

Metodi Numerici per Equazioni Differenziali alle Derivate Parziali (3)

Metodi alle differenze Finite

PDE - Equazioni di tipo ellittico

$$-\Delta u = f \quad \text{in } \Omega \subseteq \mathbb{R}^2$$

$$\Delta u = \nabla^2 u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}$$

Equazione di Poisson

f=0 eq. di Laplace

Condizione di Dirichelet

Condizione di Neumann

Condizione di tipo misto

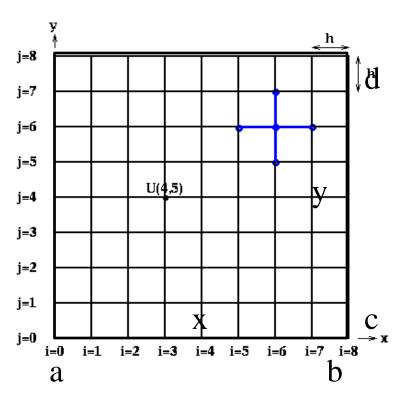
$$\begin{aligned} u \big|_{\partial\Omega} &= g \\ \frac{du}{d\vec{n}} \big|_{\partial\Omega} &= g \\ au + b \frac{du}{d\vec{n}} \big|_{\partial\Omega} &= g \end{aligned}$$

Equazione di Poisson discretizzazione del dominio

$$\begin{cases} -\Delta u(x, y) = f(x, y) \\ u(a, y) = g_1(y) \\ u(b, y) = g_2(y) \\ u(x, c) = g_3(x) \\ u(x, d) = g_4(x) \end{cases}$$

Sia Ω=[a,b]x[c,d] griglia nel piano x-y:

$$x_i = a + ih$$
 $h = (b - a) / N$
 $y_i = c + jk$ $k = (d - c) / M$



Equazione di Poisson discretizzazione operatori

differenziali

Determinare i valori della soluzione u(x,y) nei nodi interni della griglia con passo h=k.

Utilizzo di differenze centrali,

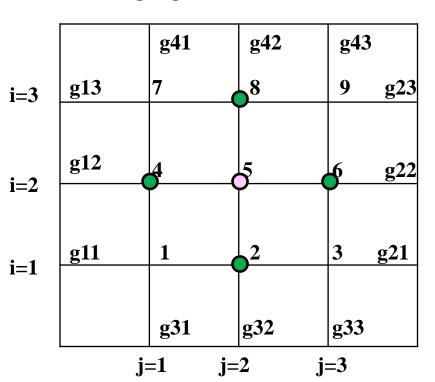
$$-\frac{\partial^2 u}{\partial x^2} - \frac{\partial^2 u}{\partial y^2} = f$$

$$-\left[\frac{u_{i+1,j} - 2u_{i,j} + u_{i-1,j}}{h^2}\right] - \left[\frac{u_{i,j+1} - 2u_{i,j} + u_{i,j-1}}{h^2}\right] = f(x_i, y_j)$$

$$-u_{i-1,j}-u_{i+1,j}+4u_{i,j}-u_{i,j-1}-u_{i,j+1}=h^2f_{ij}$$

Equazione di Poisson risoluzione sui nodi

Determinare i valori della soluzione u(x,y) nei nodi interni della griglia. Per N=M=4 si ha la griglia 4x4:



Numeriamo i nodi della griglia, (N-1)² incognite **U**_{ij} i,j=1,..,N-1

Natural Row-wise ordering:

Ordinamento delle incognite:

$$(u_{1,1}, u_{1,2}, u_{1,3}, ..., u_{1,N-1}, u_{2,1}, ..., u_{N-1,N-1})$$

$$-u_{i-1,j}-u_{i+1,j}+4u_{i,j}-u_{i,j-1}-u_{i,j+1}=h^2f_{ij}$$

Equazione di Poisson

Associamo un'equazione per ogni punto della mesh

4	-1	0	-1	0	0	0	0	$0 \rceil$	$u_{1,1}$		$h^2 f_{1,1} + g11 + g31$
-1	4	-1	0	-1	0	0	0	0	$u_{1,2}$		$h^2 f_{1,2} + g32$
0	-1	4	0	0	-1	0	0	0	$u_{1,3}$		$h^2 f_{1,3} + g21 + g33$
-1	0	0	4	-1	0	-1	0	0	$u_{2,1}$		$h^2 f_{2,1} + g12$
0	-1	0	$\left -1\right $	4	-1	0	-1	0	$u_{2,2}$	=	$h^2f_{2,2}$
0	0	-1	0	-1	4	0	0	_1	$u_{2,3}$		$h^2 f_{2,3} + g 22$
0	0	0	-1	0	0	4	-1	0	$u_{3,1}$		$h^2 f_{3,1} + g13 + g41$
0	0	0	0	-1	0	-1	4	-1	$u_{3,2}$		$h^2 f_{3,2} + g42$
$\lfloor 0$	0	0	0	0	-1	0	-1	4]	$\lfloor u_{3,3} \rfloor$		$h^2 f_{3,3} + g43 + g23$

Simmetrica, a diagonale dominante in senso debole. È anche definita positiva. M-matrice:

$$a_{ij} \leq 0$$
 $i,j=1,2,...,n$ $i \neq j$ e $A^{-1} \geq 0$ diagnal

$$A = \begin{bmatrix} B & -I & & & & & \\ -I & B & -I & & & & \\ & & \dots & \dots & & & \\ & & & -I & B & -I \\ & & & & -I & B \end{bmatrix}, \quad B = \begin{bmatrix} 4 & -1 & & & & \\ -1 & 4 & -1 & & & \\ & & \dots & \dots & & \\ & & & -1 & 4 & -1 \\ & & & & -1 & 4 \end{bmatrix}$$

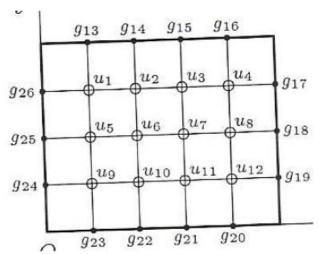
$$A \in R^{(n-1)^2 x (n-1)^2}$$

$$cond_2(A) = \frac{|\lambda_{\max}|}{|\lambda_{\min}|} = O(h^{-2})$$

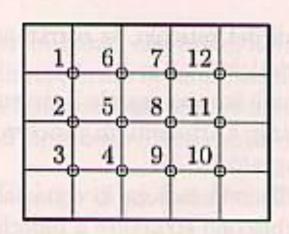
La matrice A è sparsa, tridiagonale a blocchi (con tale ordinamento) e SPD.

La convergenza di metodi iterativi peggiora con il raffinamento della mesh

La struttura della matrice è determinata dall'ordinamento dei nodi del reticolo.



(2) Zig-Zag ordering



Ordinare equazioni ed incognite

Data una griglia spaziale *m x m*.

Il sistema lineare ha una matrice di dimensione $m^2 \times m^2$ ed è sparsa in quanto ogni equazione coinvolge al più 5 incognite e quindi ogni riga ha al più 5 coefficienti diversi da zero e la matrice ha elementi diversi da zero solo su 5 diagonali.

Le diagonali più distanti hanno un offset di m^{d-1} (d = numero dimensioni spaziali) dalla principale, molto negativo per i metodi diretti basati su eliminazione di Gauss. Usiamo metodi iterativi

Teorema. Se una matrice $A \in \mathbb{R}^{n \times n}$ strettamente o irriducibilmente diagonalmente dominante, è tale che $a_{ij} \le 0$ $i \ne j$ e $a_{ii} > 0$ i = 1,2,...,n

allora A è una M-matrice.

Equazione di Poisson risolvere il sistema lineare

Come si risolve il sistema lineare su griglia (N-1)x(N-1)?

