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Neurophysiological and anatomical observations are used to derive a non-linear delay- 
differential equation for the pupil light reflex with negative feedback. As the gain or the time delay 
in the reflex is increased, a supercritical Hopf bifurcation occurs from a stable fixed point to a 
stable limit cycle oscillation in pupil area. A Hopf bifurcation analysis is used to determine the 
conditions for instability and the period and amplitude of these oscillations. The more complex 
waveforms typical of the occurrence of higher order bifurcations were not seen in numerical 
simulations of the model. This model provides a general framework to study the different types of 
dynamical behaviors which can be produced by the pupil light reflex, e.g. edge-light pupil 
cycling. 

1. Introduction. An intriguing aspect of the nervous system in health and 
disease is the widespread occurrence of complex dynamical behaviors, e.g. 
tremors and the electrical activity of the cortex (see, for example, Mackey and 
Milton, 1987; Milton et al., 1989). Recently there has been a great deal of 
speculation concerning the role of non-linear neural control mechanisms in 
generating some of these dynamical behaviors (Guevara et al., 1983; King et 
at., 1984; Mackey and an der Heiden, 1982). These proposals have been based 
on mathematical studies of physiologically realistic equations in which 
qualitative changes in dynamics ("bifurcations") occur as certain parameters 
are varied. The changes in dynamics produced by parameter variation range 
from stable equilibria to simple and complex periodic oscillations to aperiodic 
(chaotic in the current vernacular) fluctuations (Bai-Lin, 1984; Glass and 
Mackey, 1988). However, experimental verification of these predictions has 
been hindered by the paucity of suitable models in which it is possible to study 
the dynamics that arise by parameter variation. 

A neural feedback control mechanism which is amenable to manipulation is 
the pupil light reflex. As shown in Table I, this reflex exhibits a wide range of 
dynamical behaviors, which are typically monitored by changes in pupil area. 
For example, irregular variations in pupil area ("hippus") occur sponta- 
neously, whereas regular oscillations ("pupil cycling") can be induced by 
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focusing a small light beam at the pupillary margin (Campbell and Whiteside, 
1950; Stern 1944). The period (Martyn and Ewing, 1986; Miller and 
Thompson, 1978) and regularity (Milton et al. 1988; Ukai et al., 1980) of pupil 
cycling are altered by pathology within the pupil light reflex pathways. 

An important feature of this reflex is the ease by which it can be manipulated 
and monitored non-invasively. In particular, it is possible to "clamp" this reflex 
(Longtin and Milton, 1988; Milton et al., 1988; Reulen et al., 1988; Stark, 
1962). Clamping refers to an experimental technique in which the feedback 
loop of the reflex is first "opened" by focusing a small beam of light on the center 
of the pupil in order to circumvent the shading effect of the iris on the retina 
(Stark and Sherman, 1957). The feedback loop is then reclosed with an 
electronically constructed "area comparator" relating changes in pupil area to 
changes in light intensity. Thus a precisely specified feedback can be inserted 
into the reflex. In this manner Stark (1962) verified that pupil area oscillations 
could occur once the gain became sufficiently large. The "linear" properties of 
the reflex determined the frequency of these oscillations, whereas their shape 
and amplitude depended on the "non-linearities". 

Recent studies have emphasized clamping the pupil light reflex with 
piecewise constant types of feedback (Longtin and Milton, 1988; Milton et al., 
1988; 1989): the light is either on or off depending on the value of the pupil area 
relative to certain area thresholds. The main advantages of the use of piecewise 
constant feedback over smooth feedback are (1) the pupil area oscillations are 
much easier to control experimentally (Milton et al., 1988); (2) the properties of 
the oscillations are better understood analytically (an der Heiden and Mackey, 
1982; Longtin and Milton, 1988; Milton et al., 1989). This approach has 
resulted in a new technique for detecting optic nerve pathology (Milton et al., 
1988) and moreover allows certain non-linearities of the reflex to be isolated for 
detailed study (this paper). From the general point of view of non-linear 
dynamics, this experimental paradigm of neural control provides unique 
opportunities to verify theoretical predictions, to draw attention to unex- 
plained phenomena, and to assess the role of superimposed random variations 
("noise") in shaping the observed dynamics (Longtin and Milton, 1988; Milton 
et al., 1989). It can be anticipated that insights obtained from studies of the 
clamped pupil light reflex can be applied to other neural control mechanisms as 
well. 

