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a b s t r a c t

Recent research in cancer biology has suggested the hypothesis that tumors are initiated and driven by a

small group of cancer stem cells (CSCs). Furthermore, cancer stem cell niches have been found to be

essential in determining fates of CSCs, and several signaling pathways have been proven to play a crucial

role in cellular behavior, which could be two important factors in cancer development. To better

understand the progression, heterogeneity and treatment response of breast cancer, especially in the

context of CSCs, we propose a mathematical model based on the cell compartment method. In this model,

three compartments of cellular subpopulations are constructed: CSCs, progenitor cells (PCs), and terminal

differentiated cells (TCs). Moreover, (1) the cancer stem cell niche is, considered by modeling its effect on

division patterns (symmetric or asymmetric) of CSCs, and (2) the EGFR signaling pathway is integrated by

modeling its role in cell proliferation, apoptosis. Our simulation results indicate that (1) a higher

probability for symmetric division of CSC may result in a faster expansion of tumor population, and for a

larger number of niches, the tumor grows at a slower rate, but the final tumor volume is larger; (2) higher

EGFR expression correlates to tumors with larger volumes while a saturation function is observed, and

(3) treatments that inhibit tyrosine kinase activity of EGFR may not only repress the tumor volume, but

also decrease the CSCs percentages by shifting CSCs from symmetric divisions to asymmetric divisions.

These findings suggest that therapies should be designed to effectively control or eliminate the symmetric

division of CSCs and to reduce or destroy the CSC niches.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

There is an increasing evidence that a variety of cancers,
including those of breast, may be driven by a component of
tumor-initiating cells (TIC, also known as cancer stem cells, CSC)
that retain stem cell-like properties (Clarke et al., 2006; Reya et al.,
2001; Visvader and Lindeman, 2008). These properties include self-
renewal, which drives tumor initiation and growth, as well as
differentiation, which contributes to cellular heterogeneity of
tumors. CSCs are also thought to be able to divide either symme-
trically into two identical daughter CSCs or asymmetrically into one
daughter CSC and one more differentiated cell (Al-Hajj and Clarke,
2004; Shipitsin et al., 2007). Although the amount of CSCs in a
tumor population is relatively small, and maybe comprises 1–5% of
primary tumors (Kopper and Hajdu, 2004; Korkaya et al., 2008),
CSCs are suggested to account for the therapeutic refractoriness
and subsequently the recurrence of cancer, due to their increased
detoxification, repair pathways and mutations that lead to failure
ll rights reserved.
of apoptosis (Gordan et al., 2007; Gustafsson et al., 2005; Hu et al.,
2003; Woodward et al., 2007). Indeed, the CSC hypothesis provides
an explanation for the failure of conventional treatments, which are
currently designed to kill the rapidly proliferating cells that make
up the bulk of tumor cells (Baumann et al., 2008; Boman et al.,
2007).

Currently, it is widely accepted that the stem cell’s fate is at least
partially dependent on the stem cell niche, which is a particular
growth environment, consisting of different cell types and extra-
cellular matrix components (Adams and Scadden, 2006; Scadden,
2006; Walker et al., 2009). Besides the maintenance of stem cells
(Visnjic et al., 2004; Xie and Spradling, 2000; Zhang et al., 2003), the
niche has also been suggested to play an important role in the
determination of stem cell’s fate (Bjerknes and Cheng, 1999;
Lechler and Fuchs, 2005; Li and Neaves, 2006; Potten et al.,
1997). The nutrient and molecules in the niche do not only
physically determine the size of stem cell population, but also
affect the rate at which the stem cells proliferate (Narbonne and
Roy, 2006). The deregulation of the niche leading to an unbalance of
proliferation and differentiation may result in both tumorigenesis
(Li and Neaves, 2006) and the progression of the cancer. Indeed, it
has been suggested that targeting the niche could result in a
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reduction of the tumor burden (Anderson, 2007; Calabrese et al.,
2007; Joyce, 2005). Feedbacks from both stem cell itself and the
environment surrounding the cells have been usually considered in
modeling cell population dynamics. For example, Paulus et al.
(1992) developed a mathematical model that assumed the self-
maintenance and cell cycle activity of the stem cells are controlled
by the number of these cells in an autoregulatory fashion, Johnston
et al. (2007) discussed two feedback models that could regulate the
growth of cell numbers and maintain the equilibrium that is
normally observed in the crypt.

Furthermore, enormous experimental evidence indicates that
the cellular properties, such as proliferation and death, are closely
related to many signaling pathways. For example, many studies
suggest a significant correlation between the EGFR signaling
pathway and cellular proliferation and survival (Athale and
Deisboeck, 2006; Birtwistle et al., 2007; Eladdadi and Isaacson,
2008; Timms et al., 2002). Also, HER2 over-expression drives
mammary carcinogenesis, tumor growth and invasion through
its effects on normal and malignant mammary stem cells (Korkaya
et al., 2008). The activities of some drugs are even directly
proportional to the level of HER2 present on tumor cell membrane
(Vogel et al., 2002).

Many mathematical models have been proposed to study one or
more phases of cancer progression (Anderson and Chaplain, 1998;
Araujo and McElwain, 2004; Byrne and Chaplain, 1995; Chaplain
et al., 2006; Cristini et al., 2003, 2005; El-Kareh and Secomb, 2003;
Frieboes et al., 2009; Holz and Fahr, 2001; Ribba et al., 2006; Sinek
et al., 2009; Zheng et al., 2005), including tumor growth, angiogen-
esis, and drug treatment, with the purpose of better understanding
the pathophysiology of cancer, its progression, mechanisms of drug
resistance, and the optimization of treatment strategies. Recently,
there have been a number of models addressing the control and
progression of cancer stem cells (Boman et al., 2007; Ganguly and
Puri, 2006; Michor et al., 2005). Indeed, early in 1995, Tomlinson
and Bodmer (1995) had published a mathematical model of the
relationship between stem cells, semi-differentiated cells and fully
differentiated cells in intestinal crypt. Based on this model,
d’Onofrio and Tomlinson (2007) developed the first nonlinear
model of stem cell-progenitor-differentiated cells by incorporating
plausible fluctuation in model parameters and assuming that the
parameters depend on the numbers of cells in each state of
differentiation.

