
Hand with Reflecting Sphere Ferretti 2017

Texture mapping

Towards visual realism

http://www.3drender.com/jbirn/productions.html

modelling modelling + shading

How can we get this?

Modelling + shading + texturing

Provides realistic appearance to models without

having to add additional geometric fine detail

Texturing: apply images to

geometric objects

Objective: improve realism,
reduce geometric

complexity...

...this the easiest way to get it!

+ =

light mapping pre-computation

with texture

Images courtesy of Kasper Høy Nielsen.

Precompute the shading in
scene:

• store the 2D light map, during
shading, read the light map.

• use global illumination method
view independent (i.e. radiosity)
to precompute the light maps.

• a light map stores a set of 2D
maps of the reflected light from
the surfaces.

Examples in video games..
A few polygonal meshes (i.e., low geometric complexity)

• Purely local lighting computations

• Details by pre-computed texturing

– Geometric Details

– Smog, fire, special effects

– Lights, shadows, reflective effects

• Bump mapping in hardware

Texturing

2D Image Texturing: maps image onto surface

3D Solid texturing: objects appear sculpted out

of solid substance

– 2D/3D images - Procedural texturing

Courtesy of Leonard McMillan & Jovan Popovic, MIT

Adding TEXTURE MAPPING

to illumination

Constant diffuse color Diffuse Texture Color Texture used as Label Texture used as Diffuse Color

2
1

[() ()]
lights

j n

a a d j s

j

I
I I k k n l k v r

s

=

= + +

Object properties modified by

texture mapping:

• Color (texture mapping) modify the final color

(LIT in Phong’s Model/UNLIT no lighting

calculation) with the texture map color

Object properties modified by

texture mapping:

• Reflected color (environment mapping):

– Uses a picture of the environment for texture maps

– Allows simulation of highly reflective surfaces

Object properties modified by

texture mapping:

• Surface Normal (bump mapping):
Intensity value of a source image is used to modify the normal direction of

the object surface. Does not modify surface geometry, but the visual result

fools us into thinking the surface is not smooth.

Object properties modified by

texture mapping:

• Transparency (Opacity maps) modify the opacity

of a transparent object

Ken Perlin’s vase with procedurally varying index of refraction, 1985

Image Texture Mapping

s

t

x

y

z

Texture

image

geometry

Surface polygon

2D digital image

(Texture) maps onto

surface (polygon)

Pixel in a texture

(Texel) have

coordinates (s,t)

[0,1]x[0,1]

1.0

1.0

texel

Texture mapping

• Screen space screen coords. system (x,y)

• Object space world coords. system (u,v,w)

• Texture space texture coords system (s,t)

Texture mapping

• Parameterization phase: from Texture Space to
Object Space

• Projection phase: from Object space to Screen
space

Parameterization

How to apply the texture to the object

Define a function M that associates each surface

point (x,y,z) with a 2D point in the texture map

(pair of coords (s,t))

M(x,y,z)=(s,t)

For each point rendered, look up color in texture

map

Parameterization depends on the object

representation:

– Parametric surface

– mesh

Parameterization:

parametric surface
• If the object is represented by parametric surfaces

(i.e.spline), the parameterization is naturally provided by the
domain D=UxV

S(u,v)=[x(u,v),y(u,v),z(u,v)], (u,v) in D

• Texture space and parametric space are related by an affine
transformation M

• We need inverse mapping M-1

Parameterization of a triangle

v1s1,t1

(1,1)

Per-vertex texture coords. manually, provided by user :

assign a texture coords (s,t) to each vertex v

Points inside the polygon:

Then we interpolate using barycentric coords.

t s2,t2

v0

(0,0)

s0,t0

v2

v1

s

Triangle (in WCS)

s1,t1

(αs0+βs1+γs2, αt0+βt1+γt2)

Parameterization of a Mesh

2D Domain 3D mesh

T

Assigning a texture region to each triangle

An ideal parametrization would be isometric.

That is, it would preserve lengths, and therefore angles too.

A conformal parametrization is one that preserves angles. A surface triangle can

be mapped to a small triangle in the texture domain.

This leads to undersampling.

