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ABSTRACT 

Despite intensive experimental work on HIV-1, very little theoretical work has 
focused on HIV-1 spread in tissue culture. This article uses two systems of ordinary 
differential equations to model two modes of viral spread, cell-free virus and 
cell-to-cell contact. The two models produce remarkably similar qualitative results. 
Simulations using realistic parameter regimes showed that starting with a small 
fraction of cells infected, both cell-free viral spread and direct cell-to-cell transmis- 
sion give an initial exponential phase of viral growth, followed by either a crash or a 
gradual decline, extinguishing the culture. Under some conditions, an oscillatory 
phase may precede the extinction. Some previous models of in vivo HIV-1 infection 
oscillate, but only in unrealistic parameter regimes. Experimental tissue infections 
sometimes display several sequential cycles of oscillation, however, so our models 
can at least mimic them qualitatively. Significantly, the models show that infective 
oscillations can be explained by infection dynamics; biological heterogeneity is not 
required. The models also display proportionality between infected cells and cell-free 
virus, which is reassuringly consistent with assumptions about the equivalence of 
several measures of viral load, except that the proportionality requires a relatively 
constant total cell concentration. Tissue culture parameter values can be determined 
from accurate, controlled experiments. Therefore, if verified, our models should 
make interpreting experimental data and extrapolating it to in vivo conditions 
sharper and more reliable. © Elsevier Science Inc., 1996 
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1. INTRODUCTION 

About half a century ago, Delbrueck among others used experimen- 
tal techniques and theoretical modeling to study bacteriophages [1, 2]. 
Some fundamental genetic concepts followed from his experiments, 
which had to be designed to answer precisely posed theoretical ques- 
tions. In an extension of the bacteriophage studies to animal virology, 
Dulbecco and co-workers introduced his plaque assay and comple- 
mented it with mathematical modeling [3, 4]. Concepts derived from 
these studies, e.g., multiplicity of infection (MOI) [5], are now used 
routinely when characterizing virtually any animal virus. 

Many mathematical models examine the in vivo effects of human 
immunodeficiency virus type 1 (HIV-1) infection and its interactions 
with the immune system (see, e.g., [6]). As with many animal viruses, 
however, most of our knowledge about the replication of HIV-1 derives 
from in vivo infection of tissue cultures. In light of the intensive 
experimental work, surprisingly little theoretical work has focused on 
HIV-1 spread in tissue culture, particularly when compared to the 
theoretical bacteriophage studies of the late 1930s. Of the theories 
examining HIV-1 infection in tissue culture (e.g., [7]), two are particu- 
larly relevant to this paper. 

The first theory explored the infection kinetics of cell-free HIV-1 by 
viewing the viral lifetime as a race between HIV attachment and 
inactivation [8]. This view eventually crystallized in the concept of viral 
multiplicity of attachment (MOA). A virion's MOA in a particular time 
interval is the average number of cellular attachment opportunities that 
must be blocked to keep the virion in suspension [9]. The number of 
attachment opportunities, the virion's MOA, is usually proportional to 
both virus-cell incubation time and cell concentration. During a typical 
in vitro incubation of 1 h in 5 x 105 cells/ml, a virion from a laboratory 
HIV-1 strain has an MOA of around 1; i.e., it has about one attachment 
opportunity. (The corresponding MOA for a virion from a primary 
isolate is probably somewhat higher [10].) The MOA concept quantifies 
observations that blocking viral attachment in culture [11] and clinically 
[8, 12-14] is more difficult as cell concentrations or incubation times 
increase. This theory is used to estimate the number of attachment 
opportunities for a virion, to show that under culture conditions individ- 
ual virions generally attach before they inactivate. 

The second theory quantified the exponential spread of HIV-1 dur- 
ing cycles of infection in tissue culture [15]. The semi-empirical formu- 
las from the theory determined two significant parameters of HIV-1 
infection, the number of infecting virions produced by one cell in one 
cycle of infection and the time required to complete one cycle of 
infection. Although this theory has applications to quantifying both the 
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infectivity of HIV-1 and the efficacy of HIV-1 inhibitors, its validity has 
been limited to the initial phases of viral spread because it neglects cell 
death and other progressive restrictions on viral expansion. In addition, 
it does not directly examine factors changing free virus attachment, the 
relative importance of cell-to-cell contact, cell-free virus to viral spread, 
etc. This theory is used here to estimate parameters from data on initial 
viral spread. 

Here, we present a model of HIV-1 infection kinetics in tissue 
cultures. The model is based on a system of differential equations, 
similar to models of HIV-1 infection kinetics in vivo (e.g., [6]). Unlike 
the previous models, however, our model explicitly takes into account 
whether viral spread takes place through cell-to-cell contacts or suspen- 
sion virions, because the distinction may be important [15-17]. Tissue 
culture infection is inherently simpler than infection in vivo, and param- 
eter values can be determined from accurate, controlled experiments. 
Therefore, if verified, our model may make interpreting experimental 
data and extrapolating it to in vivo conditions sharper and more 
reliable. 

2. MODEL 

Table 1 lists the symbols in this paper. The parameter values are 
justified, when required, from the references given or else derived in 
Section 5. 