Despite the attractiveness of the study of the pupil light reflex as a non-linear 
dynamical system, we know of no previous attempts to model it from this point 
of view. Indeed previous investigators have focused on the modelling of, for 
example, the response of the pupil to transient and steady state oscillatory light 
inputs, and of various non-linearities in the reflex arc (Stark, 1959; 1962; 1984; 
Stark and Cornsweet, 1958; Semmlow and Chen, 1977). Here we use neuro- 
physiological and anatomical considerations to derive a model for the pupil 
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608 A. LONGTIN AND J. G. MILTON 

light reflex. A bifurcation analysis of the resulting non-linear delay-differential 
equation is used to characterize its dynamical behaviors and to examine the 
influence of parameter variations on them. This model provides a general 
framework in which it is possible to study the different types of behaviors 
produced by the pupil light reflex. 

2. The Pupil Light Reflex. The pupil light reflex pathway is represented 
schematically in Fig. 1. Pupil size reflects a balance between constricting and 
dilating mechanisms (Miller, 1985). Pupil constriction is caused by contraction 
of the circularly arranged pupillary constrictor muscle which is innervated by 
parasympathetic fibers. The motor nucleus for this muscle is the Edinger- 
Westphal nucleus located in the oculomotor complex in the midbrain. There 
are two main neural mechanisms for pupil dilation (Loewenfeld, 1958): (1) a 
mechanism which involves contraction of the radially arranged pupillary 
dilator muscle innervated by sympathetic fibers (traditionally referred to as 
"active" reflex dilation); (2) a mechanism which operates by inhibition of the 
activity of the Edinger-Westphal nucleus (traditionally referred to as "passive" 
reflex dilation). Pupil cycling occurs even when the sympathetic supply to the 
iris is cut surgically (Milton et al., 1988) or blocked pharmacologically (Martyn 
and Ewing, 1986). Thus during pupil cycling, dilation is primarily the result of 
(1) a decrease in the afferent activity and (2) increased inhibition of the activity 
of the Edinger-Westphal nucleus. The role of the sympathetic nervous system 
seems to be primarily one of determining the average pupil size. 

RETINA ,/ 
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\ J /  
/ 1 \  
LIGHT 
SOURCE 

Figure 1. Simplified diagram of pupil light reflex. See text for explanation. 



MODELLING AUTONOMOUS OSCILLATIONS IN THE HUMAN PUPIL 609 

This reflex functions as a time-delayed negative feedback system (Stark, 
1959; 1968; 1984). The time delay, or pupil latency time, is ~200-500 msec 
(Ellis, 1981; Milton et al., 1988). This time delay is much longer than would be 
anticipated simply on the basis of neural conduction times. The part of the 
reflex in which this delay originates is presently controversial: some authors 
favor an origin in the midbrain (Smith et al., 1970), others suggest that it arises 
at the level of the iris and its musculature (Ellis, 1981; Loewenfeld, 1966). 

3. Model. The variable controlled by the pupil light reflex is the retinal light 
level (flux), q5 (lumens), which is equal to the illuminance, I (lumens mm-2), 
multiplied by the pupil area, A (mm 2) (Stark, 1959): 

dp=IA (1) 

The retinal light flux ~b is transformed, after a time delay zr, into neural action 
potentials which travel along the optic nerve. We assume that it is the rate of 
these action potentials, i.e. N(t)= number of action potentials per unit time, 
which is important for reflex dynamics and that N(t) is related to ~b by: 

m(t) = t/lnI~b(t~ Zr! 1 (2) 

where t/is a rate constant, b is the threshold retinal light level (i.e. the light level 
below which there is no response), and the notation ~b(t- z,) indicates that this 
quantity depends on the retinal light flux at a time z, in the past. The 
logarithmic compression of light intensities at the retina has been discussed 
previously by Cornsweet (1967) and is referred to as the Weber-Fechner law 
(e.g. Webster, 1971). 

