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Texture mapping



Towards visual realism

http://www.3drender.com/jbirn/productions.html

modelling modelling + shading



How can we get this?

Modelling + shading + texturing

Provides realistic appearance to models without

having to add additional geometric fine detail



Texturing: apply images to 

geometric objects

Objective: improve realism, 
reduce geometric 

complexity...

...this the easiest way to get it!
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light mapping pre-computation 

with texture

Images courtesy of Kasper Høy Nielsen.

Precompute the shading in 
scene:

• store the 2D light map, during 
shading, read the light map.

• use global illumination method 
view independent (i.e. radiosity) 
to precompute the light maps.

• a light map stores a set of 2D 
maps of the reflected light from 
the surfaces.



Examples in video games..
A few polygonal meshes (i.e., low geometric complexity)

• Purely local lighting computations

• Details by pre-computed texturing

– Geometric Details 

– Smog, fire, special effects

– Lights, shadows, reflective effects 

• Bump mapping in hardware



Texturing

2D Image Texturing: maps image onto surface

3D Solid texturing: objects appear sculpted out 

of solid substance

– 2D/3D images   - Procedural texturing



Courtesy of Leonard McMillan & Jovan Popovic, MIT

Adding TEXTURE MAPPING 

to illumination

Constant diffuse color       Diffuse Texture Color    Texture used as Label    Texture used as Diffuse Color 
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Object properties modified by 

texture mapping:

• Color (texture mapping) modify the final color 

(LIT in Phong’s Model/UNLIT no lighting 

calculation) with the texture map color



Object properties modified by 

texture mapping:

• Reflected color (environment mapping):

– Uses a picture of the environment for texture maps

– Allows simulation of highly reflective surfaces



Object properties modified by 

texture mapping:

• Surface Normal (bump mapping):
Intensity value of a source image is used to modify the normal direction of 

the object surface. Does not modify surface geometry, but the visual result 

fools us into thinking the surface is not smooth.



Object properties modified by 

texture mapping:

• Transparency (Opacity maps) modify the opacity 

of a transparent object

Ken Perlin’s vase with procedurally varying index of refraction, 1985



Image Texture Mapping
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Texture mapping

• Screen space screen coords. system (x,y) 

• Object space world coords. system (u,v,w)

• Texture space texture coords system (s,t)



Texture mapping

• Parameterization phase: from Texture Space to 
Object Space

• Projection phase: from Object space to Screen 
space



Parameterization

How to apply the texture to the object

Define a function M that associates each surface 

point (x,y,z) with a 2D point in the texture map

(pair of coords (s,t))

M(x,y,z)=(s,t)

For each point rendered, look up color in texture 

map 

Parameterization depends on the object

representation:

– Parametric surface

– mesh



Parameterization: 

parametric surface
• If the object is represented by parametric surfaces 

(i.e.spline), the parameterization is naturally provided by the 
domain D=UxV 

S(u,v)=[x(u,v),y(u,v),z(u,v)], (u,v) in D

• Texture space and parametric space are related by an affine 
transformation M

• We need inverse mapping M-1



Parameterization of a triangle

v1s1,t1

(1,1)

Per-vertex texture coords. manually, provided by user : 

assign a texture coords (s,t) to each vertex v

Points inside the polygon: 

Then we interpolate using barycentric coords. 

t s2,t2

v0

(0,0)

s0,t0

v2

v1

s

Triangle (in WCS)

s1,t1

(αs0+βs1+γs2, αt0+βt1+γt2) 



Parameterization of a Mesh

2D Domain 3D mesh 

T

Assigning a texture region to each triangle

An ideal parametrization would be isometric.  

That is, it would preserve lengths, and therefore angles too. 

A conformal parametrization is one that preserves angles. A surface triangle can 

be mapped to a small triangle in the texture domain.  

This leads to undersampling.



