
Global Illumination

“An improved illumination model for shaded display” by T. Whitted,

CACM 1980, Resolution 512x512 image, VAX 11/780, Time 74 min.

A ray traced image with recursive ray tracing, transparency and refractions

Color, depth and photorealism..

From the geometric model..... Toward its realistic visualization

Refractions Reflections

Shadows

Indirect Illumination

http://www.povray.org

The direct Illumination algorithm cannot generate images like these

Local and Global Models

• Local model: the color of a surface element depends only

on light from light sources and ignores effects of all other

objects in the scene

• Global model: the color of a surface element depends on

the light from light sources and from light bounces off other

objects toward our surface element

Global illumination models

Rendering Equation:

Physically-based illumination model which describe energy
transport and radiation

Global illumination models:

• Ray Tracing

Global specular interaction;

Depends on the point of view

• Radiosity

Global diffuse interaction;

It does not depend on the point of view

Real World Lighting
• Light sources emit photons.

• The incoming light from light sources is partially absorbed,
partially reflected and partially refracted

• The reflected light defines the object color: if only green is
reflected, red and blue are absorbed, then object appears green

• Reflectance – a fraction of the incident light that is reflected

Incident

Light
Reflected Light

camera

Refracted

Light

Real lighting

• Ray of light or photons go from the light source to the scene,

and they travel until they eventually reach the viewer’s eye

position

• The color of an object point visible from the camera is given by

– the light ray that directly hits it and it is reflected toward the camera,

– and by indirect light rays bouncing from another object

viewport

eye

Real lighting

• Following the path of the light rays from the light

source to the scene...

• Only a few of them reach the eye position (ray A)!

• Most light rays instead

(C)

(A)
(B)

(B) absorbed into a material

(C) leave the scene

Basic Ray tracing

We are interested only into the rays which reach the

eye, then instead of forward mapping infinite number

of rays from light source to object to viewer, backmap

finite number of rays from viewer through each

sample to object to light source (or other object)

Basic Ray tracing

We must assign one color for each pixel,

• Generate primary (‘eye’) ray

– ray goes out from eye through a pixel center

• Find closest object along ray path

– find first intersection between ray and an object in scene

– It can be a light source or an object

If the ray doesn’t hit

anything, then we can

color the pixel to some

specified ‘background’ color

Basic Ray tracing
• Once we have the key intersection information,

• apply an illumination model to determine the direct

contribution from light sources → ray casting

• For greater accuracy, recursively generate secondary rays

to capture indirect contributions from inter-object reflections

(specular components only) which themselves have direct

and indirect contributions, etc → ray tracing

The result of the

lighting equation is a

color, which is used to

color the pixel

Ray tracing

• Shadow/Direct Illumination

(Ray Casting)

• Reflection

• Refraction

• Recursive Ray Tracing

Ray Casting Algorithm

For every pixel (x,y)

Construct a ray from the eye

color[x,y]=castRay(ray)

• Complexity? O(n * m)

– n: object number, m: pixel number

Ray Casting: Color castRay(ray)

color castRay(ray) {

hitObject(ray, hitpoint, n ,object);

color = object color;

if(object is light)

return(color);

else

return(lighting(hitpoint,n, color));

}

Shadow Rays

Each light in scene makes contribution to color and intensity of a surface
element IFF it reaches the object!

- could be occluded by other objects in scene

Construct a ray from surface to each light, called shadow ray,

Check if the ray intersects other objects before it gets to light

- if ray does NOT intersect that same object or another object on its
way to the light, then the full contribution of the light can be counted

- if ray does intersect an object on its way to the light, then no
contribution of that light should be counted

Color: compute the pixel

color by applying the Phong’s

illumination model
lighting(hitpoint,n,color)

Ray Casting: Color castRay(ray)
col castRay(ray) {

hitObject(ray, hitpoint,n, object);

col = object color;

For every light L

Construct rayS(hitPoint, L->getDir());

For every object ob

hitObject(rayS, hit2, ob);

If (rayS does NOT intersect any ob)

col=col+lighting(L,hitpoint, n)

Return col;

}

Ray casting

If no transparent objects are in scene, ray casting gets depth

buffer hidden surface removal, shadows and local lighting

illumination.

Ray tracing

• Shadow/Direct Illumination

• Reflection

• Refraction

• Recursive Ray Tracing

Specular Surfaces: Reflection Rays

So far accounts for light rays that originate from a point light,

hit a surface, and then reflect from the surface to the eye

Light can also travel more complicated paths, perhaps

bouncing multiple times from the surfaces before reaching the

eye.

Add reflection ray: start from point of intersection and send a

ray toward specular reflection

nr

Specular Surfaces

• bounce off other objects to capture specular inter-object
reflections, until they either go out or gets a light source

• find the first point where the reflected ray hits an object in
the scene and calculate that point’s illumination from all light
sources (generate shadow rays and so on..)

• This process can continue recursively with reflection rays
themselves spawning their own reflection rays.