In order to better understand the progression, heterogeneity
and treatment response of breast cancer, specifically in the context
of CSCs, we describe a mathematical model by employing a simple
compartment method. We also integrated two factors in cancer
development, i.e., (1) cancer stem cell niche is considered in this
work by modeling its effect on division patterns of CSCs, and (2) the
EGFR signaling pathway is involved by modeling its role in cell
proliferation, apoptosis and drug response. Then, we performed
theoretical treatments targeting these two factors to give some
potential strategies for cancer therapy. The following section
describes the details of the proposed mathematical model.
Fig. 1. Schematic representation for the composition in a tumor, including the niche

(the gray region in the dashed rectangle) for cancer stem cells. See the text for

detailed description.
2. Material and methods

2.1. Basic model of breast cancer

In this work, we investigated breast cancer by using the
compartment method. Recent experimental and clinical data
suggests that breast cancer can approximately be separated into
three cellular subpopulations, which are corresponding to three
main compartments constructed in our basic model: cancer stem
cells (CSCs), progenitor cells (PCs), and terminal differentiated cells
(TCs). It is possible that each of the three compartments can be
further divided into several sub-compartments. In this work,
however, we only subdivide the compartment of progenitor cells.
The dynamics of these cell populations are simply described by
mechanisms shown in Fig. 1. CSCs divide either symmetrically to
produce two CSCs or asymmetrically to generate one CSC and one
PC. The early PCs divide symmetrically to later PCs whose
differentiation capacities are decreased. After several times of
division (k in Fig. 1, we use k¼7 in this work), the latest PCs will
lose their differentiation capacity and add to TCs compartment in a
rate of Di. For the TCs, they do not divide, but can be lost from the
system through many processes, e.g., apoptosis. Also, we assume
that CSCs and PCs will also die at a certain rate. The death rates for
CSCs, PCs and TCs are denoted by d1, d2 and d3 as shown in Fig. 1.
Note that we take the same death rate and division rate for all the
sub-compartments in PC compartments, and they do not self-
renew but divide and differentiate.

Taken these together, the dynamics of these types of cell
populations can be described by using an ordinary differential
equations (ODE) system as follows:

dNCSC

dt
¼ PsyoCSCNCSC�d1NCSC ð1Þ

dNPC1

dt
¼ PasyoCSCNCSC�oPCNPC1

�d2NPC1
ð2aÞ

dNPCi

dt
¼ 2oPCNPCi�1

�oPCNPCi
�d2NPCi

ði¼ 2. . .kÞ ð2bÞ

dNTC

dt
¼DiNPCk

�d3NTC ð3Þ

where NCSC and NTC are the cell numbers of cancer stem cells and
tumor cells, NPCi

is the cell number of the ith sub-compartment of
PC population. Psy and Pasy are the probabilities for symmetric and
asymmetric divisions of CSCs. As we assume that CSCs can only
divide in these two ways, we have Psy+Pasy¼1.oCSC andoPC denote
the division rates for CSC and PC. Di is the differentiation rate from
latest PC to TC. d1, d2 and d3 are death rates of CSCs, PCs and TCs,
respectively. The parameter k is the number of sub-compartments.

2.2. Integration of stem cell niche

As described above, more and more attention is being attracted
to the study of cancer stem cells, and a specific structure, named
niche, has been found to support and control the cancer stem cells.
To incorporate the niche into our mathematical model, we sum-
marized the relationship between the CSCs and their niche as
follows:
(1)
 The niche is a specific anatomic structure for a stem cell, that is,
one niche serves one cancer stem cell. CSCs can only reside in
their niches where they obtain necessary nutrients and mole-
cules to survive and maintain their stemness (Ho, 2005).
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Once leaving the niche, CSCs will differentiate into PCs and
subsequently into TCs. The process of differentiation may be
reversible, but we did not consider this case in this work.
(2)
 Evidence suggests that the number of niches is finite, which
could be one reason why there are only a limited number of
cancer stem cells in a tumor. While increasing the number of
stem cell niches will expand the stem cell population, decreas-
ing the niches will diminish the stem cells, which is supported
by recent studies on both normal and abnormal niches (Adams
et al., 2007; Li and Neaves, 2006).
(3)
 Stem cells change from primarily symmetric divisions during
early embryonic development to primarily asymmetric divi-
sions in the mid- and late gestation (Morrison and Kimble,
2006). Therefore, the probability of the division pattern (i.e.,
symmetric or asymmetric) may be dependent on the number of
cancer stem cells and the number of niches. As the niches are
occupied by more and more cancer stem cells, it is prone to
generating differentiated cells, asymmetric division is there-
fore more likely to undergo.
Based on these points, we integrated the effect of the niche into
the system by describing the probability of symmetric division as
the function of CSCs and the niche. We modeled the relationship
between Psy and NCSC by a simple Boltzmann function:

PsyðNCSCÞ ¼ f ðNCSC Þ ¼ f ðNnicheÞ�
f ðNnicheÞ�f ð0Þ

1þexp 10�
NCSC

Nniche
�5

� � ð4Þ

where Nniche is the maximal number of CSCs niches, f(0) is the
probability of symmetric division when there is no cancer stem
cells, and f(Nniche) is the probability when all the niches are
occupied by cancer stem cells. With these intuitive parameters,
we can easily change the relationship between Psy and NCSC by using
different values for Nniche, f(0) and f(Nniche). A typical graphical
representation and applied parameter values are given in Fig. 2.
2. The relationship between Psy and NCSC. Parameters in Eq. (4) are shown in the tab

ber of cancer stem cells. Note that the values marked with stars are used for the simul

e parameters.
2.3. Receptor–ligand interactions

In this section, we discuss the effect of signaling pathways on
tumor growth. Eladdadi et al. (2008) proposed a mathematical
model that described the relation between cellular proliferation
and the numbers of EGRF and HER2 receptors, and the growth
factor EGF as well. Their assumption was that the proliferation rate
is a function of all the cell surface receptors, which is in turn
proportional to the cell density. In a similar way, we incorporated
the EGFR pathway into the model (1)–(3) by modeling the effect of
receptor–ligand complex on cellular proliferation rates and apop-
tosis rates. Furthermore, different treatments targeting specific
cellular activities were considered as well (Fig. 3).

The biological mechanism of EGFR pathway is indeed compli-
cated. The epidermal growth factor receptor family is composed of
four types: EGFR (also called HER1/ErbB-1), HER2 (also known as
ErbB-2/neu), HER3 (known as ErbB-3), and HER4 (known as ErbB-4).
All these four receptors share an extracellular ligand-binding
domain, a single membrane-spanning region, and a cytoplasmic
protein tyrosine kinase domain (Eladdadi and Isaacson, 2008). In
this work, we used EGFR to represent the whole family for
simplification.

Normally, binding of EGF to the extracellular domain of EGFR
causes the activation of the receptors and leads to a serial of
interactions between activated receptors, recruited proteins, and
plasma membrane molecules, finally activating the multiple down-
stream effectors, which are implicated in the control of prolifera-
tion and survival (Birtwistle et al., 2007). However, in the presence
of tyrosine kinase inhibitors (TKIs), such as lapatinib, gefitinib,
erlotinib, which combine with the intracellular domain of tyrosine
kinase activity, the autophosphorylation of receptors will be
inhibited and consequently the downstream pathways that are
responsible for proliferation and apoptosis remain inactivated
(Costa et al., 2007; Gan et al., 2007; Kong et al., 2008). In this
case, no matter whether the EGFR is bound by EGF or not, the
cascade of the EGFR pathways cannot be stimulated, since the
le, while the reversed sigmoid curves in the figure give the dependence of Psy on the

ation in this work, while the others are used for illustrating the curve dependence on



Fig. 3. Schematic representation of the effect of conventional treatment (Conv) and novel treatment (TKIs) on tumor behavior through the EGF–EGFR pathway. While the

conventional treatment can only increase the death rate of PCs and TCs, TKIs can both decrease the proliferation rate of CSCs and PCs and increase the death rate of CSCs, PCs

and TCs.
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signal is blocked due to the failure in activating the intracellular
domain of EGFR.

Indeed, there are four states of EGFR, namely: free EGFR,
complex EGF–EGFR, EGFR–TKI and EGF–EGFR–TKI. Since only
the EGF–EGFR complex is responsible for activation of the EGFR
pathway, we just consider the reactions that are related to EGF–
EGFR. They can be represented by the following chemical reactions:

EGFþEGFR"
kf

kr

EGF : EGFR ð5aÞ

EGF : EGFRþTKI"
kb

ku

EGF : EFGR : TKI ð5bÞ

where Eq. (5a) describes the formation of EGF–EGFR with forward
and reverse rate constants kf and kr, respectively; Eq. (5b) shows the
binding and unbinding processes of TKI to EGF–EGFR with rate
constants kb and ku, respectively. We consider that these cells are
distributed throughout a medium that contains a large amount of
EGF ligands. Since the chemical reaction rate is much faster than
cellular behavior such as cell proliferation, we use the steady state
of Eq. (5) to obtain the concentration of EGF–EGFR. Using the law of
Michaelis–Menten kinetics, we derive the quasi-steady-state of
EGF–EGFR in Eq. (5a) as

EGF : EGFR½ � ¼
½EGFR�0½EGF�

Km1þ½EGF�
ð6Þ

where Km1 is a Michaelis constant equal to the substrate concen-
tration, at which the reaction rate is equal to the half of maximum,
additionally it can also be defined by Km1Ekr/kf. [EGFR]0 is the
initial concentration (or the total concentration) of EGFR. Although
the receptor numbers may vary due to different gene expression,
we assume that in our model, the total number of receptor for the
same type of cells is identical.

Since the binding of EGF to the extracellular domain of EGFR and
the binding of TKI to the intracellular domain are independent so
that they may occur simultaneously without interfering each other.
Therefore, for Eq. (5b), the quasi-steady-state of EGF–EGFR–TKI can
similarly be calculated as

EGF : EGFR : TKI½ � ¼
½EGF : EGFR�0½TKI�

Km2þ½TKI�
ð7Þ

where Km2 is the Michaelis constant and Km2Ekb/ku[EGF:EGFR]0 is
the initial concentration of the complex of EGF and EGFR. In this
way, we can derive the effective amount of EGF–EGFR for the
activation of downstream factors as follows:

½EGF : EGFR�eff ¼ ½EGF : EGFR�0�½EGF : EGFR : TKI� ð8Þ

After obtaining the effective EGF–EGFR, let us now consider how to
link it to the cell proliferation rate and apoptosis. It is obvious that a
complicated cascade should be activated before the cellular
properties are modulated. However, as Monod (1949) and Eladdadi
et al. (2008) did, we simply use the Michaelis–Menten kinetics to
model the saturated effects of the cell proliferation rate with
respect to the EGF–EGFR concentration:

oui ¼omax,ip
EEeff

act,i ¼omax,i

½EGF : EGFR�eff

mhalf þ½EGF : EGFR�eff

ði¼ CSC, PCÞ ð9Þ

where omax,i is the maximum cell proliferation rate, mhalf is the
number of occupied receptors required to generate a half-maximal
response. The cell death rates can be modeled by multiplying a
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repression function caused by effective EGF:EGFR:

dui ¼ dmax,ip
EEeff

rep,i ¼ dmax,i
1

1þ½EGF : EGFR�eff =kd
ði¼ 1,2,3Þ ð10Þ

where dmax,i is the maximum death rate and kd is a constant for the
repression threshold.