Parameterization of a mesh

with genus (genere) >0

• Subdivide the mesh in chart

• Parameterize each chart

texture 2D

mesh



GPU

CPU

Projection phase
Application

Model  View

Transform

Lighting

Projection

Transform/clip

Fragment Generation/

Rasterization

Fragment

Processing

Z-Buffer

Visibility Test

Final Image

in FRAME BUFFER

Vertices

geometry

rasterization

• The texture mapping 
computations take place at the 
scan conversion stage of the 
graphics pipeline

– Very efficient because few 

polygons make it past the 

clipper 

• During scan conversion, as we 
are looping through the pixels 
of a triangle, we must 
interpolate the  (t,s) texture 
coordinates in a similar way to 
how we interpolate the rgb
color and z depth values



Interpolation of the Texture Coords 

• Each vertex (x,y,z) is associated with a texel coords (s,t) 

(parameterization)

• A backward mapping exists only for polygon vertices not for pixel, the 

texture coords for pixel inside the triangle are computed by barycentric

coords. interpolation (scan conversion)

• The texel coords are used to read texture map and assign pixel color in 

(R,G,B)  form (color image) 

• Modify the Phong’s Illumination model

(0,0) (1,0)

(1,1)(0,1)

(s,t) in [0,1]
(s0,t0)

(s1,t1)

(s2,t2)



Texture distorsion

• Consider a single edge of a triangle

• Project this from world space to screen space

edge’s

projection

screen

triangle’s

edge



Interpolation in

Screen space vs. world space
• A straight line of regularly spaced points in 3D space maps to a 

straight line of irregularly spaced points in device space (if we are 

using a perspective transformation)

P0(x,y,z)

P1(x,y,z)

V0(x,y)

V1(x,y)

Same as in Gouraud shading: distortion

Image

plane



P0(x,y,z)

P1(x,y,z)

V0(x’,y’)

V1(x’,y’)
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Interpolation in Screen Space



P0(x,y,z)

P1(x,y,z)

V0(x’,y’)

V1(x’,y’)
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Interpolation in World Space



Perspective Correction

• P(t)=Projection of P(s)

• Solve for s in terms of t:
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Interpolate arbitrary parameters

Solving this last equation for 𝒔
gives a mapping from bary coords

in screen space t to bary coords. in 

word space s 

Thus for each pixel, compute its t in 

screen space

Then use the mapping from screen 

space to world space 

Now use the expression for s to 

interpolate arbitrary parameters, such 

as texture indices (u,v) over 3D 

triangle.

0

1 0 1

0 1 0

0 1 0

( )

( )

( )

tz
s

z t z z

u u s u u

v v s v v

=
+ −

= + −

= + −

N.B. this is the formula for a segment, not for a triangle…



Linear Interpolation
Interpolation with 

Perspective correction



Pseudo code Rasterization
For every triangle

Compute Projection of vertices

Compute bbox, clip bbox to screen limits

Setup 3 line equations

For all pixels x,y in bbox

If all line equations < 0      //pixel [x,y] in triangle

Compute barycentric coordinates 

Compute perspective correction parameter s

Compute currentZ from vertices 

If currentZ < zBuffer[x,y] //pixel is visible

Interpolate UV coordinates from vertices

look up texture color kd

Framebuffer[x,y] = kd

zBuffer[x,y] = currentZ



Two step mapping (Bier & Sloan ’86)

– STEP 1: (S Mapping) first map the texture to a simple 

intermediate surface

– STEP 2: (O Mapping) Map from intermediate object to 

actual object (projection)



Intermediate surfaces



Intermediate surfaces
• Natural distorsion of the texture image onto the object.

• Choose the intermediate surface suitable to the object shape







Cylindrical Mapping
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STEP 1: (S Mapping) 

Map the texture onto a cylinder with radius r and height h

h

r

s

t

parametric cylinder:

maps from 

texture space



STEP 2:  O Mapping

• Map from intermediate object to actual object

1) Normals from intermediate to actual

2) Normals from actual to intermediate

3) Vectors from center of intermediate

intermediateactual



O mapping

4) Reflected ray 

trace a ray from the camera to the object and 

compute the reflected ray to the intermediate 

surface



• Normal/Bump Mapping

• Procedural Texturing

• Environment Mapping



Displacement Mapping

Use texture to displace the surface geometry

+ =

Bump mapping only affects the normals,

Displacement mapping changes the entire 

surface (including the silhouette)





