
Numerical Methods for 

Partial Differential Equations 

(PDE) (3)
Finite Difference Methods



PDE - Elliptic Equations

2 2
2

2 2

u u
u u

x y

 
 =  = +

 

Poisson Equation

Dirichlet BC

Neumann BC

Robin BC

u g

du
g

dn

du
au b g

dn







=

=

+ =

If f = 0 -> Laplace’s Eq.
Solutions to Laplace’s equation

are called harmonic functions.
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Poisson Problem

domain discretization

( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )












=

=

=

=

=−

  

,

,

,

,

,,

4

3

2

1

xgdxu

xgcxu

ygybu

ygyau

yxfyxu

c

ba

d

y

x

i

j

x a ih           h (b - a) / N

y c jk   k (d - c) / M

= + =

= + =

Let Ω=[a,b]x[c,d]
be the grid of points in the plane xy:



Poisson Problem

differential operators discretization
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Replace the x-and y- derivatives with centered finite 

differences

Determine the values ​​of the solution u(x, y) in the internal 

nodes of the grid with step h = k:
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Poisson Problem

set the linear system
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For N=M=4 we get a grid  4x4:

Order the (N-1)2 unknowns,

uij i,j=1,..,N-1

row by row

Natural Row-wise ordering:

Associate an equation for each 

point of the mesh:
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Poisson Problem

solving the linear system

Symmetric diagonally dominant in the weak sense. It is also 

positive definite (M-matrix)
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Example: heated plate

It is required to determine the steady state

temperature at all points of a heated sheet of

metal. The edges of the sheet are kept at a

constant temperature: 100, 50, 0, and 75

degrees.

50

100

75

The sheet is divided 
to 5X5 grids.



9 Example: 

heated plate

1004,1 =T 1004,2 =T 1004,3 =T

503,4 =T

502,4 =T

501,4 =T

753,0 =T

752,0 =T

751,0 =T

00,1 =T 00,2 =T 00,3 =T

Known

To be determined

3,1T

2,1T

1,1T

3,2T

2,2T

1,2T

3,3T

2,3T

1,3T
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First Equation

1004,1 =T 1004,2 =T

753,0 =T

752,0 =T

Known

To be determined

3,1T

2,1T

3,2T

2,2T

0410075

04

3,13,22,1

3,13,22,14,13,0

=−+++

=−+++

TTT

TTTTT
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Another Equation

1004,1 =T 1004,2 =T 1004,3 =T

Known

To be determined

3,1T

2,1T

3,2T

2,2T

3,3T

2,3T

04100

04

3,22,23,33,1

3,22,23,34,23,1
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=−+++
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Solve the linear system
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Example: Heated Plate 

with an Insulated Edge

1004,1 =T 1004,2 =T 1004,3 =T

503,4 =T

502,4 =T

501,4 =T

753,0 =T

752,0 =T

751,0 =T

1,0T
2,0T

3,0T

Known

To be determined

3,1T

2,1T

1,1T

3,2T

2,2T

1,2T

3,3T

2,3T

1,3T

1, 1T −

1, 1 1,1

1, 1 1,1

0,0 1,1 2,0 1, 1 1,0

1,1 2,0 1,1 1,0

1,1 2,0 1,0

0
2

4 0

75 4 0

75 2 4 0

T T
T T

k
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T T T T

T T T

−

−

−

−
=  =
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0,0 75T =

Neumann boundary condition: the lower edge is insulated, derivative is 0



• Note that because of the derivative boundary condition, 

the matrix is increased to 12 × 12 in contrast to the 9 × 9 

system to account for the three unknown temperatures 

along the plate’s lower edge.

Example: Heated Plate 

with an Insulated Edge



Temperature and flux distribution for a heated 

plate subject to fixed boundary conditions except

for an insulated lower edge.
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The matrix A is very sparse, block tridiagonal 

(for the above numbering)  and SPD.

Caution: convergence of iterative solvers deteriorates as the 

mesh is refined



The matrix structure depends on the 

ordering of the points in the grid

(1)

(2)

Natural row-wise ordering

Block Tridiagonal
Zig-Zag ordering



Ordering the unknowns and equations

Theorem. If a matrix strictly diagonal

dominant, is such that

nxn
A R

0      and   0   1,2,...,ij iia i j a i n   =

then A is an M-matrix.

Given a spatial grid m x m. 

The linear system has a matrix of dimension m2 × m2 that is very 

sparse as each equation involves at most 5 unknowns, and then each 

row has at most 5 coefficients different from zero and the matrix has 

nonzero elements only on 5 diagonals. 

The diagonals have an offset of more distant md-1 (d = number of 

spatial dimensions) from the main diagonal, very bad for direct 

methods as Gaussian elimination. We use iterative methods.



Poisson Problem

solving the linear system

( 1) 1 ( 1) ( )( )k k kx D b Lx Ux+ − += − −
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Iterative Gauss-Seidel method

At iteration k:

! We don’t need to form the matrix, the computation is row by row
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Gauss Seidel algorithm for the linear system
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Poisson Problem

solving the linear system
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Poisson Problem + reaction term
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Treatment of 

Irregular Boundaries

0

1 2 0 3 4
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PDE - Heat equations 

multidimensional problems



PDE - 2D Heat equations 
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Method of lines (MOL)

- Consider a semidiscretization in space of the PDE that 

provides a large system of ODEs with each component 

of the system that corresponds to the solution in a 

certain grid point as a function of time.

-Then solve the system of ODEs using one of the 

methods already seen for ODEs. 

- Then, apply the BC. 

This method also allows you to understand the theory for 

stability for evolutionary PDEs in terms of stability for 

time dependent ODEs. 

We know how to analyze the (absolute) stability 

of methods for ODEs



MOL: 2D Heat Equation

space discretization

Use the 5-points stencil for the Laplacian about the point (i,j)

Semi-discretization about the point (i,j) (space only):

System of (N-1)x(N-1) ODEs for the unknowns uij(t)
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L  pentadiagonal matrix, b vector for BC



MOL: time discretization

Explicit Euler Method

The method is stable for 

If hx=hy =h then
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The stability for convergence depends on the absolute 

stability, and on the shape of the stability region for the 

time-discretization. This is called strong stability. 

But note that this is not necessary for Lax–Richtmyer

stability :

1j j j
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MOL

Explicit Euler Method  

Conditioned stability

Implicit Euler Method

Involve a large linear system, 

computationally expensive, 

unconditionally stable
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MOL: time discretization

Crank-Nicolson Method

The method is implicit, we need to solve a system of  

equations for each time step , the matrix is large and 

sparse, and it has the same nonzero structure as for the 

elliptic system   

The method is stable.
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Stability of the 

Crank-Nicolson Method

The CN method for ODEs is A-stable (Ra is the negative part  

of the complex plane). Thus CN is stable for each k>0

Local Truncation Error
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ADI Method (Douglas, Rachford, 1956)

(Alternating-Direction Implicit)
A disadvantage of the Crank–Nicolson method is that the 

matrix in the equation is banded with a band width that is 

generally quite large. Modify the CN method

The idea behind the ADI method is to split (*) into two
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ADI Method

(Alternating-Direction Implicit)

1(1 )(1 ) (1 )(1 )
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x y x y x y
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Extra term
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(**)  is equivalent to

Solution obtained by two decoupled tridiagonal systems to solve

in each step 
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