The afferent neural action potential rate, N(t), gives rise to an efferent neural 
signal, E(t), which is produced by the Edinger-Westphal nucleus after a time 
delay, z t. This efferent neural activity, also measured as the number of action 
potentials per unit time, exits the midbrain via parasympathetic fibers. We 
assume that: 

E(t)=y'  lnlq~(t-- ~r + zt)! ] (3) 

where y' is a rate constant and z t is the midbrain time delay. 
At the neuromuscular junction of the pupillary constrictor muscle, the 

neural action potentials result in the release of a chemical neurotransmitter 
(acetylcholine) which diffuses across the synaptic cleft, binds to specific 
receptors on the muscle membrane thus leading to the generation of muscle 
action potentials and initiating muscle contraction. These events require a time 
delay, z m. In this way the neural activity, E(t), is transduced into tension in the 
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constrictor muscle; this tension then produces a resulting pupil area. We first 
define a relationship between E(t) and iris muscle activity, x, and then between 
x and pupil area, A. 

The iris muscle activity, x, is determined by a number of factors which may 
include Ca 2 § concentration and diffusion, actin-myosin cross linking and the 
initial length and tension in the constrictor muscle. Since we are ultimately 
interested in pupil area, A, it is not necessary to exactly specify x. We take the 
relationship between E(t) and x to be of the form (Partridge and Benton, 1981): 

( dx d2x ) 
E ( t ) = M  x, d t '  dt 2 . . . . .  

where c~ is a rate constant and k is a proportionality factor which depends on the 
definition and units of x used in the model. The justification for the first order 
approximation to M(x, dx/dt, d2x/dt 2, . . . )  is the success that the subsequent 
model has in predicting the experimentally observed oscillations in pupil area 
(Longtin and Milton, 1988; Milton et al., 1989). 

By combining equations (3) and (4) we obtain the following non-linear 
delay-differential equation: 

dx ~ - +  ~ x = ,  ln[~b(t / ' r !] ,  (5) 

where ~ = z r +-r t + v m is the total time delay in the reflex arc and V - e l k .  
Equation (5) is written in terms of muscle activity; however, experimentally 

it is pupil area that is more typically measured. In order to re-write (5) in terms 
of pupil area, A, it is necessary to have a function, f(x),  that relates muscle 
activity and pupil area, i.e. 

X =f(x).  (6) 

The functionf(x) must (1) meet the requirement that pupil area is positive and 
bounded by finite limits and (2) reflect the role played by elasto-mechanical 
properties of the iris in shaping pupil dynamics. In principle, f (x )  can be 
measured experimentally (Terdiman et al., 1971). Here we consider one 
possible choice of f (x)  which satisfies the above requirements, i.e. the Hill 
function (Fig. 2): 

A0" 
- ~ N ,  (7) A=f(x )  0"+x" 

where A + N ,  A' are, respectively, the maximum and minimum pupil area 
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(A + A' > N > 0) and 0 is the value of x for which pupil area is mid-range. A 
similar function, i.e. "S-shaped curve", has been proposed previously (Usui and 
Stark, 1978; 1982). We show in Section 5 that this choice off(x) also reflects the 
non-linear mechanical properties of the iris. 
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Figure 2. Plot of a Hill function (6) relating pupil area, A, to iris activity, x (solid 
line). Parameters are: A= 30 mmZ; N =0 mm2; 0 = 10 mm2; n=4. 

Using equation (7) we can re-write (5) in terms of pupil area, A, as: 

dAdg dA g(A)= l n [ ~ ( ~ - T  -~!  ] 

�9 [-I(t-z)A(t- 
m L (8) 

where 9(A)=f-1(A)=x (Fig. 3), and we have made use of (1). Note that to 
solve (8) it is necessary to specify the initial functions I(t) and A(t) on the 
interval t ~ ( -  ~, 0). 

4. Stability Analysis. We now investigate how spontaneous oscillations in 
pupil area may develop under conditions of constant light illumination. As will 
become clear, the method of analysing (8) depends on the relative values of the 
pupillary rate constant for constrition (~c) and dilation (~d). In a few 
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Figure 3. Plot of the inverse of the Hill function, #(A), shown in Fig. 2 (i.e. 
x = f  - 1 (A) ~- g(A )) as a function of pupil area, A. In  (a) we compare #(A) to the gain, 
G, which forf (x)  given by (7), can be written as: 

_ n~A r A  - q(N- 1)/N 
G(A)= ~AO[a lJ  , 

where A' = 0 mm 2. In  (b) we show a graphical method for determining the fixed 
points of (9) when ~, > ~t a. The fixed point A * is given by the intersection of o(A) 
(solid line) and the right hand side of (9) which we have defined as h(A) (dotted line). 
Parameter values have been arbitrarily set to A = 3 0 m m  2, A ' = 0 m m  2, n = 4 ,  

y = 5 sec- 1, I =  10 lumens m m -  2, ~ = I lumen. 
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individuals, ~c ~ (~d (Lowenstein and Friedman, 1942); however, in the majority 
~c > ~t d (Lowenstein and Friedman, 1942; Longtin and Milton, 1988). We refer 
to these cases as, respectively, a symmetric and an asymmetric pupil light reflex. 