2.1. CELL GROWTH IN THE ABSENCE OF INFECTION 

This article models changes in cell concentration in the absence of 
infection and without external cell sources as [6] 

dC 
[ 1 - ( C  + IzcC d r  = rC T M )  Cmlax ] - 

= rcC[1 - (C  + TM)Cm 1 ] (1) 

d M  
d T  = p'cC" 

The first form of d C / d T  uses direct physical constants, but the second, 
simpler form is used in later extensions of Eq. (1). 

The first term in Eq. (1) quantifies the reproduction of the cells and 
contains a phenomenological factor that prevents healthy cells from 
reproducing when the system reaches its carrying capacity Cma x [18, 
p. 71]. Equation (1) allows that a dead cell might slow the reproduction 
of healthy cells through metabolic poisons, etc., although perhaps less 
than a healthy cell (thus 0 ~< y <~ 1). 

The dead cells may degrade into cellular debris. Degradation can be 
handled by adding corresponding terms and equations, but we prefer a 
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T A B L E  1 

Paramete r  Ranges  and Defaul t  o r  Initial Values 

DEPENDENT VARIABLES 
C concentration of healthy cells 
I concentration of infected cells 
M concentration of cells that have died 
S continuous splitting volume 
T time 
V concentration of physical cell-free viral particles 

PARAMETERS AND CONSTANTS 
Cmax carrying capacity of healthy cells 
k e empirical initial growth rate of virus 

[5X 105 m1-1 ] 
[5X 102 m1-1] 

[0 m1-1] 

[5x 105 ml -'!] 

[(2-5) 2 x  106 m1-1 [12]] 
[(0.3-1.5) 1 day -1 [1511 

k,4 attachment rate constant for infectious virions [(2-6) 2 x 10-5 ml -  1 day- 1 [9]] 
k / r a t e  constant for cell-to-cell spread [(1-3) 2 × 10 -6 ml-1 day-1 (Section 5)] 
k s hypothetical rate constant for continuous splitting [(0.0-0.7) 0.7 day -1 (Section 4.3)] 
r healthy cell reproductive rate constant [(0.0-0.7) 0.7 day-1 [15]] 
r e rate constant at which infected cells produce virions [(102-105) 2 x 103 day- 1 [15]] 
3' relative reduction in the carrying capacity due to dead cells and 

cellular debris [(0-1) O] 
relative efficiency of viral attachment to dead vs, live cells [(0-1) O] 

P c  rate constant at which healthy cells die [0.02 day -1 [6]] 
/~t rate constant at which infected cells die [(0.2-1) 0.3 day -1 [29]] 
/x e nonspecific inactivation rate constant for virions [(0.3-2) 1 day-1 [26]] 
o- ratio of physical particles attaching to infections [(10-4-10 -7) 5 x 10 -4] [15, 26] 

DERIVED QUANTITIES 
C m = r - l ( r  -- p c ) C m a  x effective carrying capacity of healthy cells 
c* reduced concentration of healthy cells from Eq. (8) 
i* reduced concentration of infected cells from Eq. (8) 
r c = r - tz c effective healthy cell reproductive rate constant 
r s = rptr  rate constant for infected cells producing infecting virions 

p c  = r - ( 1 -  ~)/~c = rc  + ~l~c 

[2x lO 6 m1-1] 

[0.68 day-  1 ] 
[1 day -1] 

[0.68 day-  1 ] 

simpler, more phenomenological approach that includes the effect of 
dead cells and cellular debris in a single quantity M. 

2.2. S P R E A D I N G  I N F E C T I O N  B Y  C E L L - T O - C E L L  C O N T A C T  

In a typical tissue culture, cell-to-cell spread is often thought to be 
the dominant mode of viral transmission [15-17]. This article models 
cell-to-cell spread as a Lotka-Volterra predator-prey system [19], with 
the healthy cells as the prey and the infected cells as the predators. To 
determine whether cell-to-cell spread has kinetic features distinguishing 
it from spread by cell-free virions, we consider the two types of viral 



HIV-1 INFECHON KINETICS 

transmission separately, although the corresponding equations, Eqs. (2) 
and (3), could have been combined in an obvious (but unwieldy) way. 

Accordingly, Eq. (2) models the spread of infection by cell-to-cell 
contact and ignores spread by cell-free virions: 

dC 
d T = - k t l C  +rcC[1- (C + I+yM)C~  1] 

dI 
d---~=ktlC- ~i I (2) 

dM 
dT = IzcC + IzlI" 

Like Eq. (1), Eq. (2) allows that dead cells and cellular debris can slow 
healthy cell reproduction, but it also assumes that the carrying capacity 
and any signals controlling the reproduction of healthy cells (e.g., 
metabolic wastes, cytokines) can be influenced by both the total number 
of live cells (without regard to cell status as healthy or infected) and the 
total number of cells that have died. 

The terms ktlC, representing cell-to-cell spread, are appropriate in a 
system if the cells are well mixed [8], an assumption deserving some 
scrutiny. Although isolated lymphocytes are mobile, tissue culture sys- 
tems are generally not well mixed, and a cell usually maintains its 
contact with neighbors. Occasionally, however (usually every second or 
third day), tissue culture cells may be split, with some cells being 
removed and the culture diluted, thereby mixing the system. This 
partially justifies using the terms k1IC in Eq. (2). 