Substituting Eqs. (4), (9) and (10) into Eqs. (1)–(3), we can obtain
a new ODE system that incorporates the effects of ligand–receptor
reactions and stem cell niche into the cellular dynamics of a tumor:

dNCSC

dt
¼ PsyðNCSCÞouCSCNCSC�du1NCSC ð11Þ

dNPC1

dt
¼ PasyouCSCNCSC�ouPCNPC1

�du2NPC1
ð12aÞ

dNPCi

dt
¼ 2ouPCNPCi�1

�ouPCNPCi
�du2NPCi

ði¼ 2. . .kÞ ð12bÞ

dNTC

dt
¼Dui NPC�du3NTC ð13Þ
Fig. 4. Sensitivity analysis of the proposed model. This figure shows that the final

tumor volume is most sensitive to the proliferation rate of CSC omax,1, as well as to

the death rate of PCs dmax,2.
3. Model analysis

3.1. Parameter settings

The parameters used in this model are listed in Table 1, most of
which are based on recent experimental data or scientific literature.
The maximal death rates for these three populations were derived
from Michor et al.’s work (2005). The maximal division rate for PC
cells was estimated using the doubling time of HB4a cell lines
t1/2¼48 h: omax,2¼ ln(2)/t1/2¼0.0143 h�1; no data was available
for estimation ofomax,1, we therefore assumed thatomax,1¼0.5omax,2

based on the findings that CSC divides slower than PC cells. No
experimental data was available specifically for the differentiation
rate from latest PC to TC (Di), we therefore used the same value of
division rate of PC. The number of receptor complexes required to
generate a half-maximal response (mhalf) was adopted from Eladdadi
et al.’s work. Km1Ekr/kf was calculated using the data from Hendriks
et al. (2003). Due to the lack of data available for dynamics of EGFR and
TKI interactions, we assumed Km2 has the same value for Km1. The
initial concentration of the EGF ligand was obtained from Hendriks
et al. (2003) and the TKI concentration was set initially with
1.0�10�9 M. The total number of receptors per cell was simply
the summation of EGFR and HER2 from experimental studies, which
varies from 210,000 (normal) to 800,000 (high HER2 expression level)
Table 1
Parameters for the mathematical model.

Symbols Values Physical meaning

dmax,1 0.003/h Maximal death rate of CS

dmax,2 0.008/h Maximal death rate of PC

dmax,3 0.05/h Maximal death rate of TC

kd 107 Constant for repression fu

omax,1 0.0072/h Maximal division rate of

omax,2 0.0143/h Differentiation rate withi

Di 0.0143/h Differentiation rate from

mhalf 1300–4800 Number of receptor comp

Km1 2.5�10�9 M Michaelis constant for EG

Km2 2.5�10�9 M Michaelis constant for EG

L0 1.6�10�9 M Initial EGF ligand concent

TKI 1.0�10�9 M Initial TKI concentration

EGFR 210,000–800,000 Total receptor numbers p

k 7 Division number of PC

Psy (0, 1) Probability of symmetric

MH2005 represents the paper of Michor et al. (2005); EI2008 represents the paper of Ela
(Eladdadi and Isaacson, 2008). Though the total receptors numbers
are assumed to be identical in the same type of cells, experimental
data shows that these receptors are found much more in CSCs than in
PCs and TCs (Magnifico et al., 2009). Since the cancer stem cell
hypothesis states that the tumors are initiated by a small number of
CSCs, we selected an initial normalized condition NCSC¼1.0, with the
other two cell populations set to zero. We used the curve shown in
Fig. 2 to describe the probability of symmetric division Psy as the
function of NCSC and the number of niches.
3.2. Sensitivity analysis

To understand which components of the model contribute most
significantly to determining the final tumor volume, here we
performed a sensitivity analysis. We took final tumor volume for
studying the effects of small variable changes. In each simulation,
we recorded the total tumor cells (SCs+PCs+TCs) after the model
reached a stable state. Perturbing each parameter from its initial
value by 1%, the corresponding percent change in final tumor
volume was calculated.

The results of this parameter sensitivity analysis for the
proposed model are shown in Fig. 4. From the figure we can see
that the system is found to be most sensitive to proliferation rate of
CSC (omax,1) and death rate of PCs (dmax,2). This suggests that, even
very small changes in both the inflow rate of the PC compartment,
as represented by growth variable omax,1, and the outflow rate of
the PC compartment, as represented by dmax,2 here, can affect
Derivation

C MH2005

MH2005

MH2005

nction Estimated

CSC Estimated

n PC compartment EI2008

latest PC to TC Estimated

lexes required to generate a half-maximal response EI2008

F–EGFR steady state HO2003

F–EGFR–TKI steady state Estimated

ration HO2003

Estimated

er cell EI2008

Estimated

division of CSCs Estimated

ddadi and Isaacson (2008); HO2003 represents the paper of Hendriks et al. (2003).
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simulation results. The perturbation of Di shows no significant
effect on the system. This would indicate that the whole tumor is
largely consisted in PC compartment. Indeed, clinical investiga-
tions show that most of the cells in primary tumors are PCs, while
CSC comprises only 1–5% (Kopper and Hajdu, 2004; Korkaya et al.,
2008). Note that, the percent changes of tumor volume in all cases
are less than 0.02%, which shows that the proposed model is very
stable.

