoing light) at a particular 3-D point, usually 
on a surface. On a curved surface the lighting changes from 
point to point

Shading (per fragment): assigning pixel colour. (How the 

lighting is used to color the pixels)

light

Geometry

blue

red green

Rasterizer



GPU

CPU

Geometry stage: Lighting/Shading

Application

Model  View
Transform

Lighting

Projection
Transform/clip

Fragment generation/

Rasterization

Texture
Mapping

Z-Buffer
Visibility Test

Final Image

in FRAME BUFFER

Vertices

geometry

rasterization

Lighting

Before Projection Transform 
which could deforme normal 
vectors; done in VCS coord.

Shading In rasterization a color
per pixel is computed by
interpolating the colors of the
vertices



Shading for polygons

• Shading Models give a technique to determine 

the colors of all the pixels covered by a surface 

using appropriate illumination model

• IDEAL: 
– determine surface visible at each pixel

– compute normal of the surface

– evaluate light intensity and color using an illumination 
model

This is quite expensive!

• REAL: approximate with shading.

if surface defined as mesh of polygonal facets, 
which surface points should we use ? 



Flat Shading

• Compute lighting at one vertex per polygon, use 
same value for every pixel in polygon

• obviously inaccurate for smooth surfaces

n



Flat Shading Approximations

• if an object really is faceted, is this 
accurate?

• no! It supposes constant l,n,v on a 

polygon 

– KO for point sources, the direction to 

light l varies across the facet

(OK for directional light) 

– KO for specular reflectance, direction 

to eye v varies across the faces

(OK viewer at infinity – parallel proj.)



Improving Flat Shading

• what if  evaluate Phong lighting model 
at each pixel of the polygon?

– better, but result still clearly faceted

• we introduce vertex normals at each
vertex

– usually different from facet normal

– used only for shading

– Target: make a better approximation 
of the real surface that the polygons 
approximate



Vertex Normals

• vertex normals may be 

– provided with the model

– computed exactly on the model (es. Spline) 

– approximated by averaging the normals

of the facets that share the vertex



Approximate the vertex normals







=

ni

i

ni

i

V

N

N

N

1

1

VN

1N

2N

3N

4N

Assume to know which faces share a given vertex

Average of face normals



Gouraud Shading

C1

C2

C3
does this eliminate the facets?

• most common approach, and what OpenGL does
– Normals are computed at the vertex (computed in VCS)

– Intensity at each vertex is calculated using the normal 
and an illumination model (Phong lighting)  

– In rasterization stage: for each polygon the intensity 
values for the interior pixels

are calculated by linear interpolation 

of the intensities at the vertices

interior: mix of c1, c2, c3 edge: mix of c1, c3

edge: mix of c1, c2



Gouraud Shading Artifacts

(I) MISSING HIGHLIGHT and SPOTLIGHT 

effects 
• The surface is dark;

• Might miss specular highlights, if the highlight doesn’t 

fall at the vertex. if the highlight is included, will be 

averaged over entire polygon

C1

C2

C3

Can’t shade the highlight!



(II) Mach banding EFFECT

C1

C2

C3

C4

Discontinuity in rate
of color change

occurs here

The normal vector is the same for the 
vertices C1 and C2 in both triangles 

Gouraud Shading Artifacts



i 

Z – in WCS

Image Plane

Solution: compute shading in object space
and not in screen space or apply perspective correction.

Interpolation of colors in Screen Space 
- Linear interpolation is performed in screen space and it 

does not correspond to linear interpolation in WCS!

- Perspective projection alters the linear interpolation!

Gouraud Shading Artifacts

Two regions of same
size in world space 

The farther region shrinks to 
a smaller area of the screen 



Phong Shading

• Normals are calculated for each vertex.

• Vectors are then interpolated across the face.

• Apply Phong’s light model at every pixel inside face using 

interpolated normal vector

– Better handling of specularities

– Slower than Gouraud shading

• Not built into OpenGL Interpolated Normals



Phong Shading

• linearly interpolate the vertex normals

– apply Phong’s light model at every pixel

(Specular reflections are also incorporated)

N1

N2

N3

N4

( ) ( )( )
1

s

lights
n

total e a ambient l d s

l

I k k I I k n l k v r
=

= + +  + 

remember: normals used in 
diffuse and specular terms

discontinuity in normal’s rate of 
change harder to detect…



Phong Shading Difficulties

• computationally expensive
– per-pixel vector normalization and lighting 

computation!
– floating point operations required

• lighting after perspective projection

• no direct support in hardware
– Apply using shader



PHONG Shading ARTIFACTS

Silhouettes
• polygonal silhouettes remain

Gouraud                           Phong



PHONG Per-fragment shading

• Vertex shader

-compute vectors:  n,l,v in VCS for vertices

• Rasterizer (generates fragment): 

interpolate values at vertices to produce      

values per pixel

• Fragment shader (lighting computation)

-apply Phong’s light model to pixels



• Flat (uses actual triangle normals)

• Gouraud 

(uses vertex normals, one lighting evaluation per vertex) 

• Phong 

(uses vertex normals, one lighting evaluation per pixel)

Increase the number of faces  



Flat shading

Foley Van Dam



Gouraud shading



Phong shading



Shadow...ombre!

