
Numerical Methods for 

Partial Differential Equations 

(PDE) (4)
Finite Difference Methods
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Advection Equations (Transport)

The exact solution is a wave travelling with 

velocity a: 

1D Linear hyperbolic PDE (First order)
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Advection Equations (Transport)

Boundary Conditions  (BC) on [0,1]

• Inflow & outflow

• If a>0 the solution profile does not change shape but 

moves in the positive x direction with constant speed

x=0  inflow boundary     x=1 outflow boundary 

where the BC has to be imposed

u(0,t)=g(t)

• If a<0  then x=1  inflow boundary    x=0 outflow boundary
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Boundary Conditions

• Periodic  0 1, ) 0, 0u( ,t) u( t t a=  

t=0

t=T

t=2T

Whatever flows out at the 

outflow boundary flows back 

in at the inflow boundary



Characteristic curves

A value of a function u0 (i.e., of a signal) at a given point x, 

propagates in the (x,t)-plane along a line, named 

characteristic line. 

For a=constant , is a straight line with constant slope.

The curves (x(t),t) 

in the plane (x,t)

are called

characteristic curves



Characteristic curves
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The characteristic curves x(t) in the plane (x,t):  

are the solutions of the following ODEs:
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Case a = const

Parallel straight lines



Characteristic curves

The solution u is constant along each 

characteristic, in fact

Any discontinuities in the initial data u0

propagate along the characteristic curves and 

are maintained by the solution.
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Characteristic curves
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The exact solution is a wave travelling with 

velocity a(u): 

Yet the characteristic curves are straight lines 

as u is constant along the directions 

characteristics, even if they are no longer 

parallel. They can intersect.
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Initial and boundary conditions
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Initial Conditions: u(x,0) = u0(x)

u(0, t) = 

f1(t)

u(1, t) 

= f2(t)

Dirichlet

BC
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Euler Method (Explicit): I  MODE
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Algorithm I  MODE
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Let uij be the approximation of u(xi,tj),



(i+1,j)(i-1,j)

(i,j+1)u(x,t)
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Euler Method (Explicit): II  MODE



Method of lines (MOL) 
Consider a semidiscretization with FD in space of the PDE that provides a 

large system of ODEs with each component of the system that corresponds 

to the solution in a certain grid point as a function of time. Then we solve 

the system of ODEs using one of the methods already seen for ODE.
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Apply MODE II Explicit Euler FT, CS
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Ra= Region of absolute stability

Since the eigenvalues ​​are pure imaginary values, kλp will not 

belong to Ra. 

So the method is UNCONDITIONALLY UNSTABLE for any 

fixed ratio k / h!
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STABILITY for Explicit Euler



Stability Analysis

Necessary Stability Condition 

(CFL)



0x

Domain of dependence 

of the scalar PDE 

- The solution u(X,T) at a certain point (X,T) only depends on 

the initial value u0 at a point x0 =X-aT   s.t. (X,T) is on the 

characteristic curve for x0.

- The domain of dependence of the point (X,T) is the set 

D(X,T)= 

If we change the initial value at x0 the solution u(X,T) 

changes, while changing the data in every other point does 

not affect the solution in (X,T).

( ) 0t xu a u u+ =
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x

t

a>0 a<0

(X,T)



Numerical Domain of 

dependence (of the FD method)

(i,j-1)(i-1,j-1)

(i,j)

x

t

xi xi+1xi-1

tj-1

tjFrom a grid point (xi,tj) the 

numerical domain of dependence 

is given by the grid points x at the 

initial time t = 0 with the property 

that the data have effect on the 

solution ui,j

uij depends on the initial values at the points Xi-j,..,Xi+j

The numerical solution in (X,T) will converge to the exact 

solution

Only if 

That is the numerical domain includes the exact domain of (X,T)
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STABILITY: CFL condition

• Courant, Friedrichs and Lewy (1928) have shown that, a 

necessary condition for a numerical explicit scheme for 

the transport equation to be stable, is that the 

discretization step in space and time are related by the 

condition:

▪ For a hyperbolic system the CFL condition is
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CFL Condition

Solution

Characteristic slope  dx/dt=1

CFL

Explicit Euler (I Mode)
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Domain of dependence of the solution

Numerical Domain of dependence 

t x 

t x 

A numerical method can be 

convergent only if its numerical 

domain of dependence contains 

the true domain of dependence 

of the PDE.

x

stable
unstable



Upwind Method

• Consider one-sided approximation of the space 

derivative according to the flow direction

• The flow velocity a can be function of (x,t)

(i,j) (i+1,j)(i-1,j)

(i,j+1)u(x,t)
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Upwind Method
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Upwind Method

The upwind method can be written as

Which is the FD discretization of the PDE

That is the advection-diffusion equation (diffusive term with

diffusive coefficient ε that vanishes as h →0)

- Conditional Stable  under CFL condition

- First Order of Accuracy in space and time O(h+k)
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Convergence Theorem

A finite difference approximation scheme 
converges (towards the solution of the 
PDE) if and only if: 

• The scheme is consistent

for k-> 0 the LTE → 0, i.e., the FD scheme 
tends to the continuous differential PDE

• The scheme is Lax Richtmyer stable.