Bump/Normal Mapping
(Blinn 1978)

Use texture to perturb normals

- creates a bump-like effect

• BUMP/NORMAL MAP: parametric function in (u,v) that 

defines the micro-structure

F

v

u



Normal Mapping or Bump Mapping: 

idea

• Shading is computed 
using the normal 
vector to the surface

• Modifying the 
normal vector, 
modifies the reflected 
ray r and thus the 
light that reach the 
camera i r

L

S

O

surface

s

modulating N

darker lighter

r



Bump/Normal Mapping: 

problems

• Does not change 

silhouette edges

• For objects 

represented by 

meshes, the bumping 

effect is improved for 

high resolution meshes



Bump mapping

A bump map is a single-channel 

(grey-scale) height map 𝒉(𝒖,𝒗) 

used to modify the normal direction 

of the object surface

Original geometry Bump map
+

Modified geometry
=

N
N

NCompute the new normal 

from the bump map

Compute shading using this 

new normal N



Generating Bump map

• Define the tangent plane to the surface at a point 

P(u,v) by using the two vectors Pu and Pv.

• The normal is then given by:

N = Pu x Pv

• The new surface positions P’ is then given by:

P’(u,v) = P(u,v) + B(u,v) N

move P along the normal vector N of a quantity B(u,v)



This leads to the normal of perturbed surface:

N’ = P’u x P’v

If B(u,v) is small, and N x N=0

• P’u = Pu + Bu N + B (N)u  P’u = Pu + Bu N

• P’v = Pv + Bv N + B (N)v  P’v = Pv + Bv N

• N’(u,v) = (Pu + Bu N )x(Pv + Bv N )

= Pu  Pv + Bu(N  Pv) + Bv(N  Pu) 

+ Bu Bv(N  N)

= N + Bu(N  Pv) + Bv(N  Pu) 

= N + D



For efficiency, can store Bu and Bv in a 2-component texture map. 

The cross products are geometry terms only.

N’ will of course need to be normalized after the calculation and before lighting.

N’(u,v) = N + Bu(N  Pv) + Bv(N  Pu) 

= N + D



Normal Maps

A normal map is a RGB image: the 

RGB values of each texel represent 

the X,Y & Z values of a direction 

vector, used to modify the normal 

direction of the object surface

(𝒏𝑻,𝒏𝑩,𝒏𝑵) is a normalized vector, so 

each element is in the range of [−𝟏,𝟏]

They are converted to a range of 

[𝟎,𝟐𝟓𝟓] and stored as colors in the 

texture

( , , ) (1,1,1)
(R,G,B) 255*

2

T B Nn n n +
=

How to compute the RGB image? 

Compute the normals (𝒏𝑻,𝒏𝑩,𝒏𝑵) from a 

height map (mode1) or object (mode2)



Normal Maps

• Larger storage for an RGB image as opposed to single 

channel bump map for a height field

Compute lighting/shading using this new normal

Example of a normal map (center) with the scene it was calculated from (left) and 

the result when applied to a flat surface (right) By Julian Herzog



How to generate 

Normal Maps? 

Algorithm:

∀ texel t of the height map (x , y , z = height[x,y])

compute N=(𝒏𝑻,𝒏𝑩,𝒏𝑵) from the neighbors of t

associate N to t

Filter

(e.g.Photoshop)

Normal map

Height map

Dark = lower

Bright = higher

Mode 1: from an height map image



Compute (𝒏𝑻,𝒏𝑩,𝒏𝑵)

-Points on the three dimensional surface are given by 

(𝒖,𝒗,𝒉(𝒖,𝒗))

-The tangent plane at the point (𝒖𝟎,𝒗𝟎,𝒉(𝒖𝟎,𝒗𝟎))is given by

-The partial derivatives can be computed using finite differences, 

e.g., 

-The outward (non-unit) normal direction to this tangent plane is 

-Normalize to get a unit normal (𝒏𝑻,𝒏𝑩,𝒏𝑵)
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Normal maps

Normal prevailing: X=~0 , Y=~0 , Z=~1

color prevailing: R =~0.5 , G=~0.5, B=~1

(~light blue)



How to generate 

Normal Maps? 