4.1~ Symmetric pupil light reflex (~c= ~a). The unique equilibrium pupil 
area, A*, corresponding to an incident light illuminance, I*, is defined by 
dA/dt = 0, and from (8) it is the solution of the equation (Fig. 3b): 

I-I'A*-! lnL j. (9) 

To determine the stability of this fixed point, it is necessary to linearize (8) 
about A*. This is done in two steps. First, in equation (8), we expand g(A) to 
first order around A *, i.e. 

g(A) ~- g(A *) + fl(A - A *), (10) 

where fl is given by dA/dt evaluated at A *. Substituting (10) into (8) we obtain: 

fl-d[+eg(A*)+afl(A--A*)=~,ln{A(t--~)}+?ln ~ .  (11) 

Next we define the displacement of A (t) from equilibrium as a (t)= A (t) - A  *. 
For small amplitude oscillations, a/A ~ 1 and hence we can expand the first 
term on the right hand side of equation (11): 

7 ln [A( t -z ) ]  = ,  In{A*[a(~,z) t-1]} 

? a(t-z).  (12) ~-7 In A* + ~--~ 

Combining equations (11) and (12) and using equation (9) we obtain: 

dt + aa = a(t-z),  (13) 

which in terms of pupil area, A = a + A *, yields: 

~-1 d A +  
A = G . [ A ( t - Q - - A * ] +  A*, (14) 

where we have defined the dimensionless quantity, G, as: 

(15) G = ~flA*" 
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Since fl < 0, it follows that G < 0 which corresponds to negative feedback. 
To examine the response of the pupil to small deviations in pupil area, A, 

from the equilibrium area A * as described by equation (14), we make the usual 
ansatz that A(t)ocexp(2t). The characteristic equation is: 

2 + ~ + B  exp ( -2z )=0 ,  (16) 

where ~ > 0 and B = - ~G > 0. This quasi-polynomial has an infinite number of 
roots. We denote by 21 = 0-1 + ia~ 1 the root with the largest real part. The roots 
come in complex conjugate pairs since (16) is invariant under sign reversal of ~o. 
We will focus only on the roots with positive frequency. It can be shown that 
(14) has a periodic solution when (Hayes, 1950; Mackey, 1978): 

~olz = c o s - I ( G ) ,  (17) 

where Ial< 1, ,o~=~=(a 2 - 1 )  and the inverse cosine takes its value in the 
interval Ire/2, To]. This is an implicit relation among the parameters of (14) that 
defines the condition Re(21) = 0-1 = 0. The period, T, of this periodic solution is 
given by: 

T =  2__~_~, 2z< T<4z. (18) 
(.01 

Assume for now that the delay r is the bifurcation parameter. Then, for ~ and 
B fixed, there will be a value of T=T o for which (17) will hold. By implicit 
differentiation of (16) with respect to T, one obtains: 

dRe(2) = o92 >0 .  (19) 
dz ~.~;~,, (I+~XTO)2+~OXT022 

Hence Re(21) > 0 for Z > T o which corresponds to local instability of the fixed 
point A = A* when the delay is increased past the critical value T O . This also 
implies that in (17) the right hand side is greater than the left hand side. Hence 
periodic solutions occur in (14) for z ~> z o. Similarly, if B is the bifurcation 
parameter, then keeping ~ and z fixed, we obtain: 

dRe(2) ~ + ct2z 
S=Bo = Bo(1 +2czz+B(~z2) > 0, (20) 
2=i~o 1 

where B o is the value of B satisfying (17). Thus periodic solutions occur in (14) 
for B>> B o. 

In general, a Hopf bifurcation from a stable equilibrium point to a stable 
limit cycle may be either subcritical ("hard" excitation) or supercritical ("soft" 
excitation) (Guckenheimer and Holmes, 1983). Classifying the Hopf bifurca- 
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tion for (8) is important since it allows a prediction of how the oscillation 
amplitude grows for values of z (or B) beyond the point of oscillation onset, i.e. 
~o (or Bo). 