Equation (2) does not include a latent period after cells have been 
infected. Latency might be modeled either by a delay, e.g., I ( t -  T) 
instead of I(t), or by an explicit class of latently infected cells L(t) [6]. 
For simplicity, we have omitted latency because it is fast (about a day 
[20]) on the time scales of interest here (at least a week). 

Proving that all concentrations remain nonnegative under Eqs. (2) 
[and (3) below] is straightforward and is omitted. 

2.3. SPREADING INFECTION BY CELL-FREE VIRIONS 

This section distinguishes carefully between infectious and physical 
viral particles. Measuring infectivity gives the number of infecting viral 
particles in a viral stock; electron microscopy estimates the number of 
physical viral particles. 



6 J .L.  S P O U G E  et al. 

As a complement to Eq. (2), Eq. (3) models the spread of infection by 
cell-free virions and ignores spread by cell-to-cell contact: 

dC - kA~r VC + rcC[1 - ( C  + I + y M ) C m '  ] 
d T  = 

dI 
d---T = kA or VC - I~iI 

d M  
dT  = tzcC + t~tI 

d V  
d T  = re I  - kAV( C + I + • M )  - lzvV.  

(3) 

The terms k Acr VC representing infection by a cell-free virion resemble 
the terms k f l C  in Eq. (2), except that only a successful fraction tr of 
the physical cell-free virions attaching to a cell infect it. Table 1 
approximates tr by the ratio of infectious to physical viral particles in 
an HIV stock. Computer simulations based on this approximation are 
not at variance with experimental data (see the Discussion). The repro- 
ductive parameter r e in Table 1 also refers to physical particles, and 
while Eq. (2) does not explicitly link viral production r e I to infected cell 
death, the ratio re lz i  1 could be interpreted as the average number of 
physical particles released by a lysing infected cell [6]. 

Like Eq. (2), Eq. (3) assumes a well-mixed system. In this case, the 
system must maintain mixing of suspension virions and cells. This 
assumption appears justified in many but not all experimental systems 
[21-25]. For the same reason as for Eq. (2), Eq. (3) also does not 
include a latent period after cells have been infected. 

The parameter 0 ~< • ~< 1 is a relative attachment efficiency, the ratio 
of viral attachment rates to dead cells and live cells. As with its carrying 
capacity terms, Eq. (2) permits its viral attachment terms to distinguish 
live cells from dead cells, but is indifferent to the cells' status as healthy 
or infected. Note that even if dead cells eventually disintegrate, they 
still may decoy some virions from attaching to live cells. Decoying virus 
with dead cells and cellular debris is a novel feature in our model and 
has some interesting consequences. 

3. ANALYSIS 

3.1. S P R E A D I N G  I N F E C T I O N  B Y  C E L L - T O - C E L L  C O N T A C T  

3.1.1. Short-Time Exponential Growth 

When substituted into Eq. (2), the initial values of (C, I, M) give the 
exponential growth of healthy cells at time T = 0 as C - I ( d C / d T ) =  
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- k t l  + r c [ 1 - ( C  + I + 7M)C,,,~]; and the corresponding empirical 
exponential growth rate k¢ for infected cells, as k e = I - l ( d I / d T )  = 

k t C  - i~I  . 

For cell-to-cell spread, the initial exponential growth of infected cells 
is a linear function of the initial concentration of infected cells. 

3.1.2. Medium-Time Evolution (TMC m i << 1 - (C + I)C~, 1) 

For yMCT, ~ << 1 - ( C  + I)C~, l , Eqs. (2) have equilibrium points 

dC 
dt = 0  - -  C = O  or - k 1 I + r c [ 1 - ( C + I ) C ; 1 ] = O  

d I  
d--7=0 =* I = 0  or k i C - l x i = O  

(4) 

and Jacobian 

J = ( - k l l  + rc[1 - ( C  + I ) C ~  1 ] - rcCC~ 1 

k f l  

_ C ( k l  + r c C ~  ' 1) I.  

k i C  - iz I 1 
(5) 

One combination from Eqs. (4), C = 0  and k l C - l x  I = 0 ,  is 
clearly contradictory, since /~i > 0 (infected cells die). The three 
equilibrium points remaining and their eigenvalues A, which solve 
d e t ( J -  AI) = 0, are (0,0) with eigenvalues A = r c and Z = - / x l ;  (C,,,0) 
with eigenvalues A= - r c and A= k l C  m - ~1; and (Ci, I i )=( t z t k - /1 ,  
rc(1 _ lxtk 1 a C~ 1)(k I + rcC~, 1 ) -  ~ ) with eigenvalues satisfying 

k 2 + r c i~,kl lC~,lA + r c /~,(1 - Iztk-ilCm I ) = 0. (6) 

All eigenvalues from Eq. (6) have a negative real part (although both 
signs for the discriminant of Eq. (6) can occur). The third point (C i, I i) 
satisfies I i > 0 only when k i C  m > i~ 1. 

Thus there are two principal cases, separated by the borderline case 
k l C  m = ld, l .  

Case 1: Healthy cells predominate and infected cells die exponentia~y. If 
ktCm < IZl, (0,0) is a saddle point, while (Cm,O) is an asymptotically 
stable star (our stability terminology follows [18]). In this case, the third 
point (Ci, I i) is unphysical. 
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The equilibrium values (Cm,O) when substituted into Eq. (2) give the 
asymptotic exponential growth of healthy cells as C~ql(dC/dT)eq = 0 
and of infected cells, as I~ql(dI/dT)eq = k iC  m - I~ 1 < O. 

