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Exercise 3:

a) Show: Two Bézier curves
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that are C2–continuous in their common point −→xl (ul+1) =
−−→xl+1(ul+1)

have an equidistant parameterisation if and only if
−−−−−→
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b) The curvature κ(u) of a parametric curve −→x (u) in E2 is given by

κ(u) =
det(−̇→x (u), −̈→x (u))

∥−̇→x (u)∥3

As in a), consider two Bézier segments in E2 that are equidistantly

parametrized and C2 continuous in
−→
b0 , where n = 3 et l = −1.

Prove: Despite moving the Bézier point
−→
b2 along the line through

the points
−→
b−2 and

−→
b2 the Bézier segments always join with curvature

continuity in
−→
b0 .

Exercise 4:
Let P0(0, 0), P1(1, 0), P2(0, 1) be the vertices of the triangle ∆. Construct a
Bézier curve with the following properties:

• c is closed and lies completely in the interior of ∆.

• c is composed by three cubic Bézier curves that join with C2 continuity.

(Control points respectively:
−→
b0 ,

−→
b1 ,

−→
b2 ,

−→
b3 ;

−→
b3 ,

−→
b4 ,

−→
b5 ,

−→
b6 ;

−→
b6 ,

−→
b7 ,

−→
b8 ,

−→
b9 =

−→
b0 .)

• c is tangent to each of the triangle edges (contact points
−→
b0 =

−→
b9 ∈

P0P1,
−→
b3 ∈ P1P2,

−→
b6 ∈ P2P0).

• c has an equidistant parameterisation.

The control point
−→
b1 = (23 , 0)

T is already determined.


