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Invariants

Theorem (Projective group)

The
{

projectivities
affinities

}
of the

{
projective

affine

}
plane form a group with

respect to their composition, the
{

projective
affine

}
group. A quantity

that is invariant with respect to a
{

projectivity
affinity

}
is called{

projectively
affinely

}
invariant. The determination of all

{
projective

affine

}
invariants of the

{
projective

affine

}
group is referred to as the theory of

invariants of the
{

projective
affine

}
group.
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Definition of "Geometry", Erlanger Programm, F. Klein, 1872

Geometry = Theory of invariants of a transformation group

⇒
{

projective
affine

}
geometry = theory of invariants of the{

projective
affine
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Invariants

Examples

Affine invariants Projective invariants
collinear points collinear points

parallelity of lines —
ratio of 3 collinear points cross ratio of 4 collinear points

affine classification of
conic sections

projective classification of
conic sections

Remark
The notion of parallelity of two lines does not exist in the projective
plane; two lines always intersect in one point.
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Projective classification of conic sections

Conic section in the projective plane

a00x2
0 + 2a01x0x1 + a11x2

1 + 2a02x0x2 + a22x2
2 + 2a12x1x2 = 0

⇐⇒ −→x T A−→x = 0 , A = (aij ) ∈ IR3,3, symmetric

Applying a projectivity
−→x = T−→y , rk(T ) = 3

=⇒ −→y T T T AT︸ ︷︷ ︸
B

−→y = 0 , B := T T AT
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Projective classification of conic sections

Congruent matrix normal forms

A,B . . . congruent matrices
=⇒ normal forms of real 3× 3 congruent matrices: 1 0 0

0 1 0
0 0 1

 ,

 1 0 0
0 1 0
0 0 −1

 ,

 1 0 0
0 1 0
0 0 0

 ,

 1 0 0
0 −1 0
0 0 0

 ,

 1 0 0
0 0 0
0 0 0


Conic sections G. Albrecht
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Projective classification of conic sections

Conic normal forms

a) rk(A) = 3:

non–degenerate conic section

a1) x2
0 + x2

1 + x2
2 = 0 imaginary

a2) x2
0 + x2

1 − x2
2 = 0 real

b) rk(A) = 2:

pair of intersecting lines

b1) x2
0 + x2

1 = 0 imaginary
b2) x2

0 − x2
1 = 0 real

a) rk(A) = 1:

double line

x2
0 = 0

Projective versus affine classification

projective classification of conics↔ affine classification of conics
Illustration
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Conic sections as rational Bézier curves

Homogeneous form

 x0(t)
x1(t)
x2(t)

 =
2∑

i=0

wi

(
1
−→
b i

)
B2

i (t) , where
−→
b i =

(
b1

i
b2

i

)
, wi ∈ IR

Projection into the plane x0 = 1

−→x (t) =

∑2
i=0 wi

−→
b iB2

i (t)∑2
i=0 wiB2

i (t)

rational Bézier curve of degree 2
Bi (
−→
b i ) . . . control points

wi . . . weights

Conic sections G. Albrecht
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Conic sections as rational Bézier curves

Theorem
Polynomial parametric curves of degree 2

−→x (t) =
2∑

i=0

−→
b iB2

i (t) (∗)

are parabolas and every parabola can be represented in the form (∗).

Theorem
Rational parametric curves of degree 2

−→x (t) =

∑2
i=0 wi

−→
b iB2

i (t)∑2
i=0 wiB2

i (t)
(∗∗)

are conic sections and every conic section can be represented in the
form (∗∗).
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Conic sections as rational Bézier curves

Corollary (***)

A rational parametric Bézier curve of degree 2

−→x (t) =

∑2
i=0 wi

−→
b iB2

i (t)∑2
i=0 wiB2

i (t)
, t ∈ [0,1]

with wi ∈ IR+, and B0(
−→
b 0), B1(

−→
b 1), B2(

−→
b 2) not collinear, represents

a connected segment of a non–degenerate conic section.