Case 2: Healthy cells and infected cells coexist. If k 1C m >/xl, (0, 0) is still 
a saddle point, but (Cm,O) has also become a saddle point. (C i, Ii) has 
become physical and is an asymptotically stable star if the discriminant 
of Eq. (6) is positive or an asymptotically stable spiral if it is negative. 

The equilibrium values (C i, I i) when substituted into Eq. (2) give zero 
asymptotic growth: C~ql(dC/dT)eq = l~ql(dI/dT)eq = 0. The approach 
to zero growth is steady if the discriminant of Eq. (6) is positive, but 
gives damped oscillations if it is negative. 

3.1.3. Long-Time Death 

Assume y > 0. If C or I were bounded away from 0 for an infinite 
total time, the equation for d M / d T  in Eq. (2) shows that M eventually 
would exceed any preassigned bound, e.g., 2y-lCm . M>_. 2y-lCm im- 
plies that d(C + I ) /  dT <~ -[min(rc, I~I)](C + I), however, driving both 
C and I to 0 exponentially fast. Thus, ultimately the dead cells and 
cellular debris choke and kill the system. 

3.2. SPREADING INFECTION BY CELL-FREE VIRIONS 

3.2.1. Quasi-Steady-State Approximation 

Viral processes in the suspension phase are usually faster than 
cellular processes. This observation justifies a quasi-steady-state approx- 
imation d V / d T  -~ 0 in analyzing Eq. (3): 

V~. reI 
kA( C + I + eM)  + tXv " (7) 

A similar quasi-steady-state approximation was accurate in an in vivo 
model [6]; numerical runs also confirmed the accuracy here. 

Substituting Eq. (7) into Eqs. (3) suggests the use of "reduced 
variables": 

k~C 

kA(C + I +  eM)  + lZv 

k A I 
(8) 

kA(C + I +  a M ) +  ix v" 
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3.2.2. Short-Time Exponential Growth 

After the viral quasi-steady state in Eq. (7) has been established, the 
reduced variables and Eqs. (3) give 

d lnC 
d T  

din I 
d T  

- -  = - rs i*+ r c [ 1 -  (C + I +  yM)Cm 1] 

= rsC* - ix 1. 

(9) 

The initial values of (c*,i*) after viral quasi-steady state has been 
established, when substituted into Eq. (9), give the short-time exponen- 
tial growth of healthy cells as - rsi* + rc[1 - ( C  + I + yM)C,~ 1 ] and the 
corresponding exponential growth rate k~ for infected cells as k¢ = 
rsC* - lz I. Thus, if (C + I + yM)C~ 1 << 1 so the system is well below its 
effective carrying capacity, the initial exponential rate of infection 
depends only on c* and i*. If in addition /~v << kA(C + I + EM) so 
virions have several attachment opportunities before inactivating [9], 
and if ~M << C + I, so they preferentially attach to live cells, c* and i* 
depend only on the proportion of infected cells I (C + I )  -1. For spread 
by cell-free virions (under these assumptions), the initial exponential 
growth of infected cells and virus depends on the initial (quasi-equi- 
librated) proportion of infected cells and not on their concentration. 

3.2.3. Medium-Time Evolution ((C + I + yM)C,~ 1 << 1) 

While the assumption yMCm I << 1 - ( C  + I)Cm I is symmetric with 
the previous section, and thus aesthetically desirable, it does not sim- 
plify the mathematics. 

In Eq. (9), if (C + I + y M ) C ~  ~ << 1 so the system is initially below its 
effective carrying capacity, the medium-time behavior depends only on 
the reduced variables. This observation motivates examining the asymp- 
totic phase plane behavior of c* and i*. 

For (C + I + y M ) C ~  1 << 1, Eq. (8) puts Eq. (3) into the form: 

dc* 
d T  = c * { -  pc c* + [ ( 1 -  , ) ~ z , -  rsl i* + rc} 

di* 
d T  = i* [(r  s - pc)C* + (1 - e)/xti* - / z , ] .  

(lo) 

Equations (10) preserve 0 ~< c* and 0 ~< i*. By manipulating Eqs. (10), 
the three inequalities 0 ~< c*, 0 ~< i*, and c* + i* ~< 1 imply that d In[1 - 
(c*+ i* ) ] /dT  >1- r c, so they are preserved over time, which is also 
obvious from Eq. (8) and physical intuition. 
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dc* 
d t  = 0 ~ c* = 0 

di* 
d---/-=0 = i * = 0  

or - pc c* + [ ( 1 -  E)I~I - rs]i* + rc = 0  

or ( r  s - p c ) c * + ( 1  - ~ ) l~ l  i* - tZl = 0 

(11) 

and Jacobian 

J = [ - 2 P c C *  + [(1 - e) tx t  - rs]i* + r c 

(r  s - Pc)i* 

[(1 - ~ ) ~ 1  - r s ] c *  

(r  s - pc )c*  +2(1-  ~)/zli* - /x  I }" 

(12) 