Metodo iterativo di Gauss-Seidel: (passo k)



! Non si deve formare la matrice ma si calcola la soluzione riga per riga

Equazione di Poisson risolvere il sistema lineare

$$-u_{i-1,j} - u_{i+1,j} + 4u_{i,j} - u_{i,j-1} - u_{i,j+1} = h^2 f_{ij}$$
 iterazione di Gauss – Seidel
$$for \quad k = 1, 2, \dots$$

$$for \quad i = 2, \dots, N+1$$

$$for \quad j = 2, \dots, N+1$$

$$u^{(k+1)}_{\quad i,j} = \frac{1}{4} (u^{(k+1)}_{\quad i-1,j} + u^{(k)}_{\quad i+1,j} + u^{(k+1)}_{\quad i,j-1} + u^{(k)}_{\quad i,j+1} + h^2 f_{ij})$$

$$end \\ end \\ end$$

Trattamento geometrie complesse

$$u = g_0 \quad su \ \Gamma$$
$$-\frac{u_1 + u_2 - 4u_0 + u_3 + u_4}{h^2} = f_0$$

Interpolazione lineare

$$u(R) = \frac{u_4(h-\delta) + u_0\delta}{h} = g_0(R) \quad \Rightarrow u_4 = -u_0\frac{\delta}{h-\delta} + g_0(R)\frac{h}{h-\delta}$$



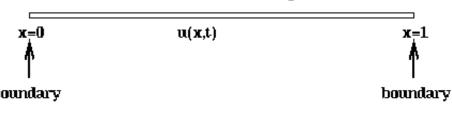
curvilinear boundary

$$\Rightarrow u_4 = -u_0 \frac{\delta}{h - \delta} + g_0(R) \frac{h}{h - \delta}$$

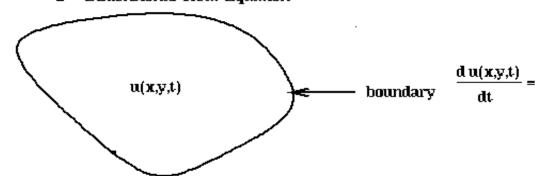
$$-u_1 - u_2 + (4 + \frac{\delta}{h - \delta})u_0 - u_3 = h^2 f_0 + g_0(R) \frac{h}{h - \delta}$$

PDE - Equazione del calore in piu' dimensioni

1-Dimensional Heat Equation

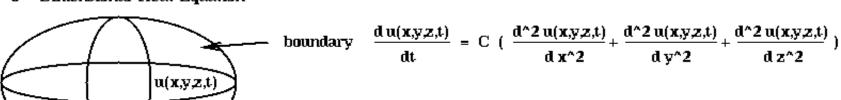


$$\frac{d u(x,t)}{dt} = C \left(\frac{d^2 u(x,t)}{d x^2} \right)$$



$$\frac{d u(x,y,t)}{dt} = C \left(\frac{d^2 u(x,y,t)}{d x^2} + \frac{d^2 u(x,y,t)}{d y^2} \right)$$

3 - Dimensional Heat Equation



PDE - Equazione del calore

$\overline{}$					ı				-				I					\neg		_
а	l	C			¦ C] 				I I				U(1,1,m	+1)		b(1,1,m)
e	!	a	e		 	c			I I				 				U(2,1,m	+1)		b(2,1,m)
		c	a		I I		e] [U(3,1,m	+1)		b(3,1,m)
L_	. <u>-</u> .		e.	a	 			e_	i L				 				U(4,1,m	+1)		b(4,1,m)
c					a	e			e				 				U(1,2,m	+1)		b(1,2,m)
		C			e	a	c		 	c			 				U(2,2,m	+1)		b(2,2,m)
			e		! !	e	a	e]]		e		 				U(3,2,m	-		b(3,2,m)
				e	 		e.	a	i L			c	 				* U(4,2,m	+1)	_	b(4,2,m)
					e				a	c			C				U(1,3,m		_	b(1,3,m
					I I	c			e	a	e		 	C			U(2,3,m			b(2,3,m
					! 		c		I I	c	a	c	! 		e		U(3,3,m	- 1		b(3,3,m
					I I			e	I I L		e	a	 - -			e	U(4,3,m	=		b(4,3,m
					 				e				a	c			U(1,4.m			b(1,4,m)
					I I]] [c			e	a	c		U(2,4,m			b(2,4,m
					 				I I		e		 	e	a	e	U(3,4,m			b(3,4,m
					I I				I I			e	!		e	a	_U(4,4m-	=		_b(4,4,m)