The fate of the periodic solution that existed for the linearized system at 
z = %  (or B=Bo) is determined by the non-linear terms that have been 
neglected in going from (8) to (13). A supercritical Hopf bifurcation will occur 
provided that certain non-degeneracy conditions are fulfilled by these non- 
linear terms (Stech, 1985). This means that as a complex conjugate pair of roots 
migrates across the imaginary axis (from left to right), the stable equilibrium 
becomes unstable and a stable limit cycle arises. 

Verification of these nondegeneracy conditions is quite involved for 
functional differential equations such as (8). Instead, we have numerically 
verified (data not shown) that the bifurcation is supercritical by demonstrating 
that locally the amplitude of the oscillation grows as the square root of the 
distance (in parameter space) from the bifurcation point, i.e. 

A m p l i t u d e o c ~  (or x / z -  %). (21) 

Further, the analytical computation of higher order corrections to the period 
(17) and amplitude (21) using the Hopf analysis for functional differential 
equations (of delay type here) is also quite involved and is not carried out here 
(see Stech, 1985; Sirkus, 1975). 

Other bifucations may occur as z and B are increased further leading to other 
limit cycles, quasiperiodic motion and bounded aperiodic (chaotic) dynamics. 
This depends on the functional form ofg(A) in (8). For general g(A), numerical 
integration is necessary to determine which type(s) of solution will be observed 
for a given choice of parameters and initial functions on ( - z ,  0). For negative 
feedback, numerical calculations indicate that no other bifurcations occur after 
the Hopf bifurcation. 

4.2. Asymmetric pupil light reflex (7c > ~a). In the derivation of our model, 
we have used the same dynamical variable x to describe constriction and 
dilation, even though each process involves different mechanisms which 
depend on different parameters (Arkin and Miller, 1988; Clarke and Ikeda, 
1985; Nisida et al., 1959; Schiller, 1984; Smith et al., 1970). The observation 
that ~ > ~d introduces an asymmetry into our model of the pupil light reflex. To 
account for this we replace ~ in (8) by: 

a' = �89 + ~d + (ad-- ~c)sgn{A}], (22) 

where sgn{A} equals + 1 if A - d A / d t > O  and - 1  otherwise. The stability 
analysis requires first solving (9) for A * with ~ = ~'. Since c~ can have one of two 
values, equation (9) will not yield a unique A * for a given g(A*). Indeed the 
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graphical solution in Fig. 3b indicates two fixed points A *and A* correspond- 
ing, respectively, to c~ c and c~ d. The analytical methods for determining the 
stability of such an equation in which the fixed point depends on the sign of the 
derivative of the state variable have not, to our knowledge, been developed. We 
therefore explored the behavior of such an equation numerically. 

Specifically, we simulated (8) with the asymmetry in c~ given by (22). We 
found that the solution depends on the initial condition (data not shown). The 
solution can go to one fixed point or the other, or oscillate around one fixed 
point, or the other. In addition for certain parameter values, we have an ill- 
defined problem: the initial value of~ determines the fixed point and the sign of 
the derivative in the fourth order Runge--Kutta algorithm. However, based on 
this sign, ~' takes on the other value and the system attempts to converge to the 
other fixed point. The solution thus oscillates between the two fixed points with 
the value of the derivative changing at every integration time step. 

5. Gain. The parameter, G, can be formally identified with the gain, G 0, 
defined empirically from measurements of the response of the pupil to small 
amplitude sinusoidally modulated illumination (Longtin and Milton, 1989). 
Here we examine the dependence of G on the equilibrium pupil size, A*. 

It has been observed that the gain, Go, attains its highest values at 
intermediate pupil sizes. This effect has been referred to as the "expansive range 
non-linearity" and has been interpreted as a reflection of the non-linear 
mechanical properties of the iris (Usui and Stark, 1978; 1982). Figure 3a plots 
G as a function of A *. In preparing this plot we have kept the parameters ~ and 
~: constant. Normally, A* will depend on the value of ~ and ~ (9), but we 
assumed that A * is in fact varying independently of them, e.g. being set by the 
accommodation level of the lens (Sun et al., 1983). As can be seen, the gain G 
will have its largest values for intermediate values of A *. Furthermore, these 
observations indicate that the relevant non-linear properties of the iris have 
been incorporated into the choice of the function g(A) (see Section 7). 