• Model a detailed mesh 

•   Generate a parameterization for the mesh 

(each 3D point has unique image coordinates in the 

2D texture map) 

• Simplify the mesh  

•   Overlay simplified and original model 

•   For each point P on the simplified mesh, find closest 

point P’ on original model (ray casting) 

•   Store the normal at P’ in the normal map. Done! 

Mode 2: From a high-resolution 3D model



Generating Normal Maps (2) 

• Model a detailed mesh

•   Generate a parameterization for the mesh 

(each 3D point has unique image coordinates in the 2D texture map) 

• Simplify the mesh  

•   Overlay simplified and original model 

•   For each point P on the simplified mesh, find closest 

point P’ on original model (ray casting) 

•   Store the normal at P’ in the normal map. Done! 

Di Paolo Cignoni, CC BY-SA 1.0, https://commons.wikimedia.org/w/index.php?curid=644917





How to use Bump/Normal maps: 

Defining a local Coordinate System
Texture/Tangent space (TBN) is a coord. system 

attached to the local surface defined for each point 

(vertex) of the surface from the vectors

• Normal (perpendicular to the surface)

• Tangent (tangent to the surface)

• Bi-Tangent (tangent to the surface)

where B and T span the texture.

• Compute (N,T,B) for each vertex of the mesh

• Interpolate for inner points (fragment) of the 

triangle



How to compute the Tangent space

TBN
• Use the mapping between each vertex (𝒙,𝒚,𝒛) and the 

texture coordinates 𝒖,𝒗 to calculate T,N, and B

• Let  𝒖 be the Tangent direction and 𝒗 be the Bitangent 

direction

• Assume that 𝒙,𝒚,and 𝒛 are each linear functions of 𝒖
and 𝒗 in each triangle: 0 0 0

1 1 1

2 2 2

x a u b v c

y a u b v c

z a u b v c

= + +

= + +

= + +

• For each of the 3 vertices, plug the known values of 𝒙, 𝒚, 𝒛, 𝒖, and 𝒗 into the above 

equations: this gives 9 total equations, or 3 sets of 3 equations

• That is, there is a 3x3 system of equations for 𝒂𝟎, 𝒃𝟎, 𝒄𝟎, and likewise a 3x3 system 

for 𝒂𝟏, 𝒃𝟏, 𝒄𝟏, and likewise a 3x3 system for 𝒂2, 𝒃2, 𝒄2

• After solving, we set 𝑻=(𝝏𝒙/𝝏𝒖,𝝏𝒚/𝝏𝒖,𝝏𝒛/𝝏𝒖)=(𝒂𝟎,𝒂𝟏,𝒂𝟐),
𝑩=(𝝏𝒙/𝝏𝒗,𝝏𝒚/𝝏𝒗,𝝏𝒛/𝝏𝒗)=(𝒃𝟎,𝒃𝟏,𝒃𝟐), and

𝑵=𝑻×𝑩



normal mapping applied in 

Texture/Tangent space (TBN)
Once we have T, B, N vectors, we also 

have matrix TBN which enables us to 

go from Tangent Space to Object/Word  

Space :

There are basically two ways we can 

use a TBN matrix for normal mapping: 

1) Transform the sampled normal from 

tangent space to object/world space 

using the TBN matrix; the normal is 

then in the same space as the other 

lighting variables.

x x x

y y y

z z z

T B N

TBN T B N

T B N

 
 =
 
  



normal mapping applied in 

Texture/Tangent space (TBN)
2) 

We take the inverse of the TBN 

matrix that transforms any vector 

from object/world space to tangent 

space and use this matrix to 

transform not the normal, but the 

other relevant lighting 

variables (light and view pos) to 

tangent space; the normal is in the 

same space as the other lighting 

variables.  Matrix inverse (TBN is an 

orthogonal matrix):     