• Lighting and shading are computed using direct light 

• That is we ignore effects due to:

– Shadows for occlusions

– Intensity of the shadows (points in shadows that 
receive light from other objects) 

– Light reflected by other objects

• Recursive reflection, Refract (Translucent objects) 
and shadows are only obtained by global 
illumination models



The shadow for an object depends 

on the object shape and

on the position of the light source.

• Depth cue

• Scene Lighting

• Realism

• Contact points

Image courtesy of BioWare



Soft and hard shadow

point source

umbra

area source

umbrapenumbra

occlusion

SOFT Shadows: caused by extended light sources
Umbra source completely occluded
Penumbra source partially occluded



• Soft Shadow contains both umbra than penumbra

• Point lights produce only HARD Shadows
SOLUTION 1 Simulate area lights with lots of point lights
SOLUTION 2 Blur shadows in image space

Soft and hard shadow

Expensive

Cheap, inaccurate



Fake/Approximated Shadows

1) Planar Shadows

2) Shadow Maps

3) Shadow Volumes

–Stencil Buffer



1) Shadows on Planar Surfaces

- Draw the object primitives a second time, projected to

the ground plane

- The point light source is the Center of Projection (COP)



1) Shadows on Planar Surfaces

(Blinn 1988)

Assume a single object 
on a plane

Draw the projection of 
the object onto the 
plane;

shadow polygon: it is the 
projection of the polygon 
on the surface (es. z=0) 
with COP in the light 
point L.

P

L

S



1) Shadows on Planar Surfaces

(Blinn 1988)

0

1 0 0

0 1 0
0

0 0 0 01 1

0 0 0 1

p l p l

p p

s p l s p l

l l

l

pls

ps l

l p

S P L

z z z / z

z z
x x x y y y

z z

x

xzx

yy y

z z


 

= −

= − =

= − = −

 
−    

    
     −=     
    
       
 

For each vertex of the 
object P(xp,yp,zp), a 
shadow ray passes from 
the point light L(xl,yl,zl) 
to the plane intersecting 
the shadow polygon in 
S(xs,ys,0)

Compute the vertices 
of the shadow polygon 
and rending it as an 
added object with dark 
color. 



Limitations of Planar Shadows

• Does not produce self-shadows, shadows 

cast on other objects, shadows on curved 

surfaces, etc.



2) Shadow Map Algorithm 

(Williams 1978)
• A point is lit if it is visible 

from the light source

• Shadow computation 
similar to view computation 
(hidden surface removal)

• There are not shadows if 
the viewer coincides with 
the unique light point there.

(shadows are hidden to the 
light source) 



2) Shadow Map Algorithm 

It needs a buffer (shadow z-buffer) for each light 
source.

Procedure uses 2 passes through the pipeline:

STEP 1: compute shadow map (depth from 

light source) first rendering of the scene using the light 

source as view reference point; store the result in the 

shadow Z-buffer 

(Depth image of visible polygons from light source)

STEP 2: Render final image second rendering of the 

scene using Z-buffer algorithm and checking shadow map 

to see if points are in shadow



77/40

Shadow Maps: step 1

• Render scene from light’s perspective

2D Shadow Map



78/40

Shadow Maps: step 2

• Render scene from

viewer’s perspective



79/40

Shadow Maps: step 2

• Render scene from

viewer’s perspective

• For every pixel
– Transform to 

light source space

– Compare distance

to value in shadow map



80/40

Shadow Maps : step 2

• Render scene from viewer’s perspective

• For every pixel
If the point (x,y,z)ws is visible from 
the camera, 
convert (x,y,z)ws in (x',y',z')LS point
coord. in light source frame with 
origin at the source light;

- If z' > shadow_z-buffer(x',y') 

then another surface is closer to 

the light source with respect to 

the considered point, the point is

shadow;

- Otherwise render the point.

(x,y,z)WS

(x',y',z')LS



81/40

Shadow Maps : step 2

• Render scene from viewer’s perspective

• For every pixel

In shadow!

If the point (x,y,z) ws is visible from 
the camera, 
convert (x,y,z)ws in (x',y',z')ls point 
coord. in light source frame with 
origin at the source light;

- If z' > shadow_z-buffer(x',y')

then another surface is closer to 

the light source with respect to 

the considered point, the point is

shadow;

- Otherwise render the point.



82/40

Shadow Maps : step 2

• Render scene from viewer’s perspective

• For every pixel

In shadow!

If the point (x,y,z) ws is visible from 
the camera, 
convert (x,y,z)ws in (x',y',z')ls point 
coord. in light source frame with 
origin at the source light;

- If z' > shadow_z-buffer(x',y')

then another surface is closer to 

the light source with respect to 

the considered point, the point is

shadow;

- Otherwise render the point.