3.3. Stability analysis

The basic model (1)–(3) describes the development of breast
cancer, with the purpose of incorporating the most important
concepts while keeping the model as simple as possible. The
dynamics of the basic model are very simple, since there is no
feedback in this case. In this section, we explored the steady state
when there are no treatments. The steady state is reached when the
following relationships are satisfied:

d1 ¼ PsyoCSC ðA1Þ

d2 ¼
PasyoCSCNCSC

NPC1

�oPC

d2 ¼
2oPCNPCi�1

NPCi

�oPC

)

Pasy ¼ 2
oPC

oCSC

N2
PC1

NCSCNPC2

NPC1
¼

PasyoCSCNCSC

oPCþd2

NPCi
¼

2oPC

oPCþd2

� �i�1

NPC1
ði¼ 2,. . .kÞ

8>>>>>>>>><
>>>>>>>>>:

8>>>>>>>>><
>>>>>>>>>:

ðA2Þ

d3 ¼
oPCNPCk

NTC
ðA3Þ

These equations decide the selection of parameter values. As shown
in Table 1, most of the values are derived from other published
paper, where there is no source cited, parameters were selected to
observe steady-state values. The probability of symmetric division
of CSC (Psy) was previously introduced by Paguirigan et al. (2007)
and F. Michor’ group (Dingli et al., 2007; Michor et al., 2005).
However, the precise range of the probability is unclear, we
therefore simulated our model by using the value of Psy within
the range of (0, 1). When Psyod1/oCSC, the system is unstable
until cell population decreases to zero. On the contrary, while
Psy4d1/oCSC, the system is also unstable, and the output shows an
exponential increase in CSC, PCs and TCs. Only on the condition that
Eq. (A1) is satisfied, the cell populations can reach a steady state,
i.e., the number of cells produced is balanced by the number lost.
Here, in the basic model (i.e., when Psy is independent of the
number of stem cells NCSC), we can solve the solution easily, i.e., the
cell numbers of

CSC,PC1,. . .,PCi,. . .,PCk�1,PCk,TC½ �

¼NCSC 1,
PasyoCSC

oPCþd2
,

2oPC

oPCþd2

PasyoCSC

oPCþd2
,. . .,

�

�
2oPC

oPCþd2

� �i�1 PasyoCSC

oPCþd2
,. . .,

2oPC

oPCþd2

� �k�2 PasyoCSC

oPCþd2
,

�
2oPC

Diþd2

2oPC

oPCþd2

� �k�2 PasyoCSC

oPCþd2
,

�
Di

d3

2oPC

Diþd2

2oPC

oPCþd2

� �k�2 PasyoCSC

oPCþd2

#

Since all the parameters are known, the steady state of all types
of cells is only dependent of NCSC. In the advanced model, i.e., when
Psy is dependent with the number of stem cells, we can solve
the eigenvalues of the system (Eqs. (11)–(13)) as [PsyoCSC�d1,
�oPC�d2(repeated k times), �d3]. Therefore, all of the eigenvalues
are negative if PsyoCSC�d1o0 is satisfied. In this case, the steady
state of the system is stable. Since Psy changes with the number of
stem cells (NCSC) in the range of (0, 1), we can obviously find a point
where PsyoCSC�d1¼0. At this point, since the form of Psy(NCSC) is
known (in Eq. (4)), we can solve the cell number of cancer stem
cells, i.e.,

N�CSC ¼
Nniche

10
lnð�f0þd1=o1=fN�d1=o1Þ

Then, the other types of cells can also be calculated in the same way
as in the basic model. Furthermore, for any NCSC � ð0,N�CSCÞ,
Eq. (11)40, then the stem cell number increases to N�CSC , while
for any NCSC � ðN

�
CSC ,1Þ, the value of Eq. (11) is always negative,

which results in a decrease of stem cell number down to N�CSC .
Therefore, the equilibrium of this system is global attractive.

In the following section, we will discuss some results that are
simulated with the model described in the previous section. Firstly,
we studied the tumor growth where the symmetric division
probability is independent of the niches. Then, we considered
the effect of the niche on the symmetric division. Next, we
simulated and compared the tumor responses to various drug
treatments, in order to show the effect of the niches. Also, we
compared the simulation results with clinical data obtained from
two kinds of drug treatments. Note that for the purpose of
convenience, in the following figures we plot the curve for PCs
as a summation of all sub-compartments of PCs.
4. Results

4.1. CSC division pattern decides the tumor growth

To study the effect of division patterns of CSCs on tumor growth,
we varied the value of Psy from 0 to 1 with a step of 0.05 for the
simulation. Note that we assumed the probabilities for symmetric
and asymmetric division are constants through the whole simula-
tion in this case. Our simulations showed that at an intermediate
value of Psy(¼0.3 in this case), the tumor volume reached a steady
state, while the higher value of the Psy(40.3) caused the expansion
of tumor volume and the lower value of Psy(o0.3) made the tumor
diminished (Fig. 5). Since the other parameters were the same as
that in Table 1, the simulation variation was caused by Psy, and we
could infer that similar results can be obtained by changing the
death rate of CSC (d1). Actually, the steady state was achieved under
a balance between CSCs self-renewal and death. Indeed, variations
of the other parameters, such as oCSC and oPC, did not result in
persistent expansions of the tumor (though reaching another
steady state of final volume quickly, data not shown). These results
imply that the CSCs population plays a vital role in tumor
progression, and more precisely, the CSCs division patterns decide
the fate of the whole tumor, i.e., expansion, shrinking or main-
tenance. While the capacity for symmetric stem-cell self-renewal
may confer enhanced regenerative capacity in normal tissues, it
may also increase the risk of cancer (Morrison and Kimble, 2006).
Moreover, our simulation results also indicate that genes that induce
symmetric cell divisions could probably be oncogenes, which is in line
with experimental observations (Lee et al., 2006; Regala et al., 2005a,
2005b). Note that in each case, the simulated percentage of CSCs
(i.e., CSCs/total cell ratio) is also comparable to the ratio in literature,
for example, in the steady state condition shown in Fig. 5A, the
CSCs%¼CSCs/(CSCs+PCs+TCs)E1/(1+33.2+66.4)E1%.