j=2

j=1

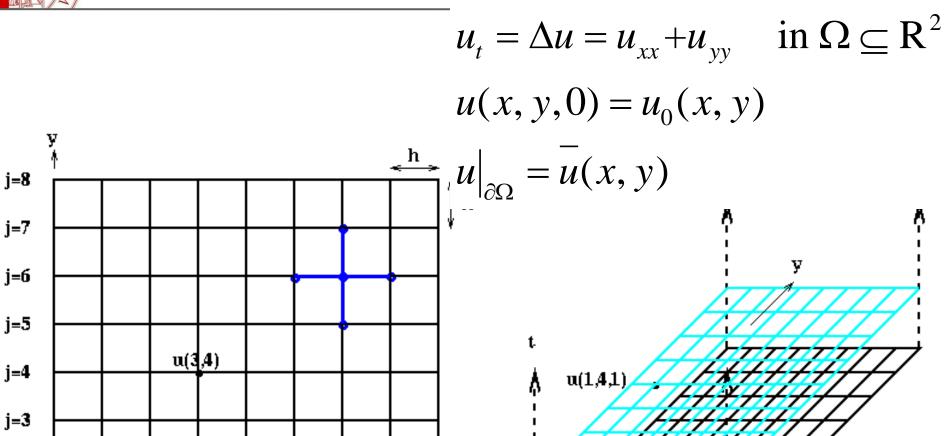
j=0

i=4

i=3

i=5

PDE - Equazione del calore



Equazione del calore 2D discretizzazione operatori

differenziali

Utilizzo schema a 5 punti (differenze centrali),

$$\nabla_5^2 u_{i,j} = \left[\frac{u_{i+1,j} - 2u_{i,j} + u_{i-1,j}}{h^2} \right] + \left[\frac{u_{i,j+1} - 2u_{i,j} + u_{i,j-1}}{h^2} \right]$$

Semidiscretizzazione nel punto griglia (i,j) (solo spazio):

$$(u_{ij})_t = \nabla_5^2 u_{ij}(t)$$
 $i, j = 1,..., N-1$

Sistema di (N-1)x(N-1) equazioni differenziali ordinarie per le variabili u_{ij}(t) U'(t) = LU(t) + b(t)

L matrice pentadiag. b vettore per BQ

Metodo Eulero Esplicito $U^{n+1} = U^n + k f(U^n)$

$$U^{n+1} = U^{n} + k L U^{n}$$

$$u_{ij}^{n+1} = u_{ij}^{n} + k \left(\frac{u_{i+1,j} - 2u_{i,j} + u_{i-1,j}}{h_{x}^{2}} + \frac{u_{i,j+1} - 2u_{i,j} + u_{i,j-1}}{h_{y}^{2}} \right)$$

$$u_{ij}^{n+1} = u_{ij}^{n} \left(1 - 2 \frac{k}{h_{x}^{2}} - 2 \frac{k}{h_{y}^{2}} \right) + \frac{k}{h_{x}^{2}} \left(u_{i+1,j}^{n} + u_{i-1,j}^{n} \right) + \frac{k}{h_{y}^{2}} \left(u_{i,j+1}^{n} + u_{i,j-1}^{n} \right)$$

Il metodo risulta stabile per $k\lambda_L \in RA$ $|1+\lambda_L k| \le 1$ $\forall \lambda_L = eig(L)$ Se hx=hy =h allora $k \le \frac{h^2}{4}$ $-2 \le -4k(\frac{1}{h_x^2} + \frac{1}{h_y^2}) \le 0$ $\rightarrow k(\frac{1}{h_x^2} + \frac{1}{h_y^2}) \le \frac{1}{2}$