TBNinv = (TBN)T



Tangent space normal mapping

In app:

• Load normal map into its own texture unit

• Pass per triangle N,T, and B to vertex shader

In vertex shader:

• Create the TBN matrix and TBNinv matrix

• Compute lighDir L  and ViewDir V in tangent space, 

In fragment shader:

• sample normal map (texture) per texel (n)

• convert RGB for n into [-1,1]

• compute lighting in tangent space using normalized n, l, 

and v

Keep the extracted normals as-is



Texture mapping + Bump mapping

(From 3D Games by Watt et al.)

Bump map

Color map





• Normal/Bump Mapping

• Procedural Texturing

• Environment Mapping
Image by Henrik Wann Jensen 



Solid texturing :Texture 3D

• Problem: mapping a 2D image/function onto the 

surface of a general 3D object is a difficult problem:

– Distortion  

– Discontinuities

• Idea: use a texture function defined over a 3D 

domain - the 3D space containing the object -

– Texture function can be digitized (stored as a 3D array 

of volume data) or generated procedurally



3D Texture 

• 3D Images

• Procedural

Little program that computes color 

as a function of x,y,z: 

color = f(x,y,z) 

computed on-the-fly. 

Used also for 1D,2D,4D, textures..

Texture 3D can be obtained by: sweeping 

of a 2D 

texture

Procedural 

Texture

Texturing a model with a marble solid texture 

can achieve a similar effect to having carved 

the model out of a solid piece of marble



Procedural 

Texturing
• Texture map is a function

• Write a procedure to perform the function

– input: texture coordinates - s,t,r

– output: color, opacity, shading

• Example: Wood

– Classification of texture space into cylindrical shells

f(s,t,r) = s2 + t2

– Outer rings closer together, which simulates

the growth rate of real trees

– Wood colored color table

• Woodmap(0) = brown “earlywood” 

• Woodmap(1) = tan “latewood”

Wood(s,t,r) = Woodmap(f(s,t,r) mod 1) 

f(s,t,r) = s2 + t2

Wood(s,t,r)

Woodmap(f)
0 1



Procedural texturing: 

Examples



Texture 2D vs 3D – Pros & Cons

Pros
• No need to parameterize surface

• No worries about distortion

• Objects appear sculpted out of solid substance

▪ Simulate realistic natural material

Cons
▪ For 3D Images 3D: alta occupazione di memoria delle 

texture (una texture 64x64x64 RGBA occupa 1MB, una 
texture 256x256x256 RGBA occupa 64MB)

▪ For procedural texture: computational overhead which
limits the usage for real time rendering, pre-computed and 
stored

▪ Unrealistic Deformations



Solid Texture Problems

• How can we deform 
an object without 
making it swim 
through texture?

• How can we 
efficiently store a 
procedural texture?



Noise Functions (K.Perlin)

• Add “noise” to make textures interesting

• Make a large grid with random numbers on each grid node

Interpolate the noise to the points inside the lattice cells 

This gives spatial coherency

Ken Perlin proposed a specific 

method for implementing this

• Noise(x,y,z) 

returns a single pseudo-random 

number in [-1,1]

Noise( ) :rn [-1, 1]



Perlin Noise “Tron” 1981

• Pseudo-random function

-1

1

-1

1

Noise( ) :  rn [-1, 1]

Random -points Noise Function: 

interpolating function

1D

http://mrl.nyu.edu/~perlin/noise/ 





Noise For Solid Textures

WOOD
• Add noise to cylinders to warp wood

– Wood(s2 + t2 + N(s,t,r))

• Controls

– Amplitude: power of noise effect

a N(s, t, r)

– Frequency: coarse vs. fine detail

N(fs s, ft t, fr r)

– Phase: location of noise peaks

N(s + fs, t + ft, r + fr)



Making Noise

• Good:
– Create 3-D array of pseudo-random 

values

– Trilinearly interpolate 

• Better
– Create 3-D array of pseudo-random 

3D-vectors

– Splines (cubic) to interpolate

Cubic lattice 

http://www.noisemachine.com/talk1/imgs/flame500.html 



Noise - example

Apply noise to the object colors

Color = white * Noise(point);

Color = Colorful( Noise(k*point));

%map different ranges of values 

into different colors



Bump Mapping Effect

Normal = Normal +DNoise(point);

vector valued differential of the Noise() signal, defined by the instantaneous 

rate of change of Noise() along the x, y, and z directions, respectively. We will 

call this function Dnoise.