4.2. CSC niche size determines the final tumor volume

In this section, we consider the effect of the CSCs niches on
tumor growth. As discussed above, most of the CSCs divide
symmetrically at the early stage of tumor, when most of the niches



Fig. 6. The effect of niche size on the tumor growth. As the size of the niche

increases, the tumor reaches its steady state more slowly, but resulting in a larger

final volume.

Fig. 5. The effect of the symmetric division probability (Psy) on the tumor growth: (A) at an intermediate value, the tumor reaches its steady state with constant numbers of

CSCs, PCs and TCs; (B) output from a higher value of Psy, showing an expansion of the three populations over time; (C) output from a lower value of Psy, showing a decrease of the

three populations over time after a transient expansion at the early stage. In (D), green dashed, blue solid and red dash-dotted lines represent the tumor volumes over time in

the case of Psy¼0.25, Psy¼0.3 and Psy¼0.35, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this

article.)
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are free. As the expansion of CSCs population, the probability of
symmetric division will decrease. This assumption is derived from
the investigation of embryonic development. For example, both
neural and epidermal cells change from primarily symmetric
divisions that expand stem-cell pools during early embryonic
development to primarily asymmetric divisions that expand
differentiated cells in the mid and late gestation (Morrison and
Kimble, 2006). Therefore, the relationship between the CSCs
number and Psy can be described by a sigmoid curve as shown in
Fig. 2. To study the effect of the niche size on the tumor growth, we
varied the value for Nniche. For a certain value of Nniche, a steady state
of tumor volume will probably be obtained after a dynamic
selection of Psy. Our simulation results are shown in Fig. 6, from
which we can see that the tumor reached its steady state after a
certain time in all three individual simulations. Moreover, our
simulation results show that the final volume of tumor is correlated
to the number of niches, that is, a larger number of niches would
result in a tumor with larger volume. A more interesting thing is
that the growth rate of the tumor at the early stage is larger if there
is less niches. Thus, for a larger number of niches, the tumor grows
at a slower rate, while the final tumor volume is larger. This implies
that these tumors may be more dangerous even if they are difficult
to be detected at the early stage.
4.3. CSC niches play an important role in cancer recurrence

Here, we simulated the tumor response to different theoretical
treatments. First, we considered the situation that the niche was
not included and the tumor would reach its steady stage in the
absence of treatments. Therefore, we used the same parameters
shown in Table 1 with the probability of symmetric division
Psy¼0.3. Conventional methods of treatment, e.g., chemotherapy
and radiotherapy, are usually aiming at tumor regression, which is
thought to kill PCs and TCs, while sparing CSCs and resulting in
recurrences of tumor. To model conventional therapies, we
decreased the number of PCs and TCs by 90% after reaching the
steady state (here, t¼200). For the therapies targeting the CSCs, we
set NCSC to 10% of the value before the treatment. The simulation
results in Fig. 7A show that various therapies resulted in distinct
tumor growth. While a transient decrease was observed in the case
of conventional therapy, the tumor would again expand to the
original volume; however, for treatment targeting CSCs, the tumor
would shrink to a smaller volume and never grows back to the
volume before treatment, which implies the efficiency of
treatment.

We next considered the situation that included the niche. The
parameters used were the same as the previous case. The theore-
tical effects of treatments were also the same as the previous
simulation: for conventional therapies, 90% of PCs and TCs would
be killed; for the new treatment that targets CSCs, 90% of CSCs
would be killed. The simulation results are shown in Fig. 7B, from



Fig. 7. Simulations of tumor response to treatments without (A) and with niche (B). In both cases, the solid blue lines represent the control condition where no treatment is

imposed; the dashed green lines results from treatment targeting PCs and TCs; the dash-dotted red lines describe the changes of the tumor volume for a treatment targeting

CSCs. Specially in (A), while conventional therapies result in a transient shrinking and then a recurrence of the tumor, the treatment targeting CSCs successfully diminish the

tumor volume; in (B) the conventional therapies again result in a transient shrinking and then a faster recurrence of tumor; the treatment targeting CSCs diminishes the tumor

to a smaller volume, but a slower recurrence of tumor is also observed. (For interpretation of the references to color in this figure legend, the reader is referred to the web

version of this article.)

Fig. 8. Simulated tumor growth with various total number of EGFR per cell. (A) compares the cell population growth. (B) shows the relationships between total EFGR numbers

and tumor growth data (points taken from (A) at time¼1500 and time¼1600).
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which we can see that the conventional treatments resulted in a
transient shrinking and a subsequent recurrence quickly. For the
treatments targeting CSCs, although the tumor was reduced to a
small volume after treatment, the tumor recurrence to the original
volume was also observed, albeit much slower than the case with
conventional treatment. These findings imply the underlying effect
of niche on the maintenance of the CSCs population and on the
recurrence of breast cancer. The number of CSCs would increase
again, if the niches have not been destroyed or the CSCs were not
eliminated completely. This result again suggests the niches as a
potential and more important target for the novel therapies to cure
cancers.
4.4. The effect of EGFR on tumor dynamics