Parameterization of a mesh

with genus (genere) >0

• Subdivide the mesh in chart

• Parameterize each chart

texture 2D

mesh

GPU

CPU

Projection phase
Application

Model View

Transform

Lighting

Projection

Transform/clip

Fragment Generation/

Rasterization

Fragment

Processing

Z-Buffer

Visibility Test

Final Image

in FRAME BUFFER

Vertices

geometry

rasterization

• The texture mapping
computations take place at the
scan conversion stage of the
graphics pipeline

– Very efficient because few

polygons make it past the

clipper

• During scan conversion, as we
are looping through the pixels
of a triangle, we must
interpolate the (t,s) texture
coordinates in a similar way to
how we interpolate the rgb
color and z depth values

Interpolation of the Texture Coords

• Each vertex (x,y,z) is associated with a texel coords (s,t)

(parameterization)

• A backward mapping exists only for polygon vertices not for pixel, the

texture coords for pixel inside the triangle are computed by barycentric

coords. interpolation (scan conversion)

• The texel coords are used to read texture map and assign pixel color in

(R,G,B) form (color image)

• Modify the Phong’s Illumination model

(0,0) (1,0)

(1,1)(0,1)

(s,t) in [0,1]
(s0,t0)

(s1,t1)

(s2,t2)

Texture distorsion

• Consider a single edge of a triangle

• Project this from world space to screen space

edge’s

projection

screen

triangle’s

edge

Interpolation in

Screen space vs. world space
• A straight line of regularly spaced points in 3D space maps to a

straight line of irregularly spaced points in device space (if we are

using a perspective transformation)

P0(x,y,z)

P1(x,y,z)

V0(x,y)

V1(x,y)

Same as in Gouraud shading: distortion

Image

plane

P0(x,y,z)

P1(x,y,z)

V0(x’,y’)

V1(x’,y’)

() ()

()

−+=

−+=

0

0

1

1

0

0

010

z

x

z

x
t

z

x
tP

VVtVtP

z’=1

Interpolation in Screen Space

P0(x,y,z)

P1(x,y,z)

V0(x’,y’)

V1(x’,y’)

() ()

()

−

+

=

−+=

0

0

1

1

0

0

010

z

x

z

x
s

z

x
sP

PPsPsP

z’=1

Interpolation in World Space

Perspective Correction

• P(t)=Projection of P(s)

• Solve for s in terms of t:

() ()

()

−

+

=

−+=

0

0

1

1

0

0

010

z

x

z

x
s

z

x
sP

PPsPsP() ()

()

−+=

−+=

0

0

1

1

0

0

010

z

x

z

x
t

z

x
tP

VVtVtP

)(

)(

)(

101

0

010

010

0

0

1

1

0

0

zztz

tz
s

zzsz

xxsx

z

x

z

x
t

z

x

−+
=

−+

−+
=

−+

Interpolate arbitrary parameters

Solving this last equation for 𝒔
gives a mapping from bary coords

in screen space t to bary coords. in

word space s

Thus for each pixel, compute its t in

screen space

Then use the mapping from screen

space to world space

Now use the expression for s to

interpolate arbitrary parameters, such

as texture indices (u,v) over 3D

triangle.

0

1 0 1

0 1 0

0 1 0

()

()

()

tz
s

z t z z

u u s u u

v v s v v

=
+ −

= + −

= + −

N.B. this is the formula for a segment, not for a triangle…

Linear Interpolation
Interpolation with

Perspective correction

Pseudo code Rasterization
For every triangle

Compute Projection of vertices

Compute bbox, clip bbox to screen limits

Setup 3 line equations

For all pixels x,y in bbox

If all line equations < 0 //pixel [x,y] in triangle

Compute barycentric coordinates

Compute perspective correction parameter s

Compute currentZ from vertices

If currentZ < zBuffer[x,y] //pixel is visible

Interpolate UV coordinates from vertices

look up texture color kd

Framebuffer[x,y] = kd

zBuffer[x,y] = currentZ

Two step mapping (Bier & Sloan ’86)

– STEP 1: (S Mapping) first map the texture to a simple

intermediate surface

– STEP 2: (O Mapping) Map from intermediate object to

actual object (projection)

Intermediate surfaces

Intermediate surfaces
• Natural distorsion of the texture image onto the object.