Perlin Turbulence

4

Noise ( x · 4 )

8

Noise (x · 8 )

2

Noise ( x · 2 )

Noise ( x )

16

Noise ( x · 16 )

1

2
0

( ) (2 )
k

i

i

i

Turbulence x noise x
=

=



Perlin Turbolence

2 (4)

3 (8)

1 (2)

4 (16)

0(1)

Sum

Add several octaves of noise function
Scale amplitude appropriately

1

2
0

( ) (2 )
k

i

i

i

Turbulence x noise x
=

=



=

+ ++



double Turbolence(double x,double y,double z,

double a,double b,int n)

{  int i;

double val, sum = 0;

double p[3], scale = 1;

p[0] = x;  p[1] = y; p[2] = z;

for (i=0;i<n;i++) 

{ val = noise3(p);

sum += val / scale;

scale *= a;

p[0] *= b;

p[1] *= b;

p[2] *= b; }   

return(sum);

}

0

( )
()

iN

i
i

Noise p b
Turbolence

a=


=



Perlin Noise – Examples

To get more 

advanced effects, you 

need to combine 

noise at different 

frequencies.

Turbolence( )

| Turbolence( )|

1

Turbolence( )

1

|Turbolence|

sin  x+                  1



Noise For Solid Textures

MARBLE

color = sin(point + A*turbulence(point))

Ken Perlin, 1985

Use a sine function to 

create the stripes

the amplitude (A) of the 

turbulence controls the 

distortion of the veins



Example : create a cloud

Volumes that enclose some space



Standard 2D Billboards



Think of Them as Guidelines



That Circumscribe Spheres



3D volume noise texture







• Normal/Bump Mapping

• Procedural Texturing

• Environment Mapping



Environment Mapping

Environment mapping produces reflections on shiny objects. 

Use texture to represent reflected color from the environment



Creating an Environment Map

• STEP 1) PREPROCESSING 

creating an env-map 

rendering of the scene without the shiny object with the 
camera at the center of the object in normal object 
direction; (cube,spherical)

• STEP 2) RENDERING rendering using the texture (env
map)  indexed by reflection vector

The map should contain a view of 
the world with the point of interest 
on the object as the eye



Cube Mapping: STEP 1

A cubical environment map consists of 6 maps that cover the 

cube.

Use 6 renderings with the camera at the object center towards  

a different direction.



Cube Mapping – Greene ‘86
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Cube Mapping: STEP 2

For a reflected ray R:

Select the cube face by R

- max coordinate 

(i.e. R = (-0.1, 0.4, -0.84)   selects face -z)

The other two coords (normalized by the third 
coord.) localize the pixel inside the face

(i.e.(-0.1,0.4) maps into (0.38,0.80)).



Compute env. Map

without teapot and the 

camera at the center of it. 

Resolution 128x128 for 

each image.



Ray tracing vs. 

Environment map



Sphere Mapping



Problems

Approximation works when objects are far away from the 
reflective object and the object itself is small

The object will not reflect itself, thus env. map is not 
correct for object with concavities

It is view dependent

Cost (off-line) for computing the environment map

An environment map is required for each reflective 
object in scene;



• Sampling, Texture Filtering

• Aliasing

textured surface

(texture map) 

image plane

How to map the texture area seen through the pixel window to a single pixel value? 



When texture mapping it is rare that the screen-space 

sampling density matches the sampling density of the texture. 

Sampling Texture Maps



Sampling Texture Maps

• A single screen space pixel (square area) might 

correspond to many pixels in the texture image

(curve quadrilateral) (pre-image of the pixel)

How to map the texture area seen through the pixel 

window to a single pixel value? 