As described previously, the total number of EGFR per cell varies
in a large range due to different cell lines. In addition, EGFR
expression is much higher in CSCs than it is in other tumor cells
(Magnifico et al., 2009). To understand the relationship between
the total number of EGFR and the tumor growth, we simulated the
tumor volumes over time by changing the parameter value for the
total number of EGFR found in PCs and TCs from 200,000 to
800,000, while the total EGFR in CSCs was assume to be 800,000.
The simulation results are shown in Fig. 8, which shows a positive
correlation between tumor growth and EGFR concentration, i.e., the
tumor grows faster and the final volume of the tumor is also larger
as the total number of EGFR increases (Fig. 8A). In addition, we also
note that our model predicts that the dose-response of tumor to
total EGFR approaches a saturation function as the total EGFR
number increases. As a result, increasing the level of total EGFR
beyond a maximum number (i.e., a threshold) will not significantly
alter the tumor growth rates and final volumes. As shown in Fig. 8B,
the dose-response dependence of cell proliferation rates on the
total EGFR number becomes weaker (a smaller slope).
4.5. Tumor response to various treatments with both niche and

signaling pathway

As described in Fig. 3, we will consider the tumor response to
different treatments in this section. Similarly to the simulation in
Section 4.3, we used the parameters in Table 1 as the case of control
without treatment. The tumor again reached its steady stage after a
certain time, with a constant volume and CSC percentage. Then,
conventional treatments (e.g., doxorubicin) was imposed and, for
simplicity, we assumed that only the death rates of PC and TC cells
was increased by an additional 50% in the case of standard dose. Our
simulation results in Fig. 9 show that conventional treatments
result in a decrease of tumor volume, and an increased CSC
percentage, which is in agreement with the findings of Li et al.
(2008) as shown in Fig. 9C and D. While PCs and TCs that comprise
the bulk of tumor were killed, the CSCs were left, which accounts
for the tumor relapsed as soon as the treatments stopped.



Fig. 9. Simulated response of tumor to different treatments. (A) Shows the tumor volumes over time and (B) shows the CSC percentage over time without treatment (black

solid line), with conventional treatment (green dotted line) and with the treatment of TKIs. Note, while the red dashed lines represent TKIs treatments that inhibit proliferation

and induce apoptosis, the blue dash-dotted lines shows TKIs treatments including the change of self-renew patterns as well. (C) and (D) show the percentages of CD44+/CD24�

cells, which are thought to be CSCs, under treatments of chemotherapy and lapatinib, respectively, figures are derived from Li et al. (2008). (E) zoomed in on the treatment part

of (B). Comparison of (C), (D) and (E) shows a consistency between experimental data and simulation results. (For interpretation of the references to color in this figure legend,

the reader is referred to the web version of this article.)
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For the treatments with lapatinib on patients with HER2-positive
tumors, the initial concentration of TKIs was 1.0�10�9 M. The
effective EGF–EGFR complex is decreased due to the binding of
TKIs to the intracellular domain of EGFR. Since we assumed that the
amount of effective EFG-EGFR is related to the rates of proliferation
and apoptosis, the presence of TKIs simultaneously represses the
proliferation and induces the death of CSC, PC and TC cells (Fig. 3). The
simulation results are shown in Fig. 9 with dashed lines. While
the repression of tumor volume is obvious, the increased CSC
percentage is not so significant (Fig. 9B). Indeed, Li et al. (2008) found
that, in addition to the repression of tumor volume, the treatment
with lapatinib led to a non-statistically significant decrease in the
percentage of CD44+/CD24�/low cells that are thought to be cancer
stem cells. This implied the hypothesis that TKIs also have an effect
changing the self-renewal patterns by shifting symmetric division to
asymmetric division.

To test this hypothesis, in our mathematical model, in addition
to calculating the parameter values for proliferation rates and
death rates with Eqs. (9) and (10), respectively, we also changed the
parameter that decides division pattern of CSC when the TKIs
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treatment is imposed. As a first approximation, we simply multi-
plied the term Psy(NCSC) with a value of 0.25 to model the shift of CSC
division from symmetric to asymmetric pattern. The simulation
results are shown in Fig. 9 with dash-dotted lines. This time, not
only decrease of tumor volume but also the slight decrease of CSC
percentage is observed when the TKI treatment is imposed, which
is consistent with the finding of Li et al. (2008). For the percentage
of cancer stem cells (or tumor-initiating cells) before and during
treatments, comparison between simulation and experimental
data can be seen in Fig. 9C–E, where Fig. 9E zoomed in on the
treatment part of Fig. 9B. From the figure we can see that while
conventional treatment increased the CSC% by near 50% (from 1.8%
to 2.7%), TKI treatment caused no significant change in CSC%, or
even reduced the CSC% slightly.

Furthermore, it is worth noting that even after treatment stops,
the tumor volume still decreases for a certain time, and a sharp
increase of CSC percentage occurs after the treatment. These can be
understood in this way: when the treatment stops, both the tumor
volume and CSC numbers are small, therefore, most of CSC cells
shift back to symmetric division in order to first increase the CSC
population and then expand the tumor volume. Thus, despite an
increase of the CSC population (a small fraction of total tumor
volume), a decrease of PC and TC (a major component of total tumor
volume) continues, resulting in a repression of the total volume of
tumor, but an increase of the CSC percentage.
5. Discussion and conclusion

The field of cancer research is undergoing a transformation with
the concept that the tumors are also initiated and driven by a small
group of CSCs, which is also known as the cancer stem cell
hypothesis. The presence of CSCs is firstly demonstrated for
hematopoietic neoplasm (Wang and Dick, 2005), and there is
currently increasing evidence that CSCs exist in solid tumors as
well, including breast carcinoma (Dick, 2003), brain tumors (Singh
et al., 2004) and colon carcinoma (O’Brien et al., 2007; Ricci-Vitiani
et al., 2007). Moreover, the concept of the CSCs niche was proposed
recently, and becomes an important topic in cancer research now.