One combination from Eqs. (11)produces ( c * , i * ) = ( 0 , ( 1 - ~ ) - 1 ) .  
The point (c*, i*) is physical only for ~ = 0 when it equals (0,1). Even 
then, it has eigenvalues A = - ( r  s - I ~ z -  r c )  and A=/zt ,  is not stable, 
and need not be considered further. The three points remaining and 
their eigenvalues A are (0,0) with eigenvalues A = r  c and A = -  lZl; 
( r  c pc1,0) with eigenvalues A = - r c and A = r c p c l r s  - r c - iZl; and 

t x l [ r s  - ( 1 -  ¢ ) ( r  c + iz,)] Pc(rc__PcArs - rc - lXl) ) 

( c * , i* ) = r - ~ s  --_ -p c - _ - ~ _  ~ -~l ] , r s [ r s _ P c -O --_ ~-)--~l ] 

(13) 

with eigenvalues satisfying 

A 2 + [ pc  c* - (1 - E ) l z t i *  ] A + r s [ r  s - Pc - (1 - ¢ ) t z t ] c * i *  = O. (14) 

The eigenvalues have a nonpositive real part since the coefficient of )t 
is 

pc  c* - ( 1  - E ) ~ l i *  = - rs i*  + r c 

i x l ( r  c + tZc)  (15) 
= FSCv* - -  [ ' £ I  = • 

rs - Pc - ( 1 -  ~)/-~I " 

Both signs for the discriminant of Eq. (14) can occur. By algebra, 
* + i* ~< 1 only if all the numerators and denomina- O < c * , O < i *  and cv 

* and "* tors in c v t v are nonnegative. This implies that 0 < r c p c  lrs  - r c - 
/xt and that the common value in Eq. (15) is nonnegative. 

There are two principal cases, separated by the borderline case 
rc P c l r s  = rc + lzl . 
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Case 1: Healthy cells predominate and infected cells die exponentiaUy. If 
rc pc lrs  < rc + ttz, (0,0) is a saddle point, while (r  c pc1,0)  is an asymp- 

* "* 
totically stable star. In this case, the third point (c v , tv ) is unphysical. 

Equations (9) show that in this case, the medium-time exponential 
growth of healthy cells is r c > 0, and the medium-time exponential 
growth of infected cells is - (  tz I - r c pc l r s )  < O. 

Case 2: Healthy cells and infected cells coexist. If r c pc lrs > r c + tz~, 
(0,0) is still a saddle point, but ( r c P c l , 0 )  has also become a saddle 

* "* point. The point (c~, t~)  has become physical. If the discriminant of 
* ' *  Eq. (14) is positive, (c~ ,t~ ) is an asymptotically stable star; otherwise, it 

is a spiral if e > 0, or a center if • = 0. 
Equations (9) show that in this case, the medium-time exponential 

growth of both healthy and infected cells is - rsi* + r c = rcC* - izt >10. 
The ratio of infected to healthy cells approaches '* * zv / c~. The  approach 
to these values is steady if the discriminant of Eq. (14) is positive; if, 
however, the discriminant is negative, • > 0 gives damped oscillations. 
All else equal, these oscillations become less damped as • decreases (cf. 
Eqs. (14) and (15)), until they are undamped at e -- 0. In other words, 
the oscillations become less prominent the more that dead cells and 
cellular debris decoy cell-free virions. 

3.2.4. Long-Time Death 

As with cell-to-cell spread (and with a similar proof), ultimately the 
dead cells and cellular debris choke and kill the system. 

3.3. SPLITTING A CULTURE AND ITS EFFECT 

Sometimes tissue culture cells are split, with some cells being re- 
moved and the culture diluted. If done, splitting usually divides the 
culture in half every second or third day, with medium being added to 
expand the volume of the two halves to match the original volume. 

Although numerical simulations is required to assess the quantitative 
effects of splitting, the following mathematical approximation of "con- 
tinuous splitting" correctly anticipates many of the qualitative effects. 
Even though splitting is discrete, approximate it by a steady, exponential 
increase in the culture volume, and let the equation describing the 
splitting volume be S = S(O)e kst. The volume increase is then equivalent 
to adding the terms - k s C ,  - k s I ,  and - k s M  to the corresponding 
equations for C, I, and M in Eq. (2). Adding similar terms to Eq. (3) 
accounts for splitting there also. 

Since these terms can be absorbed into preexisting terms, usually by 
augmenting the appropriate death rates by ks ,  the foregoing analyses 
can be adapted to the possibility of splitting the cultures. In general, as 
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long as healthy cell reproduction can maintain constant cell concentra- 
tions against splitting, which is typical under actual conditions, the 
augmented death rates slow the short-time exponential growth of infec- 
tion and enhance damping in the medium-time oscillations in infection. 

4. PARAMETER VALUES 

Default in vitro parameter values and typical ranges are given in 
Table 1. (Of course, in vitro parameter values often differ from corre- 
sponding in vivo values [6].) All parameter values are based on T cell 
lines, e.g., CEM cells, and will vary, depending on the particular 
experimental system and culture conditions used. Some of the values 
were determined as follows. 

If dead cells and cellular debris diminish the vitality of the culture 
only slightly (3' = 0), their reproductive influences are felt only at 
extremely long times. Thus we arbitrarily set 3' = 0. Similarly, in the 
absence of data, the relative efficiency of viral attachment to dead vs 
live cells was set by default to e = 0. 