Area sampling

• Consider the 4 vertices of the pixel  (the preimage of pixel is curved)

• Compute a spatial integration over the extent of the pixel 

• This is equivalent to convolving the texture with a filter kernel centered 

at the sample (i.e., pixel center)!  to compute the pixel color

preimageTOO EXPENSIVE!!!

Two practical cases....



Two cases 



Original image

64x64 pixels

Minification for Display Magnification for Display 



Texture Magnification

MAGNIFICATION:  textures are zoomed on the screen, the 

pixel have preimages with area less than a texel.

(1 texel/many pixel)

Interpolate in texture space: 

nearest neighbor (choose the color of the nearest texel), 

Linear interpolation interpolate the closest texels

(4 for 2D, 8 for 3D)

Texture Area 

in textel
Screen Area in pixel

t

s

Texture space Screen space



Nearest neighbor Linear Interpolation

Average of the 4 texel



64x64 pixels

Original Texture

Linear InterpolationNearest neighbor



Texture Minification

MINIFICATION: 

Texture are smaller in screen space, thus a big preimage in 

texture space corresponds to a pixel (1 pixel/ many texels)

Mipmapping

Texel Area

Pixel Area

t

s



MIP mapping
Multum In Parvo = Molte cose in un piccolo spazio

many in a small place 
Pre-processing: Store pre-

filtered scaled copies 

(texture “levels”) of the 

original source texture

Typically, each level is 

half the size of the

previous level

(512, 256, 128,...,1).

Each level is computed 

by averaging the original 

image (low pass filter)
v
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MIP mapping



• Approximated preimage area:

axis-aligned rectangle in texture space 

A =texels/pixel

• Define scalar factor, b=sqrt(A)

• The mipmap level to use is: d=log2 b

– level 0 = max resolution

– the level number is not necessary 

an integer



Mip-mapping

n<d<n+1  – texel : pixel ratio

v

u

d

Level n+1

Level n

(u0,v0,d0)

The final color is given by the trilinear interpolation 

of the color in the textures n and n+1



Mip-mapping: example 
(Williams 1983)
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Compute  d, interpolate the two textures 

bilinearly using (u,v)



• Sampling, Texture Filtering

• Aliasing



Types of aliasing (1)

Loss of detail in the rendering



Point sampling

Texture mapping is a sampling operation and is prone 

to aliasing

If we sample the color at the center of the pixel (xs,ys) we 

get a single value. Point sampling of the texture can lead to 

aliasing errors.

texture space

miss blue stripes

Screen space



Texture Filtering

• Aliasing due to undersampling texture



Types of aliasing (2)

Rasterization causes display artifacts. They are due to the transition 

from the continuous to that discrete representation.

Jaggies/Stairstepping is another form of aliasing



Anti-aliasing

Solutions: 

• For ray tracing/rasterization: render at higher 

resolution (render multiple samples per pixel), 

blur, resample at lower resolution 

(supersampling)

• For textures, we can also blur/prefilter the 

texture image before doing the lookup 

(prefilter texture map to eliminate high 

frequencies in texture signal)



Supersampling

• Your intuitive solution is to 

compute multiple color values 

per pixel and average them 

• A better interpretation of the 

same idea is that 

–You first create a higher 

resolution image 

–You blur it (low pass, prefilter) 

–You resample it at a lower 

resolution 



Supersampling

1. Compute a virtual image at 
resolution k*width, k*height 

2. Blur it with a low-pass filter, 

3. Resample it at a lower original
image resolution.

• Advantage: 

implemented by Z-buffer.

• This is definitely a brute force 
approach, but is straightforward 
to implement and very powerful

• Works well for edges



Step 2: Low-pass Filtering
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• convolution of a low-pass filter h of dimension k 

with the virtual image :



Antialiasing : example
Without antialiasing



Antialiasing : example
Result from applying supersampling technique with  2x



Antialiasing : example
Result from applying supersampling technique with  3x
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