In this paper we proposed an improved compartment model
that describes the composition of breast cancer by using an
ordinary differential equations system, providing insight into the
cellular kinetic mechanisms that drive the tumor growth. Firstly,
the proposed model addressed the effect of CSCs on the tumor
progression: the maintenance of CSCs through the symmetric
division is the driving force for the tumor growth, and the balance
of the self-renewal and the loss of CSCs results in the steady state of
a tumor. The loss of CSCs could be occurred via apoptosis,
differentiation or cell death caused by therapies. If the self-renewal
is faster than the loss, then CSCs population will expand, subse-
quently causing the expansion of tumor volume. In contrast, if the
loss overcomes the self-renewal, then repression of the tumor will
occur, which suggests the successful drug treatment should
increase the loss or decrease the self-renewal of CSCs. The CSCs
division patterns, however, cannot be constants in either in vitro or
in vivo conditions; rather they are dependent on the surrounding
environment that is changing all the time. Therefore, we also
considered the role of cancer stem cell niche in our model. By
describing the division patterns as functions of the niche size and
CSCs number, we incorporated the niche into the ODE system and
studied the role of the niche in driving the tumor progression. Our
simulation results showed that a larger size of niche gives birth to a
larger population of CSCs, and subsequently results in a larger
tumor. Interestingly, however, a bigger niche leads to a slower
rather than faster growth of the tumor. This may be caused by a
larger probability of symmetric division of CSC at the early stage
and a smaller growth of PCs and TCs that are responsible for the
bulk of the tumor volume.

Similar work on the tumor population with respect to the
division patterns has also been done by other groups (Boman et al.,
2007; Dingli et al., 2007). Boman et al. investigated the cellular
mechanisms and kinetics that occur in stem cell population during
colorectal cancer development. They found that an increased
symmetric stem cell division would result in exponential growth
of all cellular populations in their model, which is consistent with
our result. Dingli et al. (Boman et al., 2007; Dingli et al., 2007)
developed a mathematical model to illustrate the impact of
mutations that regulate the symmetric stem cell division on the
development of tumors. While considering the symmetric and
asymmetric division as well, their work focused on the mutation
within the stem cells and the competition between stem cells and
cancer stem cells. The incorporation of the EGFR signaling path-
ways in our model is an approximation, while a more detailed
mathematical model was proposed in the work of Eladdadi and
Isaacson (2008). Indeed, their work was also a simplification of
effects of the whole signaling pathways on cellular properties.
More recently, Agur et al. (2010) and Kirnasovsky et al. (2008)
published two papers where symmetric and asymmetric divisions
of stem cells were also considered. Both papers studied the stem
cell development with a feedback from the environment, i.e.,
Quorum Sensing concept, however, while the first one focused
on the intercellular communication by using a discrete cellular
automata model (Agur et al., 2010), the other one mathematically
analyzed the intracellular and micro-environmental protein inter-
actions (Kirnasovsky et al., 2008). Their work is more specific
while we are trying to incorporate them together though in a
simplified way.

However, the limitations of our work are also obvious. For
example, our simulation is largely based on theoretical assumption,
due to the lack of experimental data. The cancer stem cell niche
itself is a very new concept and just defined as a functional
structure. It is currently difficult to measure the size of the niche,
not to mention physically and physiologically controlling the niche.
The relationship between the symmetric division probability, niche
size and CSCs also needs further improvement, while we used a
general sigmoid curve to describe it in our work. In addition, the
molecules in the niche are important for maintaining the signaling
pathways that account for the balance between self-renewal and
differentiation of CSCs (Li and Neaves, 2006). Together with the
subcellular signaling pathway information, e.g., Wnt (Alonso and
Fuchs, 2003; Pinto and Clevers, 2005; Reya and Clevers, 2005),
Notch (Brennan and Brown, 2003) and Hedgehog (Liu et al., 2006),
understanding quantitatively how these molecules and nutrients
distribute, diffuse and are utilized in the niche will provide insight
into a more detailed mechanism for the CSCs fate. We are now
building a mathematical model that describes the crosstalk
between Notch, which is involved in the regulation of cellular
properties of stem cells, and HER2 signaling pathways, with a focus
on the interactions between molecular dynamics at the protein
level. It will be incorporated into this proposed model as a more
precise link between signaling pathways and cellular properties.

Furthermore, for application to development of breast cancer in
this work, the compartment model per se has some limitations. As
described above, the goal of our work is to incorporate the most
important concepts while keeping the model as simple as possible.
We therefore classify all breast cancer cells into three groups, i.e.,
CSC, PCs and TCs, which is certainly an approximation of the
system. While each compartment is assumed to be a homogenous
entity, the cells in each single compartment are heterogeneous in
biological function. Therefore, the compartment model can only
serve as a tool for studying macroscopic phenomena so that we
cannot look into the behavior of each single cell. Extensions of this
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model, for example, a more mechanistic-based method of modeling
the function of signaling pathways, are obviously needed. More
detailed modeling of the effect of niche should also be necessary in
the future, especially the interaction among CSC/PC/TC cells and
stromal cells, as well as the secreted factors from different cells.
These dynamics may include both positive and negative feedback
mechanisms, interplay between environmental factors and genetic
functions.

In summary, our mathematical model studied the impact of
CSCs division pattern on the tumor expansion, incorporated the
effect of CSCs niche, and integrated a simplified effect of EGFR
signaling pathway as well. Our model is one of rare work with
attempt to integrate the cancer stem cell niche to a mathematical
model and provides a primary simulation results on the effect of a
niche on tumor growth, and the validation of the proposed model is
done by comparing simulation results with clinical studies. Simu-
lations with our model suggest the important roles of the sym-
metric division of CSCs, niche size and over-expression of EGFR in
tumor progression. The simulated responses of tumor to drug
treatments suggest that future therapies should be either designed
to effectively reduce or destroy the CSC niche, or block signaling
pathways by tyrosine kinase inhibitors.
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