• Choose the intermediate surface suitable to the object shape

Cylindrical Mapping

vtusmapping

vu

hvz

ury

urx

==

=

=

=

,

1,0,

/

)2sin(

)2cos(

STEP 1: (S Mapping)

Map the texture onto a cylinder with radius r and height h

h

r

s

t

parametric cylinder:

maps from

texture space

STEP 2: O Mapping

• Map from intermediate object to actual object

1) Normals from intermediate to actual

2) Normals from actual to intermediate

3) Vectors from center of intermediate

intermediateactual

O mapping

4) Reflected ray

trace a ray from the camera to the object and

compute the reflected ray to the intermediate

surface

• Normal/Bump Mapping

• Procedural Texturing

• Environment Mapping

Displacement Mapping

Use texture to displace the surface geometry

+ =

Bump mapping only affects the normals,

Displacement mapping changes the entire

surface (including the silhouette)

Bump/Normal Mapping
(Blinn 1978)

Use texture to perturb normals

- creates a bump-like effect

• BUMP/NORMAL MAP: parametric function in (u,v) that

defines the micro-structure

F

v

u

Normal Mapping or Bump Mapping:

idea

• Shading is computed
using the normal
vector to the surface

• Modifying the
normal vector,
modifies the reflected
ray r and thus the
light that reach the
camera i r

L

S

O

surface

s

modulating N

darker lighter

r

Bump/Normal Mapping:

problems

• Does not change

silhouette edges

• For objects

represented by

meshes, the bumping

effect is improved for

high resolution meshes

Bump mapping

A bump map is a single-channel

(grey-scale) height map 𝒉(𝒖,𝒗)

used to modify the normal direction

of the object surface

Original geometry Bump map
+

Modified geometry
=

N
N

NCompute the new normal

from the bump map

Compute shading using this

new normal N

Generating Bump map

• Define the tangent plane to the surface at a point

P(u,v) by using the two vectors Pu and Pv.

• The normal is then given by:

N = Pu x Pv

• The new surface positions P’ is then given by:

P’(u,v) = P(u,v) + B(u,v) N

move P along the normal vector N of a quantity B(u,v)

This leads to the normal of perturbed surface:

N’ = P’u x P’v

If B(u,v) is small, and N x N=0

• P’u = Pu + Bu N + B (N)u P’u = Pu + Bu N

• P’v = Pv + Bv N + B (N)v P’v = Pv + Bv N

• N’(u,v) = (Pu + Bu N)x(Pv + Bv N)

= Pu Pv + Bu(N Pv) + Bv(N Pu)

+ Bu Bv(N N)

= N + Bu(N Pv) + Bv(N Pu)

= N + D

For efficiency, can store Bu and Bv in a 2-component texture map.

The cross products are geometry terms only.

N’ will of course need to be normalized after the calculation and before lighting.

N’(u,v) = N + Bu(N Pv) + Bv(N Pu)

= N + D

Normal Maps

A normal map is a RGB image: the

RGB values of each texel represent

the X,Y & Z values of a direction

vector, used to modify the normal

direction of the object surface

(𝒏𝑻,𝒏𝑩,𝒏𝑵) is a normalized vector, so

each element is in the range of [−𝟏,𝟏]

They are converted to a range of

[𝟎,𝟐𝟓𝟓] and stored as colors in the

texture

(, ,) (1,1,1)
(R,G,B) 255*

2

T B Nn n n +
=

How to compute the RGB image?

Compute the normals (𝒏𝑻,𝒏𝑩,𝒏𝑵) from a

height map (mode1) or object (mode2)

Normal Maps

• Larger storage for an RGB image as opposed to single

channel bump map for a height field

Compute lighting/shading using this new normal

Example of a normal map (center) with the scene it was calculated from (left) and

the result when applied to a flat surface (right) By Julian Herzog

How to generate

Normal Maps?