Stability and LTE

• the forward Euler/centered (FTCS, method II) is 

unconditionally unstable

• the upwind method, Lax-Friedrichs and Lax-Wendroff

schemes are conditionally stable provided that the CFL 

condition is satisfied; 

• the backward Euler/centered method is unconditionally 

stable

• truncation error for Lax-Friedrichs O(h2+k), Lax-Wendroff

O(h2+k2) and upwind O(h+k) methods
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Lax-Friedrichs Method

A simple way to stabilize the FTCS method

has been proposed by Peter Lax:  

Peter Lax, born 1926
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We write the terms a bit different: 

Original PDE 

http://de.wikipedia.org/wiki/Bild:Peter_Lax.jpg


Lax-Friedrichs Method

• But it solves the wrong PDE!

How bad is that?

• Answer: Not that bad.

The dissipative term mainly damps small

spatial structures on grid resolution, which we 

are not interested in => Numerical dissipation

• The unstable FTCS-method blows this small 

scale structures up and spoils the solution.

• Lax-Richtmeyer stable numerical scheme (if 

CFL fulfilled)
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2
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artificial viscosity
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Lax-Wendroff Method

2 step method based on LaxF Method

• Apply first one step “Lax step” but

advance only half a time step.

• Compute fluxes at this points tj+1/2

• Now advance to step  tj+1 by using

points at tj and tj+1/2

• Intermediate results at tj+1/2 not needed anymore.

Scheme is second order in space and time.



Lax-Wendroff Method
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j+1

j



Lax-Wendroff Method

LaxF step

Compute the flux in tj+1/2 then:
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Lax-Wendroff Method

By replacing (1) in (2) we have

That can be seen as the central differences with an 

additional numerical diffusion with diffusion coefficient 

very small (a2k/2)

- Stable if  CFL-condition fulfilled.

- Still diffusive, but here this is only  4th order in k,

compared to 2th order for Lax method.

=> Much smaller effect.
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Numerical Stabilization

The three methods upwind (up), Lax-Friedrichs (LF) e 

Lax-Wandroff (LW) can be written in advection-diffusion 

form with different diffusion coefficients:

and the method is stable for every ε value

2 2

2 2 2
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LW up LF
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Numerical Stabilization

• Add a term of artificial diffusion in the direction of 

the field V: 

The coefficient of viscosity is chosen 

proportional to the spatial step 

• The artificial viscosity tends to zero as h→ 0, 

while preserving the consistency of the method

du
V u u

dt
+ • = 

h



Leap-Frog Method

Children playing leapfrog  

Harlem, ca. 1930.

Scheme uses second

order central

differences in

space and time.

One of the most important classical methods.

http://en.wikipedia.org/wiki/Image:Leapfrog_in_harlem.jpg


Leap-Frog Method
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• Explicit

• Consistent (accuracy of second order in space and time)

• Requires storage of previous time step.

(3 levels method)

http://en.wikipedia.org/wiki/Image:Leapfrog_in_harlem.jpg
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Leap-Frog Method

• Corresponds to the midpoint method for ODE

with Ra defined in the interval imaginary axis

• Stability under CFL-condition 

• No amplitude diffusion, but possible dispersion
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Von Neumann Analysis



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=
k

ikx

kexu )(0

▪ Decomposes the solution of the problem in the Fourier 

series, assuming that it is periodic of period 2

▪ Consider the expansion of the periodic initial data 

▪ The numerical approximation of a FD explicit scheme 

for the transport problem satisfies
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kth Fourier Coefficient

amplification coefficient of the k-th harmonic



Von Neumann Analysis

 kk gcon

The exact solution of a transport problem in general can be 

written in the form
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While is a necessary and sufficient

condition for a given numerical 

scheme to satisfy the stability



Von Neumann Analysis

▪ Ea,k Error of dissipation (or amplification) effects of 

discretization on the amplitude of the k-th harmonic.

▪ Ed,k Error of dispersion measures the effects on the phase 

of the k-th harmonic, i.e. on the speed of propagation.
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k k
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k

 Speed  of propagation of the numerical solution (for the kth armonic)



Dispersion effects: that

is either a delay or an 

advance in the wave 

propagation.