6. External Piecewise Constant Negative Feedback. In previous studies 
(Longtin and Milton, 1988; Milton et al., 1989) we found empirically that 
under conditions of imposed piecewise constant negative feedback, the 
oscillations in pupil area could be described by the equation 

- 1 dA A fAoff, if A t <Are f 
-dT+ =~Aon ' ifA~>Ar~e, (23) 

where the rate constant ~ differs for constriction (~c) and dilation (~o). When 
pupil area is greater than a threshold Ar, f, pupil size decreases exponentially to 
a lower asymptotic area (Aon), whereas when A<Ar ,  f, pupil size increases 
exponentially to a higher asymptotic a r e a  (Aoff). This equation describes "high 
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gain" oscillations in pupil area since the gain is infinite when A = Are f (it is zero 
for all other values of A). The forcings, Ao, and Aof f, correspond physically to 
two different values of the flux (r 

In the case of external piecewise constant negative feedback, the illumination 
is constructed electronically to be a Heaviside function of pupil area, H(A), and 
hence: 

~b(t) = ~bb/-/[A ( t ) -  aref] "{- r (24) 

where: 

1, if A > A r e  f 
H[A(t)-Aref] = O, ifA~<Ar~ f, (25) 

and where (~off is the retinal light flux due to background illumination when the 
light beam is off and Cb is the retinal light flux produced by the narrow light 
beam. Thus the retinal light level changes because the illuminance is switched 
on or off, while the area is constant and equal to the sectional area of the narrow 
light beam. Under these conditions it follows from (8) that the changes in pupil 
area are described by: 

dAd-fl-g d~A + ~g(A)=y ln[~  + ~ H(A*-Aref)] (26) 

It is important to note that the right hand side of (26) is known. The 
unknown properties of our model for the pupil light reflex, i.e. g(A) and 
M(x, dx/dt, d2x/dt 2, ...) (4) are confined to the left hand side of (26). Thus the 
advantage of studying the dynamics produced by the pupil light reflex clamped 
with piecewise constant negative feedback is that it directly permits evaluation 
of plausible choices for g(A) and M(x, dx/dt, d2x/dt 2, ...). 

To illustrate the above procedure let M(x, dx/dt, dZx/dt 2, ...) be given by 
(4) and take g(A) as a linear function of A, i.e. 

g(a) = g(a*) A*), (27) 

where fl = dg/dAlA. < 0 and A *e [A *, A ~ (Fig. 3). A reasonable choice for A * 
would be a mid-range value. Then (26) becomes: 

c~- 1 dA -~ + A(t)= Ao + ~ ln[~  + ~ H(A~- Arcf)]. (28) 

This equation is of the same form as (23) where: 

Aof f = A O + (29) 



618 A. LONGTIN AND J. G. MILTON 

Aon=Ao + )' Ctefl ln[-(~b~ ~bb!], (30) 

and the pupil area, A o, is the maximal pupil area corresponding to zero iris 
muscular activity and is given by [g(Ao)= 0 in (27)]: 

A o = A * - f l -  lg(A*). (31) 

Since fl < 0, it follows that if ac/~ d < ln[(~boe f + ~bb)/~]/ln[~boff/~]then 
/off >/ref > Aon" This latter condition is satisfied for the symmetric case and for 
the asymmetric case holds provided that ~b is large enough. 

It should be noted that the behavior of (23) cannot be determined using a 
Hopf bifurcation analysis since the feedback function is not differentiable. The 
solution of (23) [and (28)] can be determined analytically (an der Heiden and 
Mackey, 1982; Longtin and Milton, 1988; Milton et al., 1989). Experimentally 
it is found that the period and amplitude of the observed pupil area oscillations 
agree to within 5-10% of these predicted (Longtin and Milton, 1988; Milton et 
al., 1989). However, the predicted oscillations clearly have a slope dis- 
continuity; this is not observed experimentally, We are presently evaluating 
alternative choices and g(A) and M(x, dx/dt, d2x/dt  2 . . . .  ) in order to improve 
the agreement between theory and observation. 