Algorithm:

∀ texel t of the height map (x , y , z = height[x,y])

compute N=(𝒏𝑻,𝒏𝑩,𝒏𝑵) from the neighbors of t

associate N to t

Filter

(e.g.Photoshop)

Normal map

Height map

Dark = lower

Bright = higher

Mode 1: from an height map image

Compute (𝒏𝑻,𝒏𝑩,𝒏𝑵)

-Points on the three dimensional surface are given by

(𝒖,𝒗,𝒉(𝒖,𝒗))

-The tangent plane at the point (𝒖𝟎,𝒗𝟎,𝒉(𝒖𝟎,𝒗𝟎))is given by

-The partial derivatives can be computed using finite differences,

e.g.,

-The outward (non-unit) normal direction to this tangent plane is

-Normalize to get a unit normal (𝒏𝑻,𝒏𝑩,𝒏𝑵)

0 0 0 0

0 0 0 0

(,) (,)

(,) (,)
() () ((,)) 0

u v u v

h u v h u v
u u v v h h u v

u v

− − − − + − =

0 0 0 0(,) (,)

(,) (,)
(, ,1)

u v u v

h u v h u v

u v

− −

0 0

0 0

(,)

(,)

((,) (,))(,)
,

((,) (,))(,)

right center left center

u v left right

center right center left

u v left right

h u v h u vh u v

u u u

h u v h u vh u v

v v v

−
=

 −

−
=

 −

Normal maps

Normal prevailing: X=~0 , Y=~0 , Z=~1

color prevailing: R =~0.5 , G=~0.5, B=~1

(~light blue)

How to generate

Normal Maps?

• Model a detailed mesh

• Generate a parameterization for the mesh

(each 3D point has unique image coordinates in the

2D texture map)

• Simplify the mesh

• Overlay simplified and original model

• For each point P on the simplified mesh, find closest

point P’ on original model (ray casting)

• Store the normal at P’ in the normal map. Done!

Mode 2: From a high-resolution 3D model

Generating Normal Maps (2)

• Model a detailed mesh

• Generate a parameterization for the mesh

(each 3D point has unique image coordinates in the 2D texture map)

• Simplify the mesh

• Overlay simplified and original model

• For each point P on the simplified mesh, find closest

point P’ on original model (ray casting)

• Store the normal at P’ in the normal map. Done!

Di Paolo Cignoni, CC BY-SA 1.0, https://commons.wikimedia.org/w/index.php?curid=644917

How to use Bump/Normal maps:

Defining a local Coordinate System
Texture/Tangent space (TBN) is a coord. system

attached to the local surface defined for each point

(vertex) of the surface from the vectors

• Normal (perpendicular to the surface)

• Tangent (tangent to the surface)

• Bi-Tangent (tangent to the surface)

where B and T span the texture.

• Compute (N,T,B) for each vertex of the mesh

• Interpolate for inner points (fragment) of the

triangle

How to compute the Tangent space

TBN
• Use the mapping between each vertex (𝒙,𝒚,𝒛) and the

texture coordinates 𝒖,𝒗 to calculate T,N, and B

• Let 𝒖 be the Tangent direction and 𝒗 be the Bitangent

direction

• Assume that 𝒙,𝒚,and 𝒛 are each linear functions of 𝒖
and 𝒗 in each triangle: 0 0 0

1 1 1

2 2 2

x a u b v c

y a u b v c

z a u b v c

= + +

= + +

= + +

• For each of the 3 vertices, plug the known values of 𝒙, 𝒚, 𝒛, 𝒖, and 𝒗 into the above

equations: this gives 9 total equations, or 3 sets of 3 equations

• That is, there is a 3x3 system of equations for 𝒂𝟎, 𝒃𝟎, 𝒄𝟎, and likewise a 3x3 system

for 𝒂𝟏, 𝒃𝟏, 𝒄𝟏, and likewise a 3x3 system for 𝒂2, 𝒃2, 𝒄2

• After solving, we set 𝑻=(𝝏𝒙/𝝏𝒖,𝝏𝒚/𝝏𝒖,𝝏𝒛/𝝏𝒖)=(𝒂𝟎,𝒂𝟏,𝒂𝟐),
𝑩=(𝝏𝒙/𝝏𝒗,𝝏𝒚/𝝏𝒗,𝝏𝒛/𝝏𝒗)=(𝒃𝟎,𝒃𝟏,𝒃𝟐), and

𝑵=𝑻×𝑩

normal mapping applied in

Texture/Tangent space (TBN)
Once we have T, B, N vectors, we also

have matrix TBN which enables us to

go from Tangent Space to Object/Word

Space :

There are basically two ways we can

use a TBN matrix for normal mapping:

1) Transform the sampled normal from

tangent space to object/world space

using the TBN matrix; the normal is

then in the same space as the other

lighting variables.

x x x

y y y

z z z

T B N

TBN T B N

T B N

 =

normal mapping applied in

Texture/Tangent space (TBN)
2)

We take the inverse of the TBN

matrix that transforms any vector

from object/world space to tangent

space and use this matrix to

transform not the normal, but the

other relevant lighting

variables (light and view pos) to

tangent space; the normal is in the

same space as the other lighting

variables. Matrix inverse (TBN is an

orthogonal matrix):

TBNinv = (TBN)T

Tangent space normal mapping

In app:

• Load normal map into its own texture unit

• Pass per triangle N,T, and B to vertex shader

In vertex shader:

• Create the TBN matrix and TBNinv matrix

• Compute lighDir L and ViewDir V in tangent space,

In fragment shader:

• sample normal map (texture) per texel (n)

• convert RGB for n into [-1,1]

• compute lighting in tangent space using normalized n, l,

and v

Keep the extracted normals as-is

Texture mapping + Bump mapping

(From 3D Games by Watt et al.)

Bump map

Color map

• Normal/Bump Mapping

• Procedural Texturing

• Environment Mapping
Image by Henrik Wann Jensen

Solid texturing :Texture 3D

• Problem: mapping a 2D image/function onto the

surface of a general 3D object is a difficult problem:

– Distortion

– Discontinuities

• Idea: use a texture function defined over a 3D

domain - the 3D space containing the object -

– Texture function can be digitized (stored as a 3D array

of volume data) or generated procedurally

3D Texture

• 3D Images

• Procedural

Little program that computes color

as a function of x,y,z:

color = f(x,y,z)

computed on-the-fly.

Used also for 1D,2D,4D, textures..

Texture 3D can be obtained by: sweeping

of a 2D

texture

Procedural

Texture

Texturing a model with a marble solid texture

can achieve a similar effect to having carved

the model out of a solid piece of marble

Procedural

Texturing
• Texture map is a function

• Write a procedure to perform the function

– input: texture coordinates - s,t,r

– output: color, opacity, shading

• Example: Wood

– Classification of texture space into cylindrical shells

f(s,t,r) = s2 + t2

– Outer rings closer together, which simulates

the growth rate of real trees

– Wood colored color table

• Woodmap(0) = brown “earlywood”

• Woodmap(1) = tan “latewood”

Wood(s,t,r) = Woodmap(f(s,t,r) mod 1)

f(s,t,r) = s2 + t2

Wood(s,t,r)

Woodmap(f)
0 1

Procedural texturing:

Examples

Texture 2D vs 3D – Pros & Cons

Pros
• No need to parameterize surface

• No worries about distortion

• Objects appear sculpted out of solid substance

▪ Simulate realistic natural material

Cons
▪ For 3D Images 3D: alta occupazione di memoria delle

texture (una texture 64x64x64 RGBA occupa 1MB, una
texture 256x256x256 RGBA occupa 64MB)

▪ For procedural texture: computational overhead which
limits the usage for real time rendering, pre-computed and
stored

▪ Unrealistic Deformations

Solid Texture Problems

• How can we deform
an object without
making it swim
through texture?

• How can we
efficiently store a
procedural texture?

Noise Functions (K.Perlin)

• Add “noise” to make textures interesting

• Make a large grid with random numbers on each grid node

Interpolate the noise to the points inside the lattice cells

This gives spatial coherency

Ken Perlin proposed a specific

method for implementing this

• Noise(x,y,z)

returns a single pseudo-random

number in [-1,1]

Noise() :rn [-1, 1]

Perlin Noise “Tron” 1981

• Pseudo-random function

-1

1

-1

1

Noise() : rn [-1, 1]

Random -points Noise Function:

interpolating function

1D

http://mrl.nyu.edu/~perlin/noise/

Noise For Solid Textures

WOOD
• Add noise to cylinders to warp wood

– Wood(s2 + t2 + N(s,t,r))

• Controls

– Amplitude: power of noise effect

a N(s, t, r)

– Frequency: coarse vs. fine detail

N(fs s, ft t, fr r)

– Phase: location of noise peaks

N(s + fs, t + ft, r + fr)