Metodo Eulero Esplicito

$$U^{n+1} = (I + k L)U^n$$

stabilità condizionata

Metodo Eulero Implicito

$$(I - k L)U^{n+1} = U^n$$

Sistema lineare di grandi dimensioni, alta complessità computazionale

Errore locale di troncamento $O(k + h_x^2 + h_y^2)$

Metodo di Crank-Nicolson

Metodo Crank – Nicolson monodimensionale

$$u_{i,j+1} - u_{i,j} = \frac{ck}{2h^2} (u_{i-1,j} - 2u_{i,j} + u_{i+1,j}) + \frac{ck}{2h^2} (u_{i-1,j+1} - 2u_{i,j+1} + u_{i+1,j+1})$$

$$u_{i,j+1} - u_{i,j} = \frac{ck}{2h^2} \delta_x^2 u_{i,j} + \frac{ck}{2h^2} \delta_x^2 u_{i,j+1}$$

$$(1 - \frac{ck}{2h^2} \delta_x^2) u_{i,j+1} = (1 + \frac{ck}{2h^2} \delta_x^2) u_{i,j} \qquad \forall i$$

$$(1 - \frac{ck}{2h^2} \delta_x^2) U^{j+1} = (1 + \frac{ck}{2h^2} \delta_x^2) U^{j+1}$$

Metodo Crank – Nicolson bidimensionale

$$(1 - \frac{ck}{2h_x^2} \delta_x^2 - \frac{ck}{2h_y^2} \delta_y^2) U^{n+1} = (1 + \frac{ck}{2h_x^2} \delta_x^2 + \frac{ck}{2h_y^2} \delta_y^2) U^n$$

Metodo di Crank-Nicolson

$$(I - \frac{k}{2}L)U^{n+1} = (I + \frac{k}{2}L)U^n$$

gli autovalori di $(I-\frac{k}{2}L)$ sono:

$$\lambda_{p,q} = 1 - \frac{k}{h^2} [(\cos(p\pi h) - 1) + (\cos(q\pi h) - 1)] \qquad p, q = 1, 2, ..., m,$$

$$h = 1 / (m + 1)$$

$$cond(A) = O(\frac{k}{h^2})$$

Il metodo dei trapezi per ODE risulta assolutamente stabile in tutto il semipiano negativo del piano complesso. Quindi CN è stabile per ogni $\tau>0$

Errore locale di troncamento $O(t^2 + h^2 + k^2)$

Metodo ADI

(Alternate Implicit Directions)

Modifica di CN

$$(1 - \frac{ck}{2h_x^2} \delta_x^2)(1 - \frac{ck}{2h_y^2} \delta_y^2)U^{j+1} = (1 + \frac{ck}{2h_x^2} \delta_x^2)(1 + \frac{ck}{2h_y^2} \delta_y^2)U^{j} \quad (*)$$

$$(1 + \frac{ck}{2h_x^2} \delta_x^2)(1 + \frac{ck}{2h_y^2} \delta_y^2) = (1 + \frac{ck}{2h_x^2} \delta_x^2 + \frac{ck}{2h_y^2} \delta_y^2 + \frac{ck}{2h_x^2} \frac{ck}{2h_y^2} \delta_x^2 \delta_y^2)$$

(*) equivale a

Extra term

$$(1 - \frac{ck}{2h_x^2} \delta_x^2) U^{j+1/2} = (1 + \frac{ck}{2h_y^2} \delta_y^2) U^j$$
$$(1 - \frac{ck}{2h_y^2} \delta_y^2) U^{j+1/2} = (1 + \frac{ck}{2h_x^2} \delta_x^2) U^{j+1/2}$$

Soluzione di due sistemi tridiagonali

Serena Morigi

Dipartimento di Matematica

serena.morigi@unibo.it

http://www.dm.unibo.it/~morigi