83/40

Shadow Maps : step 2

• Render scene from viewer’s perspective

• For every pixel

Not in shadow!

If the point (x,y,z) ws is visible from 
the camera, 
convert (x,y,z)ws in (x',y',z')ls point 
coord. in light source frame with 
origin at the source light;

- If z' > shadow_z-buffer(x',y')

then another surface is closer to 

the light source with respect to 

the considered point, the point is

shadow;

- Otherwise render the point.



85/40

Shadow Maps

Image taken from http://www.cse.ohio-state.edu/~haleyb/Hardware/ggDepthBuffer.jpg



Shadow Map 
Pre-computation of shadows as texture

Images courtesy of Kasper Høy Nielsen.

Shadows  are 
independent on the 
view reference point.

Shadow-Maps:
generate shadow 
texture by capturing 
silhouettes of objects as 
seen from the light 
source. Project texture 
onto scene. 
Note: must recalculate 
for moving lights



3) Shadow Volumes

• Explicitly represent the volume 

of space in shadow

• For each polygon

– Pyramid with point 

light as apex

– Include polygon to cap

• Shadow test similar 

to clipping



Shadow Volumes

• If a point is inside a shadow 

volume cast by a particular light, 

the point does not receive any 

illumination from that light

• Cost of Naive 

implementation:

#polygons * #lights

MIT Durand and Cutler



Shadow Volumes

• Shoot a ray from the eye 

to the visible point

• Increment/decrement a 

counter each time we 

intersect a shadow 

volume polygon 

(check z buffer)

use front/back culling

• If the counter ≠ 0,

the point is 

in shadow

+1-1

+1

frontfacing

backfacing



Shadow Volumes with 

the Stencil Buffer 
A four pass process [Heidmann91]:

1) Initialize stencil buffer to 0

Draw scene with ambient light only

Turn off frame buffer & z-buffer updates

2)Draw front-facing shadow polygons

If z-pass → increment counter

3)Draw back-facing shadow polygons

If z-pass → decrement counter

4)Turn on frame buffer updates

Turn on lighting and redraw pixels with 

stencil buffer counter = 0

0
+2

+1



http://www-sop.inria.fr/reves/personnel/Marc.Stamminger/psm/

Image courtesy of NVIDIA Inc.



Alpha for Transparency
• Add an additional property to 

material colors called alpha

• Colors are actually (r g b a)

• Alpha actually represents the 
opacity of an object and ranges from 
0 (totally invisible) to 

1 (fully opaque). 

A value between 0 and 1 will be 
partially transparent

• The alpha value is a 8 bit quantity, 
so   a color is a 32 bit rgba value. 

(default alpha =1 - fully opaque)



Alpha Blending:

Computing Transparency

• When we are rasterize a transparent triangle, we end up 
with an alpha quantity per pixel

• We also end up with a color value per pixel which comes 
from the Gouraud interpolated color per vertex, or the 
texture map, or both. We refer to this as the source color

• We can also read the color value already stored in the 
pixel. We call this the destination color

• The final color we render into the pixel will be a linear blend 
of the source color and destination color. The alpha 
quantity controls how much we blend each one

( ) destsrcfinal ccc  −+= 1



Basic Alpha Blending

Solid back color (dest)Transparent front color (src) with opacity 

( ) destsrcfinal ccc  −+= 1

• Blending Operator is not commutative 

Front to Back 

Back to Front 



Rendering with transparency

• Because of the zbuffer, we can generally 
render triangles in any order without 
affecting the final image

• With transparency, however, we actually 
need to render transparent surfaces in a 
back to front (far to near) order

• This is required because the transparent 
surface will modify the color already stored 
at the pixel



Rendering with transparency

• If we have a blue tinted glass in front of a brick 
wall, we render the brick wall first, then when we 
render the blue glass, we need to apply a blue 
tinting to the brick pixels already in the 
framebuffer

• We should render all opaque surfaces in a 
scene before rendering the transparent 
surfaces. 

• For best quality, the transparent triangles should 
be sorted back to front, which can be an 
expensive operation

→Order-Independent Transparency (OIT) 
algorithms!



Rendering with transparency
1) Render Opaque object

- Depth-buffer rejects

occluded fragments

2) Render Transparent object

All fragments are stored using per-pixel linked lists 

Linked List [Yang et al.]

Store fragments: 

Color+alpha+depth (only the first K)

- Storage buffer: fragment + previous

– Per-pixel list-head 

24 3 1



Rendering with transparency

1) Render Opaque object

- Depth-buffer rejects

occluded fragments

2) Render Transparent object

– Store fragments: Color+alpha+depth (only the first K)

3) Resolve Transparent

– Fullscreen sort & blend per pixel 

24 3 1

Not efficient to globally sort all fragments per pixel 
– Sort K nearest correctly via register array 
– Blend fullscreen on top of framebuffer 



Serena Morigi
Dipartimento di Matematica

serena.morigi@unibo.it

http://www.dm.unibo.it/morigi

Order-Independent Transparency [McGuire et al.] 

mailto:serena.morigi@unibo.it