Making Noise

• Good:
– Create 3-D array of pseudo-random

values

– Trilinearly interpolate

• Better
– Create 3-D array of pseudo-random

3D-vectors

– Splines (cubic) to interpolate

Cubic lattice

http://www.noisemachine.com/talk1/imgs/flame500.html

Noise - example

Apply noise to the object colors

Color = white * Noise(point);

Color = Colorful(Noise(k*point));

%map different ranges of values

into different colors

Bump Mapping Effect

Normal = Normal +DNoise(point);

vector valued differential of the Noise() signal, defined by the instantaneous

rate of change of Noise() along the x, y, and z directions, respectively. We will

call this function Dnoise.

Perlin Turbulence

4

Noise (x · 4)

8

Noise (x · 8)

2

Noise (x · 2)

Noise (x)

16

Noise (x · 16)

1

2
0

() (2)
k

i

i

i

Turbulence x noise x
=

=

Perlin Turbolence

2 (4)

3 (8)

1 (2)

4 (16)

0(1)

Sum

Add several octaves of noise function
Scale amplitude appropriately

1

2
0

() (2)
k

i

i

i

Turbulence x noise x
=

=

=

+ ++

double Turbolence(double x,double y,double z,

double a,double b,int n)

{ int i;

double val, sum = 0;

double p[3], scale = 1;

p[0] = x; p[1] = y; p[2] = z;

for (i=0;i<n;i++)

{ val = noise3(p);

sum += val / scale;

scale *= a;

p[0] *= b;

p[1] *= b;

p[2] *= b; }

return(sum);

}

0

()
()

iN

i
i

Noise p b
Turbolence

a=

=

Perlin Noise – Examples

To get more

advanced effects, you

need to combine

noise at different

frequencies.

Turbolence()

| Turbolence()|

1

Turbolence()

1

|Turbolence|

sin x+ 1

Noise For Solid Textures

MARBLE

color = sin(point + A*turbulence(point))

Ken Perlin, 1985

Use a sine function to

create the stripes

the amplitude (A) of the

turbulence controls the

distortion of the veins

Example : create a cloud

Volumes that enclose some space

Standard 2D Billboards

Think of Them as Guidelines

That Circumscribe Spheres

3D volume noise texture

• Normal/Bump Mapping

• Procedural Texturing

• Environment Mapping

Environment Mapping

Environment mapping produces reflections on shiny objects.

Use texture to represent reflected color from the environment

Creating an Environment Map

• STEP 1) PREPROCESSING

creating an env-map

rendering of the scene without the shiny object with the
camera at the center of the object in normal object
direction; (cube,spherical)

• STEP 2) RENDERING rendering using the texture (env
map) indexed by reflection vector

The map should contain a view of
the world with the point of interest
on the object as the eye

Cube Mapping: STEP 1

A cubical environment map consists of 6 maps that cover the

cube.

Use 6 renderings with the camera at the object center towards

a different direction.

Cube Mapping – Greene ‘86

A

B
C

E

F

D

Cube Mapping: STEP 2

For a reflected ray R:

Select the cube face by R

- max coordinate

(i.e. R = (-0.1, 0.4, -0.84) selects face -z)

The other two coords (normalized by the third
coord.) localize the pixel inside the face

(i.e.(-0.1,0.4) maps into (0.38,0.80)).

Compute env. Map

without teapot and the

camera at the center of it.

Resolution 128x128 for

each image.

Ray tracing vs.

Environment map

Sphere Mapping

Problems

Approximation works when objects are far away from the
reflective object and the object itself is small

The object will not reflect itself, thus env. map is not
correct for object with concavities

It is view dependent

Cost (off-line) for computing the environment map

An environment map is required for each reflective
object in scene;

• Sampling, Texture Filtering

• Aliasing

textured surface

(texture map)

image plane

How to map the texture area seen through the pixel window to a single pixel value?

When texture mapping it is rare that the screen-space

sampling density matches the sampling density of the texture.

Sampling Texture Maps

Sampling Texture Maps

• A single screen space pixel (square area) might

correspond to many pixels in the texture image

(curve quadrilateral) (pre-image of the pixel)

How to map the texture area seen through the pixel

window to a single pixel value?