Computing Reflection Direction

Surface

v

n

rv

2 cos

2()

2()

v

v

v

+ =

= −

=

r v n

r n v n v

v opposite

r v - n v n

Compute rv, given the vectors n, v,

The incoming ray v, the surface normal n, and

the reflected ray all lie in a common plane.

Incident angle = Reflected angle

“Sphereflake” fractal Henrik Wann Jensen

Ray tracing

• Shadows/Direct Illumination

• Reflection

• Refraction

• Recursive Ray Tracing

Transparecy

Ray tracing can also be used to accurately render the light

bending in transparent surfaces due to refraction, when light

passes from one medium to another

Transparency: Transmission Ray

A transmission ray is generated when a ray hits the

surface of a transparent object: the transmission ray

continues on through the surface. Refraction causes the

direction of the transmitted ray to change.

The amount of refraction is calculated using the index of

refractions.

At the first intersection

point (inside)

again a reflection ray

and a transmission

ray are generated

This process

continues recursively

Refraction is wavelength-dependent

• A ray that hits the surface of a transparent object is

refracted. This change in direction is caused physically

by the difference in the speed of light in the two media

(air and water, for instance)

• Objects hidden by transparent objects

appear deformed

• Use of the index of refraction

of the media (h)

T

N

I I

1 1

2 2

sin

sin
r

 h
h

 h
= =

Snell-Descartes Law

Media 1

Ex. air

Media 2

Ex. water

1

2

 angle of incidence

 angle of refraction/transmission

Transmitted Ray

1 1 2 2sin sinh h =

D – incident ray direction

N – unit surface normal

R – refracted /transmitted ray
direction

T – unit surface tangent

(in the plane N and I)

Snell-Descartes Law

1 1

2 2

0 sin cos

0 sin cos

T N D

T N R

= + +

= + +

reflection

ray

Transmission

ray

Transmitted Ray

When the square root is negative, there is no transmitted ray and
all the light is reflected (Total internal reflection)

Total internal reflection

• Light goes from a material with a higher refraction index

n2 to a material with a lower refraction index n1, there is

no refraction if the incident angle exceeds a critical angle

• Then all the light reflects

reflection

ray

Transmission

ray

reflection

ray

Total internal reflection

• Light goes from a material with a higher refraction index

n2 to a material with a lower refraction index n1, there is

no refraction if the incident angle exceeds a critical angle

• Then all the light reflects

1,max
2

 =

Viewing angle

• The proportion of reflection versus transmission

gradually increases as we go from a perpendicular to a

parallel viewing direction

Ray tracer on GPU: RTX

Ray tracing

• Shadows/ Direct Illumination

• Reflection

• Refraction

• Recursive Ray Tracing

Shadows in Ray Tracing

• If we wish to compute the illumination with
shadows for a point, we shoot an additional
ray from the point to every light source

• A light is only allowed to contribute to the
final color if the ray doesn’t hit anything in
between the point and the light source

no shadow rays

One shadow ray

Shadow Rays

Soft Shadows

• Multiple shadow rays to

reproduce an area light

source (soft shadows)

one shadow ray

molti shadow rays

Basic Ray Tracing

Henrik Wann Jensen

Ray Tracing + Soft Shadows

Ray tracing

• Shadows/Direct Illumination

• Reflection

• Refraction

• Recursive Ray Tracing

Ray Tracing History

• Ray Casting: Appel, 1968

• CSG and quadrics: Goldstein & Nagel 1971

• Recursive ray tracing: Whitted, 1980

Ray Tracing: recursive algorithm

Image raytraceImage(vector eye)

begin

Image image;

for (each scanline Y)

for (each pixel X)

image[X][Y]=

traceray(eye,dirFromEyeToXY,RecursionStep)

end

end

return image;

traceray() recursive procedure that trace a ray, defined by a point and

direction, and compute the color of the first intersected surface

(Initialize Recursion Step = max number of bounces – recursive steps)

traceray()

•Find the first intersection of the ray with the scene; if the ray does not

hit any object then “background color” is returned; if the ray intersects

the light, then light color is returned;

•Generates shadow rays to the light sources

•Calculates the illumination of that point according to the local lighting

model

•Spawns a reflection ray r and a transmission ray t as appropriate

•Calls itself recursively with r and t

•Combines the resulting illumination contributions and returns

Ray Tracing

Any reflected, refracted, shadows rays are

called secondary rays

reflected

refracted

color c=traceray(point p, vector d, int step)

begin

color local, riflesso, trasmesso; point q; normal n;

if (step > max) return(background-color);

[obj,q] = intersect(p,d,status);

if (status = light-source) return(light-source-color);

if (status = no-intersection) return(background-color);

/* calcolo della normale al punto di intersezione,della

direzione del raggio riflesso e del raggio trasmesso */

n=normal(q);

r=reflect(q,n);

t=transmit(q,n);

local = phong(q,n,r);

If (obj.mirror) riflesso = traceray(q,r,step+1);

If (obj.transparent) trasmesso = traceray(q,t,step+1);

return(local + trasmesso + riflesso);

end

Lighting Equation Model

Kr in [0,1] factor specifying what fraction of the light from
the reflection direction is reflected

Kt in [0,1] material property, it specifies the fraction of light
transmitted through the surface

I_reflect intensity of the incoming reflected light, computed
recursively in the direction of the reflection ray;

I_transmit intensity of the incoming reflected light,
computed recursively in the transmission direction;

I_local lighting as computed by the local illumination model
(Phong)

local r reflect t transmitI I K I K I= + +

Ray Tracing: recursive algorithm

intersect() find intersections of a ray with objects in

the virtual scene. Test the ray against each

surface of each object for possible intersections.