In principle, piecewise constant feedback can be used to evaluate M(x, dx/dt, 
d2x/dt  2 . . . .  ) without the necessity of determining g(A). The gain is propor- 
tional to the slope of the Hill function (7) and can be made infinitely steep by 
letting n ~  ~ .  Substituting (7) into (5) and taking the limit we obtain: 

~ + e x =  l imTln  I 
n ~ o o  On+x(t__z)n t-A' , 

=~,ln H ( x ( t - z ) - X r e f ) + ~ J ,  (32) 

where I = I ( t - z ) ,  H(x(t--'c)--Xref) is a Heaviside function, and we have 
identified xre f with the limit as n--, oo of the inflection point of (7), i.e. 

Xref~-~- lim [0 ts-1)/tN+ 1)] =0. (33) 
/I---~ O0 

Equation (32) takes the same form as (23) (i.e. the flux can take on two values). 
However, given the difficulties in measuring (and for that matter defining) x, 
this approach is presently not useful practically. 

7. Illustrative Example. To illustrate the dynamical behaviors which can be 
produced by this class of equations we studied the following example: 
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dA cO" 
d--{ -I- ~A - O" + A ( t -  "r)"' (34) 

where c is a constant. This equation can be regarded to be a generalization of 
(23) for smooth negative feedback. 

Figure 4 shows the solutions of (34) as the steepness of the Hill function is 
increased by increasing the parameter n. For small n there is a damped 
oscillation in pupil area (Fig. 4a). For larger values of n, sustained regular 
oscillations in pupil area are obtained (Figs 4b-d). A supercritical Hopf 
bifurcation occurs between n equal to 3 and 10. Although the shape of these 
oscillations changes as n increases beyond 10, the more complex waveforms 
typical of the occurrence of higher order bifurcations are not seen. 

8. Discussion. We have used neuro-physiological and anatomical consider- 
ations to derive a non-linear delay-differential equation describing the pupil 
light reflex. The main motivation behind this model was to develop a general 
framework to study the different types of dynamical behaviors produced by the 
pupil light reflex (Table I) and, in particular, to examine the oscillations that 
occur under conditions of "high gain" negative feedback, e.g. edge-light or 
electronic pupil cycling (Milton et al., 1988; Stark, 1962; Stark and Cornsweet, 
1958; Stern, 1944). 

Three observations lend support to our model for the pupil light reflex. First, 
the predicted period of the oscillations in pupil area from (18) (i.e. 
600-1200 msec for a measured delay of ,,,300 msec) agrees well with the 
observed period of edge-light pupil cycling (900msec: Campbell and 
Whiteside, 1950; Miller and Thompson, 1978; Stern, 1944; Stark and 
Cornsweet, 1958). Second, for the special case of external piecewise constant 
feedback, our model reduces to the same form as an empirical model known to 
have solutions which are in good agreement with experimental observations 
for a variety of feedback choices (Longtin and Milton, 1988; Milton et al., 
1989). Moreover we have shown that this experimental design permits certain 
non-linearities in the reflex to be isolated for more detailed study. Third, the 
dependence of the gain in our model on pupil size is consistent with the 
"expansive range non-linearity" studies by Usui and Stark (1978; 1982). 
Finally, in a separate study we have shown that our model is compatible with 
descriptions of the pupil light reflex based on experimentally measured transfer 
functions (Longtin and Milton, 1989). 

Oscillations in pupil area occur whenever the time delay and/or the gain 
become sufficiently large (17). The gain is related to three parameters: (1) the 
rate constant for the neural firing frequency (7); (2) the steepness of the 
feedback function (fl); (3) the rate constant for pupillary movements (~). Stark 
(1959) has used empirical observations to argue that constriction gain is 
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Figure 4. Solutions of (34) for increasing steepness of the feedback function. Value of 
n of the Hill function [right hand side of (34)] has been indicated on each curve. In 
going from n = 3 to 10, the system has undergone a supercritical Hopf  bifurcation. 
Initial condit ion for each simulation was A( t )=  15 mm 2, te(-z, 0). Parameter  

values were: z = 300 msec; e = 3.21 sec-1;  0 =  50 mm~; c = 2 0 0  mm 2. 

decreased by retinal light adaptat ion and is inversely proport ional  to the 
constriction rate constant. These features come out  very naturally in our  
model. The conditions for the onset of an oscillation as well as the period and 
amplitude of the oscillations should be sensitive to pathological alterations in 
any one of these three parameters. A variety of abnormalities in pupil area 
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oscillations are indeed seen in patients with disease in the pupil light reflex 
pathways (Martyn and Ewing, 1986; Miller and Thompson, 1978; Milton et 
al., 1988). 