Conic sections G. Albrecht
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Conic sections as rational Bézier curves

Theorem
A rational parametric Bézier curve of degree 2 as in Corollary (***)
has the following properties:

a) −→x (0) =
−→
b 0, −→x (1) =

−→
b 2

b) d
dt
−→x (t)|t=0 = 2w1

w0
(
−→
b 1 −

−→
b 0), d

dt
−→x (t)|t=1 = 2w1

w2
(
−→
b 2 −

−→
b 1)

c) −→x (t)|t∈[0,1] ⊂ H(B0(
−→
b 0),B1(

−→
b 1),B2(

−→
b 2)) convex hull property

d) For w0 = w2 = 1,

−→̄
x (t) :=

−→
b 0B2

0(t)− w1
−→
b 1B2

1(t) +
−→
b 2B2

2(t)
B2

0(t)− w1B2
1(t) + B2

2(t)

represents the complementary conic segment with respect to−→x (t).
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Conic sections as rational Bézier curves

Role of the weights

Let
−→x (t) =

∑2
i=0 wi

−→
b iB2

i (t)∑2
i=0 wiB2

i (t)
, t ∈ [0,1]

and
−→̃
x (τ) =

∑2
i=0 w̃i

−→
b iB2

i (τ)∑2
i=0 w̃iB2

i (τ)
, τ ∈ [0,1]

Are there weights (wi , w̃i ), i = 0,1,2 such that −→x (t),
−→̃
x (τ) represent

the same curve ?

Conic sections G. Albrecht
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Conic sections as rational Bézier curves

Role of the weights

Parameter transformation

t =
τ

(1− k)τ + k
, k ∈ IR \ {0}

⇒

B2
i (

τ

(1− k)τ + k
) =

(
2
i

)(
1− τ

(1− k)τ + k

)2−i (
τ

(1− k)τ + k

)i

=

(
2
i

)(
k(1− τ)

(1− k)τ + k

)2−i (
τ

(1− k)τ + k

)i

=

(
1

(1− k)τ + k

)2( 2
i

)
k2−i (1− τ)2−iτ i

=
k2−i

((1− k)τ + k)2 B2
i (τ)
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Conic sections as rational Bézier curves

Role of the weights

We thus obtain
−→x (t) =

∑2
i=0 wik2−i−→b iB2

i (τ)∑2
i=0 wik2−iB2

i (τ)

=⇒
w̃i = wik2−i , i = 0,1,2

in particular: k =
√

w2
w0

=⇒ w̃0 = w2, w̃2 = w2

Theorem
Every rational parametric Bézier curve of degree 2 can be written in
standard form, i.e., w0 = w2 = 1.
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Conic sections as rational Bézier curves

Role of the weights

Let the conic section −→x (t) be in standard form (w0 = w2 = 1).
1) weight w1 increases =⇒ −→x (t) gets near B1

weight w1 decreases =⇒ −→x (t) gets away from B1

2) w1 ↔ affine type of the conic
⇐⇒

w1 ↔ behavior of the conic with respect to the line at infinity

Conic sections G. Albrecht
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Conic sections as rational Bézier curves

Role of the weights

2)

−→x (t) =

∑2
i=0 wi

−→
b iB2

i (t)∑2
i=0 wiB2

i (t)
, t ∈ [0,1]

=⇒ x0(t) =
∑2

i=0 wiB2
i (t) > 0 , t ∈ [0,1]

=⇒ eventual poles are in the complement
−→̄
x (t):

x̄0(t) = B2
0(t)− w1B2

1(t) + B2
2(t) = 0

⇐⇒ t1/2 =
1 + w1 ±

√
w2

1 − 1

2 + 2w1

Conic sections G. Albrecht
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Conic sections as rational Bézier curves

Theorem

The conic section in rational parametric Bézier representation −→x (t)

and in standard form (w0 = w2 = 1) is part of a

 ellipse
parabola
hyperbola

 if w1

< 1

w1

= 1

w1

> 1

.
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Conic sections as rational Bézier curves

Theorem

The conic section in rational parametric Bézier representation −→x (t)
and in standard form (w0 = w2 = 1) with ‖

−−−→
B0B1 ‖=‖

−−−→
B1B2 ‖

describes a circular arc if and only if w1 = cosφ, where
φ = ∠B2B0B1 = ∠B0B2B1.

Conic sections G. Albrecht
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