Area sampling

• Consider the 4 vertices of the pixel (the preimage of pixel is curved)

• Compute a spatial integration over the extent of the pixel

• This is equivalent to convolving the texture with a filter kernel centered

at the sample (i.e., pixel center)! to compute the pixel color

preimageTOO EXPENSIVE!!!

Two practical cases....

Two cases

Original image

64x64 pixels

Minification for Display Magnification for Display

Texture Magnification

MAGNIFICATION: textures are zoomed on the screen, the

pixel have preimages with area less than a texel.

(1 texel/many pixel)

Interpolate in texture space:

nearest neighbor (choose the color of the nearest texel),

Linear interpolation interpolate the closest texels

(4 for 2D, 8 for 3D)

Texture Area

in textel
Screen Area in pixel

t

s

Texture space Screen space

Nearest neighbor Linear Interpolation

Average of the 4 texel

64x64 pixels

Original Texture

Linear InterpolationNearest neighbor

Texture Minification

MINIFICATION:

Texture are smaller in screen space, thus a big preimage in

texture space corresponds to a pixel (1 pixel/ many texels)

Mipmapping

Texel Area

Pixel Area

t

s

MIP mapping
Multum In Parvo = Molte cose in un piccolo spazio

many in a small place
Pre-processing: Store pre-

filtered scaled copies

(texture “levels”) of the

original source texture

Typically, each level is

half the size of the

previous level

(512, 256, 128,...,1).

Each level is computed

by averaging the original

image (low pass filter)
v

d

u

MIP mapping

• Approximated preimage area:

axis-aligned rectangle in texture space

A =texels/pixel

• Define scalar factor, b=sqrt(A)

• The mipmap level to use is: d=log2 b

– level 0 = max resolution

– the level number is not necessary

an integer

Mip-mapping

n<d<n+1 – texel : pixel ratio

v

u

d

Level n+1

Level n

(u0,v0,d0)

The final color is given by the trilinear interpolation

of the color in the textures n and n+1

Mip-mapping: example
(Williams 1983)

2

9

 =3 edge

log =1.58 level

A

b A

d b

=

=

=

Compute d, interpolate the two textures

bilinearly using (u,v)

• Sampling, Texture Filtering

• Aliasing

Types of aliasing (1)

Loss of detail in the rendering

Point sampling

Texture mapping is a sampling operation and is prone

to aliasing

If we sample the color at the center of the pixel (xs,ys) we

get a single value. Point sampling of the texture can lead to

aliasing errors.

texture space

miss blue stripes

Screen space

Texture Filtering

• Aliasing due to undersampling texture

Types of aliasing (2)

Rasterization causes display artifacts. They are due to the transition

from the continuous to that discrete representation.

Jaggies/Stairstepping is another form of aliasing

Anti-aliasing

Solutions:

• For ray tracing/rasterization: render at higher

resolution (render multiple samples per pixel),

blur, resample at lower resolution

(supersampling)

• For textures, we can also blur/prefilter the

texture image before doing the lookup

(prefilter texture map to eliminate high

frequencies in texture signal)

Supersampling

• Your intuitive solution is to

compute multiple color values

per pixel and average them

• A better interpretation of the

same idea is that

–You first create a higher

resolution image

–You blur it (low pass, prefilter)

–You resample it at a lower

resolution

Supersampling

1. Compute a virtual image at
resolution k*width, k*height

2. Blur it with a low-pass filter,

3. Resample it at a lower original
image resolution.

• Advantage:

implemented by Z-buffer.

• This is definitely a brute force
approach, but is straightforward
to implement and very powerful

• Works well for edges

Step 2: Low-pass Filtering

'(,) (,) (,)

1 2 1

3 3 : 2 4 2

1 2 1

ji

i j

S kS k

i j

p S k q S k

I i j I p q h S p S q

example x filter

++

= − = −

= − −

• convolution of a low-pass filter h of dimension k

with the virtual image :

Antialiasing : example
Without antialiasing

Antialiasing : example
Result from applying supersampling technique with 2x

Antialiasing : example
Result from applying supersampling technique with 3x

Serena Morigi
Dipartimento di Matematica

serena.morigi@unibo.it

http://www.dm.unibo.it/morigi

mailto:morigi@dm.unibo.it