As the time delay and/or gain are increased beyond the point of oscillation 
onset the shape of the oscillation changes with little subsequent change in its 
frequency (Fig. 4). Near the bifurcation point, the oscillation amplitude is 
predicted to grow as the square root of these parameters beyond the point of 
instability onset. The more complex waveforms typically associated with the 
occurrence of higher-order bifurcations, i.e. period doubling bifurcations, or 
bifurcation from a limit cycle to a 2-torus, are not seen. This finding is 
consistent with previous studies of first order non-linear delay-differential 
equations with negative feedback (an der Heiden and Mackey, 1982); in 
particular, those which arise in the descriptions of the control of respiration 
(Glass and Mackey, 1979; Mackey and Glass, 1977), erythropoiesis (Mackey, 
1979) and the commodity price market (Mackey, 1989). Thus noise-like 
fluctuations in pupil area ("pupillary hippus") cannot represent chaotic 
dynamics produced by a non-linear negative feedback mechanism of the type 
we have considered here. However, we cannot exclude the possibility that 
hippus represents a chaotic process somewhere in the reflex arc or that it is 
simply due to noise injected, for example, at the level of the Edinger-Westphal 
nucleus (Stanten and Stark, 1966; Stark et al., 1957). 

One non-linearity in the pupil light reflex that has received little attention in 
previous modelling studies is the response asymmetry of the pupil to the onset 
and offset of light. Although this asymmetry is most clearly manifested as a 
difference in the rates of pupil constriction and dilation (Longtin and Milton, 
1988), it is likely that it also occurs at the level of the output of the retina and 
midbrain as well. Neuro-physiological evidence for the presence of distinct 
light-ON and light-OFF responses in the reflex arc has been obtained for 
retinal ganglion cells (Arkin and Miller, 1988; Schiller, 1984) and for neuronal 
poPulations in the midbrain (Clarke and Ikeda, 1985; Nisida et al., 1959; Smith 
et al., 1970). As the observations in Section 4.2 indicate the analysis of this 
situation certainly presents problems, except in the case of external piecewise 
constant feedback (Longtin and Milton, 1988; Milton et al., 1989; Milton and 
Longtin, in preparation). Previous modellers have also been concerned with 
the problem of reflex asymmetry (Clynes, 1968; Stark, 1959). For example, 
Stark (1959) suggested that a steady-state oscillation occurs when the 
constriction and dilation gains are equal. Thus, after a transient, there is no net 
increase or decrease in area in each oscillation period. In our model this would 
imply that yc/0~c = yd/(Xd,  where yc and Yd are the neural firing frequencies (3) for, 
respectively, constriction and dilation. However, this assumption is not 
sufficient by itself to uniquely determine the mean pupil area the system 
tends to (it likely will be a value between A ' a n d  A*). Determining whether the 
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stabilization of the limit cycle occurs through this precise compensation or 
through another mechanism will require experimental investigations. 

In our model we neglected the possibility that t ime-dependent processes 
occur in the response of the retina, e.g. adaptation (Tranchina et  al., 1984). It 
may  be possible that by including these influences in (8), e.g. by making V a 
function of time, that we will be able to obtain insights into pupil phenomena,  
such as pupillary escape (Sun et  al., 1983). In addition, it may be possible to 
account for some of the complex dynamical behaviors shown in Table 1, e.g. 
spontaneous periodic oscillations in sleepy narcoleptics (Yoss et  al., 1970), as 
more physiological information is incorporated into the choices of f (x)  (7) and 

We expect that models based on non-linear dynamical systems approaches 
will come to play a greater role in the study of the properties of neural control 
mechanisms (Longtin and Milton, 1989; Mackey and Milton, 1987; Milton et  

al., 1989). The advantage of these approaches is that the analysis is not  
restricted to the study of equilibria and their stability. By employing a 
combination of analytical and numerical techniques it should be possible to 
obtain insights into the nature of the complex dynamical behaviors produced 
by the nervous system in health and disease. 

The authors are indebted to Drs J. B61air, L. Glass, M. Guevara and M. C. 
Mackey for helpful discussions. The research was partially supported by the 
Natural  Science and Engineering Research Council of Canada (NSERC) 
through grant A-0091. AL was supported by an NSERC post-graduate 
scholarship. 
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