For Eq. (2) tissue culture experiments determined the typical param- 
eter range for the infection rate constant kt as follows. Assume for the 
moment that viral transmission occurs purely through cell-to-cell spread. 
The second theory referred to in the Introduction determined an 
empirical exponential growth rate k e characterizing the initial growth of 
HIV-1 in tissue cultures [15]. Since Section 4.1.1 gives an initial expo- 
nential growth rate of ke -- k ~ C  - / z l ,  where C is the initial concentra- 
tion of healthy cells, typically around 5 x 105 ceUs/ml, the parameter 
values in Table 1 imply that kt is about 2 x 10 -6 ml/day.  

For Eq. (3), the same tissue culture experiments were used to 
determine the proportion tr of HIV-1 virions that successfully infect 
their cell after attaching, but in this case cell-free virions, not cell-to-cell 
contacts, were assumed to be the dominant mode of viral transmission. 
Section 3.2.2 then gives the empirical rate k~ as k~ = r s C *  - l z t  = r e t r  - 

/xl, since the initial reduced concentration c* of healthy cells in the 
experiment was about 1. The measured empirical constant k e of be- 
tween 0.3 to 1.5 day -1 now yields a t r  of about 5 x  10 -4, in interesting 
agreement with the ratio of defective to infectious virions, usually given 
as more than 1000 to 1 [15, 26]. 

5. NUMERICAL SOLUTIONS 

This section gives numerical results from Eqs. (2) and (3) to illustrate 
some features of the models. Figures 1 and 2 and 3 show numerical 
solutions of Eq. (2) and (3) with parameter values in Table 1, unless 
otherwise specified. 
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In Fig. 1A for cell-to-cell spread, there is an initial phase of approxi- 
mately exponential viral growth. The infection then reaches a peak, 
~l lowed by a second phase characterized by damped, or overdamped, 
oscillation of the viral load. Such infective oscillations are to be ex- 
pected from Eq. (2), which is essentially a Lotka-Volterra predator-prey 
model [18, p. 71; 19]. 

Figure 1B demonstrates the effect of splitting the culture continu- 
ously to match the cellular growth rate. The infective oscillations seen 
in Fig. 1A have disappeared, as predicted in Section 3.3. 

Figure 2 for spread by cell-free virions resembles the corresponding 
Fig. 1. Other simulations (not shown) demonstrate the quasi-steady 
state given by Eq. (7) with an approximate proportionality of cell-free 
virions and infected cells. They also confirm the establishment of the 
quasi-steady state within a single generation of infected cells, if the total 
cell concentration remains relatively constant. 
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FIG. 1. Numerical simulation of HIV-1 infection kinetics in tissue culture: E% (2) 
for cell-to-cell transmission of the virus--the effect of splitting the tissue cultures. 
For convenience, the Y-axis uses dimensionless variables: dimensionless healthy cell 
concentration C*= C / C  m (dashed line) and dimensionless infected cell concentra- 
tion I* = I / C , ,  (solid line). Table 1 gives the appropriate default and initial values, 
with C*(0)= 0.25 and I*(0)= 0.00025, except that (A) there was no splitting, i.e., 
k s = 0, and (B) the culture was split to match the cellular reproductive rate, k s = z .  
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FIG. 1. (Continued). 

As in Fig. 1B, Fig. 2B demonstrates the effect of splitting the culture 
continuously to match the cellular growth rate. The infective oscillations 
seen in Fig. 2A have disappeared, as predicted in Section 3.3. 

The maximum concentration of virions in Figs. 2A and 2B is about 
108 m1-1. While it is more than the concentration of viral RNA seen in 
vivo, around 102-106 m1-1 [27, 28], it is also consistent with experi- 
ments showing a 109-10 ]0 m1-1 concentration of physical particles in 
stocks with maximized infectivity [26]. 

Figs. 3, for spread by cell-free virions like Figs. 2, demonstrate that 
infective oscillations are damped by the attachment of cell-free virus to 
dead cells and cellular debris. In both Figs. 2A and 3A, virus does not 
attach to dead cells (e = 0). An extra curve in Fig. 3A displays the 
accumulation of dead cells and cellular debris. Fig. 3B shows that the 
infective oscillations are completely damped when virus attaches equally 
well to live and dead cells (e = 1). When viral cultures are split, 
simulations (not shown) demonstrated similar damping effects. 

Section 3.1.1 indicates that changing cell concentrations changes the 
rate of cell-to-cell viral spread. On the other hand, Eq. (9) predicts that 
under cell-free viral spread, the initial exponential rate of viral growth 
k e is indifferent to absolute cell concentrations, as long as the quasi- 
steady-state relation Eq. (7) holds. Numerical simulations showed that 
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FIG. 2. Numerical simulation of HIV-1 infection kinetics in tissue culture: Eq. (2) 
for transmission by cell-free virus--the effect of splitting cultures. For convenience, 
the Y-axis uses dimensionless variables: dimensionless healthy cell concentration 
C * = C / C  m (dashed line), dimensionless infected call concentration I * =  I / C m  

(solid line), and dimensionless viral concentration 1/'* = I / / I "  m (short dashed-dotted 
line), where I"m = 2× 10 9 ml-1 provides a convenient scale. Table 1 gives the 
appropriate default and initial values, with C*(0)--0.25, I*(0)= 0, and I"*(0)= 
0.00025, (A) except that there was no splitting k s = 0, and (B) the culture was split to 
match the cellular reproductive rate: k s = r. 

requirement  for a quasi-steady state, particularly at the culture's initia- 
tion, was stringent. Taking a chronically infected culture whose total cell 
concentration is the same as the target culture, mixing it thoroughly, 
and then pipetting cells and supernatant  together from it into the target 
culture might conceivably satisfy this requirement.  The value of conclu- 
sions about cell-to-cell vs cell-free viral spread based on these kinetic 
predictions is of  dubious value, however, because they appear  so sensi- 
tive to the experimental conditions. 