Effects of dissipation:

dumping of the

wave amplitude
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Esempio 2D 

Curva che si propaga lungo la normale con velocità costante VN=1

Schema numerico (upwind)
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h

x y

 =  = 


= =  

+
 

1 2

1
2 2

0

0

k k x k x k

i , j i , j i , j i , j

y k y k

i , j i , j

u u t( (max( D u , D u , ))

(max( D u , D u , )) )

+

− +

− +

= +  −

+ −

t t N t N t N

u
u u,V u u,V N u V u, u V | u |

| u |


+  = +  = +  = +  =


0



Numerical Methods for 

Hyperbolic Linear Systems

A is a constant matrix

The system is called hyperbolic if A is diagonalizable with real 

eigenvalues, so that we can decompose

H: matrix of  right eigenvectors of A

We rewrite  (*) in the form:

(*)

characteristic variables

1 1 1

1

0t xH U H H H U

sia w H U

− − −

−

+  =

=

1

1

1 2

0

,

( ,..., )

( , ,..., )

t x

p i

p

k k

k

U AU

A H H

diag R

H h h h

Ah h

  



−

+ =

= 

  



=

w
0

t

w

x

 
+  =

 



Numerical Methods for 

Hyperbolic Linear Systems

k

1

w
0 1,...,

t

( , ) (0, )

( , ) (0, )

k
k

k k k

p
k

k k

k

w
k p

x

solution w x t w x t

u Hw

u x t w x t h






=


+ = =

 

= −

=

= −

This decouples into p independent scalar transport equations:

(solve by the methods discussed earlier)
Every solution wk is constant along the kth characteristic 

The solution to the original system (*) is finally recovered 

via

The solution depends only on the initial data at the p points x-λpt



1D wave equation 

(second order hyperbolic PDE)

2

0

0

0 1

: ( ,0) ( )

( ,0) ( )

: ( , ) 0, ( , ) 0

solution , ( )

tt xx

t

u c u f

IC u x u x
x  (a,b)

u x v x

BC u a t u b t

u(x t) u (x ct) u x ct

 − =


=


=
 = =

= + + −

Example: model of a vibrating elastic rope of length (b-a), fixed 
at the ends, c coefficient dependent on the specific mass of 
the rope and on its tension, the rope is subjected to a 
vertical force of density f. The solution u represents the 
vertical displacement

The kinetic energy of the system is preserved



Wave equation: convert in 

a first order hyperbolic system
1 2

1 2 2

1 0 2 0

change of variables: ,

w
0

t

0 1
[ ]

0

: ( ,0) '( ), ( ,0) ( )

x t

T

w u w u

w
A x  (a,b)

x

w w w A
c

CI w x u x w x v x

= =

 
+ = 

 

− 
= =  − 

= =

The second order PDE is transformed into a system of 2 

Hyperbolic first order independent PDE:

Solve each scalar PDE by a method for advection eq.(eg Upwind)



Wave Equation:

Explicit Method

(i,j) (i+1,j)(i-1,j)

(i,j+1)u(x,t)
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Explicit Method
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Explicit Method

,1 , 1

0 0

, 1 ,1 0

( ,0) ( ) ( )
2

ghost point: 2 ( )

i i

t i

i i i

u u
u x v x v x

k

u u kv x

−

−

−
=  =

= −

Centered Difference for the Initial Condition

x0 x1 x2                                               xi

Replace ui,-1  with the given relation in the numerical 

scheme for the node j=0

j = 0

j = -1

j = 1



Explicit Method
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Wave Equation: Numerical 

Solution

u0 = ...

u1 = ...

r  = c*(dt/dx)

for t = 2*dt:dt:endt

u2(2:n) = r^2*u1(1:n-1)+

2*(1-r^2)*u1(2:n)+

r^2*u1(3:n+1)-u0(2:n)

u0 = u1;

u1 = u2;

end

j+1

j

j-1

i-1 i i+1

2 2 2

, 1 1, , 1, , 12(1 )i j i j i j i j i ju r u r u r u u+ − + −= + − + −



Example: Wave Equation

utt = c2 uxx for 0  x  1, t  0

• IC: u(0,x) = sin(x)+x+2,  

ut(0,x) = 4sin(2x)

• BC: u(t,0) = 2, u(t,1)=3

• c = 1  propagation speed

• unknown: u(t,x)

• discretize unknown function: ( , )k

ju u k t j x  



Wave Equation Results

dx=1/30

dt=.01



Wave Equation Results



Poor results when dt too big

dx=.05

dt=.06

Method 

unstable when 

step too large



Implicit Method
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CS   average of the CS at time j+1 and j-1



Implicit Method

Linear System at each time step j with 

Tridiagonal Matrix (Thomas’s algorithm)

• Unconditional stability
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