It should be computationally efficient, it is the

major portion of the raytracing execution time

The ray Tree

R2

R1

R

3

L2

L1

L3N1

N2

N3

T1

T3 Eye

L1

T3R3

L3L2

T1R1

R2

Eye

Each node is an intersection point

Ni surface normal

Ri reflected ray

Li shadow ray

Ti transmitted (refracted) ray

Stopping Criteria

• Recursion depth

– Stop after a number of bounces

• Ray contribution

– Stop if transparency/transmitted

attenuation becomes too small

Compute the energy left and thus reflected by a ray at each
intersection

Add a parameter (energy) to the recursive call:

color c = traceray(point p, vector d, int step,
float energy)

Effects of recursive depth

Recursive depth from 0 to 7. Teapot and mirror are perfect specular

objects without local lighting component (only ambient light)

depth=0: the rays stop on mirror and teapot without local contribution

Effects of recursive depth

Serena Morigi 55

depth=1: rays eye/mirror/ teapot stop on teapot and produce a gray

shadow on the mirror

Effects of recursive depth

depth=2: gray shadow on the reflectd teapot on the mirror due to

the unique ambient light contribution

Effects of recursive depth

depth=3

Effects of recursive depth

depth=4

Effects of recursive depth

depth=5

Effects of recursive depth

depth=6

Effects of recursive depth

depth=7

Intersection ray - surface

• This is the most computationally expensive

procedure in the recursive ray tracing

• Objects must be stored in smart data structures

• Most of the ray tracers work with poly mesh only

• Ray- triangle

• Ray- sphere

• Ray-parametric patch (NURBS)

• Ray-implicit surface

Step 1: Ray – Plane Intersection

• Explicit (Parametric) Ray equation

P(t) = P0 + t (P1 – P0) t in [0,∞)

P(t) = (1-t) P0 + t P1

• How do we intersect?
Insert explicit equation of ray into
the plane equation

• P(t)= (1 − t)P0 + tP1 n · (P(t) − P2) = 0

Find t= n·(P2−P0)/n·(P1−P0)

Then find the intersection point P = P(t)

P1

P

P0

P2

Step 2: Ray - triangle intersection

• Check if P is inside or outside the triangle

Compute barycentric
coordinates of P with
respect to the triangle A B C

P(a, b, g)= a A + b B + g C

con a + b + g =1

P belongs to the triangle if

0< a <1

0< b <1

0< g <1

P0A

C

B

P

Ray-Sphere Intersection

• Sphere Equation (centered at the origin c=0)
(implicit): (P(t)-c)2 = r2

• Ray Equation (parametric):

P(t) = P0 + t (P1 – P0)= P0+t rd t in [0,∞),|| rd||=1

• An intersection point satisfies both

Pord

Ray-Sphere Intersection

rd

2

2

0 0

2 2 2

0 0 0

2 2

0 0 0

0 () ()

0 () ()

0 2

0 2

d d

d d

d

P t P t r

P tr P tr r

P P tr P t r r

P P tr P t r

= −

= + + −

= + + −

= + + −

Po

Solve quadratic equations for t

Ray-Sphere Intersection

• Compute discriminant

For the case with two solutions, the smallest non-negative
real t represents intersection nearest to eye-point

Ray tracing for ‘Cars’

Per Christensen

Pixar Animation Studios

PIXAR

Why ray tracing?

Environment map Reflections using

Ray-tracing PIXAR

Ray tracing effects

mirror reflection

sharp shadow

soft shadow

self inter-

reflection

PIXAR

Ray Tracing Acceleration

Techniques

Uniform grids

Spatial hierarchies

•K-D

•Octtree

•BSP

Hierarchical grids

Hierarchical

bounding

volumes (HBV)

Tighter bounds

Faster intersector

Early ray

termination

Adaptive sampling

Beam tracing

Cone tracing

Pencil tracing

Faster intersection

N 1

Fewer rays Generalized rays

Too Slow!

Radiosity vs.

Ray Tracing

81

Scena senza la luce ambiente

RT è view-dependent,

Radiosity è view-independent

Serena Morigi
Dipartimento di Matematica

serena.morigi@unibo.it

http://www.dm.unibo.it/morigi

mailto:morigi@dm.unibo.it