6. DISCUSSION " 

This article has developed models of  HIV-1 infection kinetics in 
tissue cultures that quantitatively describe the two different modes of 
viral spread, cell-to-cell contact and infection through cell-free virus. 
Although our approach, which is based on phenomenological  descrip- 
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FIG. 2. (Con~nued). 

tion of virus-cell interactions, is able to mimic experimental patterns of 
virus spread, more experimental work under strictly defined conditions 
is needed to resolve several important issues. 

Under certain conditions, cell-to-cell spread may be more effective 
than cell-free spread in transmitting virus [15-17]. These conditions 
have not been precisely defined but may be extremely important. An 
infectious HIV-1 virion typically has about one attachment opportunity 
during a 1-h incubation in 5 x 10 5 cells/ml [9]. For a viral strain taking 
on the order of 10 h for spontaneous inactivation (a typical figure for 
some, but not all HIV-1 strains [13]), as long as the cell concentration 
remains above about 5 x 10 4 cells/ml, an infectious virion in suspension 
usually attaches to a cell before inactivating. Since attachment occupies 
a relatively brief time in the HIV-1 replication cycle, variations in cell 
concentrations should therefore have little impact on cell-free spread. 
On the other hand, if cell-to-cell spread predominates, any increase in 
cell concentration should increase the frequency of cell-to-cell contacts, 
and consequently the infection rate (as long as the system is well mixed, 
so transmission is seldom restricted to cell aggregates). Thus a series of 
experiments in which cell concentrations are systematically varied could 
theoretically address which of the two modes of transmission predomi- 
nates, but numerical simulations indicated great practical difficulties in 



HIV-1 INFECTION KINETICS 17 

(A) 1.00 

0.83. 

0.67 - 
tt~ 
.= 
> 

0.50 

(D 

(0 
0.33 

0.17 

0.00 

i ~ i i [ i i i ~ i T 1 i i i i , , i i i T ~ ~ i 

f \ i  /1," 

/ ~ /i 
..... "/ ........ ~'\ ......... T'I ........................................................... 

/ \ I :  
. . . .  l . . . . . . . . . . . . . .  ~ . . . . . .  / __ . i  ............................................................ 

I I I 

"-1 . . . . . . . . . . . .  ~ . . . . .  \ . . . . . . .  i . . . . . . . . . . . . . . .  i . . . . . . . . . . . . . .  i . . . . . . . . . . . . . .  i . . . . . . . . . . . . . .  / :: :: :: :: :: 

.... ' ......... i .... ............... i .............. i .............. i .............. 

. . . . . . . . . . . . . .  i . . . . . . . . . . . .  i . . . . . . . . .  / - ,  i . . . . . . . . . . . . .  

, ,  

0 10 20 30 40 50 60 

T ime (days) 

FIG. 3. Numerical simulation of HIV-1 infection kinetics in tissue culture: Eq. (2) 
for transmission by cell-free virus--with damping (e = 1). For convenience, the 
Y-axis uses dimensionless variables: dimensionless healthy cell concentration C* = 
C / C , , ,  (dashed line), dimensionless infected cell concentration I * =  1/C, , ,  (solid 
line), dimensionless concentration of cells that have died M* = M / C  m (long 
dashed-dotted line), and dimensionless viral concentration V*= V / V  m (short 
dashed-dotted line), where V m = 2 × 10 9 ml-1 provides a convenient scale. Table 1 
gives the appropriate default and initial values, with C*(0)=0.25, I*(0)=0,  
M*(0) = 0, and V*(0) = 0.00025. (A) Virions do not attach to dead cells and cellular 
debris (~ = 0), and (B) virions attach to dead cells and cellular debris as fast as they 
attach to live ceils (~ = 1). 

in terpre t ing the cor responding  exper iments  for  reasons  given at the end 
of  Sect ion 5. T h e  negat ive results f rom the s imulat ions indicate that  
exper iments  distinguishing be tween  cell-to-cell and cell-free viral spread  
mus t  m a k e  the distinction on qualitative, not  quanti tat ive,  grounds.  
Thus  exper iments  dis turbing cell-to-cell contacts  th rough  shaking, pipet-  
ting, or  o therwise  may  be requi red  to distinguish cell-to-cell sp read  f rom 
cell-free spread  in cultures.  

The  preceding  arguments ,  if appl ied in vivo, indicate that  cell-to-cell 
spread  should be  part icularly efficient in lymph nodes ,  where  cell 
concent ra t ion  is 10 8 ce l l s /ml .  I f  cell-to-cell sp read  does  indeed domi-  
nate  infect ion kinetics in vivo, conf i rming tha t  cell-to-cell sp read  pre-  
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FIG. 3. (Continued). 

dominates in vitro therefore seems a desirable preamble to using a 
model culture system to test antiviral efficacy. 

Cellular aggregation and its effect on cell-to-cell spread in any 
particular culture system need to be addressed on a case-by-case basis, 
since viral transmission is probably very efficient within the aggregates, 
but it may be poor between them. Although splitting and diluting 
cultures can disrupt cellular aggregates and promote cell-to-cell con- 
tacts, the cells may aggregate later, and aggregation is particularly 
prominent at low cell concentrations, even down to 100 cells/ml. In 
contrast, however, suspension virions usually mix well with cells in many 
(but not all) systems [21-25]. 

Numerical simulations confirmed that in realistic parameter regimes, 
if the total cell concentration is kept relatively constant, the concentra- 
tions of infected cells and cell-free virus are nearly proportional to one 
another within the first generation of infected cells (the quasi-steady- 
state approximation in Section 3.2.1) [6], All else equal, many different 
measures of infection (e.g., in situ PCR, immunostaining, or syncitial 
formation of infected calls, or p24 or reverse transcriptase assays of the 
supernatant) should therefore also be approximately proportional. Thus 
our simulations are consistent with implicit experimental presumptions 
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about the approximate equivalence of different measures of the viral 
load, although this equivalence may depend on holding the total cell 
concentration relatively constant. 

The simulations also showed (see Figs. 1 and 2) that in a typical 
tissue culture infection starting with a small fraction of cells infected, 
the models of both cell-free viral spread and direct cell-to-cell transmis- 
sion give an initial phase of exponential viral growth. With cell-free viral 
spread, if the infection does not peter out, the infection then reaches a 
peak, followed by a second phase characterized by mixed exponential 
growth and oscillation of the viral load, the parameters determining the 
relative importance (if any) of the exponential growth and oscillation. 
The second phase of cell-to-cell spread is similar, except that the viral 
load has a purely oscillatory character. With each type of spread, the 
initial oscillation in the second phase may be violent enough to extin- 
guish the culture. If not, in each case the oscillation continues, damped 
or undamped, until eventually a third phase characterized by a gradual 
buildup of dead cells and cellular debris extinguishes the culture. 

Oscillatory behavior is common in the predator-prey relationship 
postulated by our models between infected cells (or virus) and healthy 
cells: In classic predator-prey models, the predator population follows 
the oscillations in the prey population, but with a time lag [18, 19]. We 
had not expected, however, that our models would produce infective 
oscillations in typical tissue culture parameter regimes. Previously, 
models of in vivo HIV-1 infection were known to oscillate, but only in 
parameter regimes unrealistic in vivo [6]. We were even more surprised, 
however, to discover that experimental tissue cultures could display 
several sequential cycles of oscillation (G. Englund, personal communi- 
cation), and that the corresponding data permitted our models to give a 
quantitative fit within realistic parameter ranges (Dimitrov et al., 
manuscript in preparation). 

Our models indicate that infective oscillation is damped by attach- 
ment of cell-free virus to dead cells and cellular debris, which effectively 
decoys transmission by cell-free virus (see Fig. 3). Dilution during 
splitting similarly damps infective oscillation. Since many long-term 
cultures are split, this may explain why sequential cycles of oscillation 
are rarely observed in cultures. 

Infective oscillations are sometimes observed in tissue culture experi- 
ments, and although predator-prey models provide a natural explana- 
tion, oscillations can have other causes. Defective virions, for example, 
may cause them by the mechanism of interference, as follows. HIV-1 
has a high ratio of defective to infecting virions (more than 1000 to 1 
[15, 26]). When a large concentration of defective virions or viral 
products (e.g., free gpl20) is present, binding to receptor molecules 
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(e.g., CD4) on uninfected cells can interfere with infection and protect 
healthy cells. The infected cells then will decrease along with the viral 
load, reducing interference, leaving the healthy cells unprotected, and 
opening them to infection once again. The viral load then increases and 
the cycle repeats. When most of the cells are infected, the interference 
could be significant, but even then only under the most extreme 
conditions: The concentration of gp120 would have to be about 
1 ~ g / m l  to protect CD4 + cells from infection. Although an observed 
infective oscillation may also be caused by cellular subpopulations, viral 
strains with differing infectivities (so-called "revertants"), etc., we have 
shown in this article that the oscillations can be explained by the 
dynamics of viral transmission alone. The dynamic explanation would 
find support if using the putative revertant instead of the original viral 
inoculum under duplicate culture conditions reproduces the original 
oscillation. Significantly, however, two very natural models of viral 
infection both give oscillations in realistic parameter regimes. If any 
other potentially more interesting, more biological explanation has 
important implications, it also requires independent experimental 
support. 

Finally, in vitro experiments are often extrapolated to in vivo situa- 
tions, but many factors can alter in vivo patterns of HIV-1 infection. For 
example, several groups recently reported on changes in the viral load 
and CD4+ cell concentration after administering potent HIV-1 in- 
hibitors to AIDS patients [27, 28]. Interestingly, one calculation indi- 
cated a half-life of about 2 days for cells acutely infected with HIV-1, a 
figure extremely close to the half-life found in vitro for acutely infected 
cells [29]. Since this calculation made several assumptions of unknown 
validity about the trafficking of cells between different compartments, 
and since the rules governing immune trafficking and regulation in vivo 
are not well understood [30-33], however, we end on a cautionary note: 
Conclusions drawn from tissue culture infections need to be examined 
very carefully before applying them to more complex in vivo systems. 
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