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1 INTRODUCTION

Given a coarse triangulation of some object, subdivision
methods deal with the production of finer and finer triangu-
lations of the object in every subdivision step. The aim is
to produce a sequence of visually smoother and smoother
representations of the object, which ideally converges to a
smooth limit surface for infinitely many subdivision steps.

While classical subdivision methods are based on a discrete
local averaging of the vertices of a triangulation, we present
a new approach to subdivision which is based ongeometric
filtering andcurvature motionmethods.

The new approach naturally incorporates the possibility of
choosingdifferent geometric filter widthsranging from a
smoothing of solely edges and corners of the object to a
smoothing of the overall geometry as shown here (in the
second line color coded curvature plots of the surfaces
above are shown):

The curvature motion approach even allows for the choice
of a locally varying geometric filter widthresulting in a lo-
cally different pronounciation of edges and corners of the
object during the subdivision process, here applied to the
coarse inital surface on the left:

2 SURFACE FAIRING AND CURVA-
TURE MOTION

Curvature driven evolution processes such as Mean Curva-
ture Motion (MCM) are well established methods for the
fairing of initially noisy surfaces. Ifx denotes the coordi-
nates of an embedded surfaceM in R

3, the evolution by
MCM is described by

∂tx(t) = −H(x)N(x)

M(0) = M0 ,

whereN is the surface normal andH is the mean curvature
ofM. This equation can be reformulated equivalently by
the partial differential equation

∂tx(t)−∆M(t)x(t) = 0 ,

where∆M(t) is the Laplace-Beltrami Operator onM.

Because innD-image processing the last equation is equiv-
alent to the application of a Gaussian filter with filter width

σ =
√

2t

it is instructive to regardσ as a“geometric filter width”
also in the surface evolution case.

3 SUBDIVISION FILTERING

To exploit the surface evolution equation

∂tx(t)−∆M(t)x(t) = 0

for a subdivision method we focus on one single fully im-
plicit discrete time step of this equation, i. e.,

(x∗ − x0)− a∆M∗x∗ = 0 .

To approximate the solutionx∗ numerically, we first dis-
cretize the last equation in time by

(xk − x0)− a∆Mk−1xk = 0 ,

and then in space by

(Xk − Ihx0)− a∆Mk−1
h
Xk = 0 .

Here,Ih is the piecewise linear interpolation operator of
the continuous datax0 andX denotes the spatially discrete
coordinate values of the surfaceMh.

In addition, we consider a sequence of nested gridsMhk

generated by any recursive and regular refinement rule, and
refine the grid once after each iteration in the above equa-
tion.

Putting everything together we define our new subdivision
scheme asMk

hk
= Shk(Mk−1

hk−1
)M0 , where the application

of Shk is given by the solution of the operator equation

(Xk
hk
− Ihkx0)− a∆Mk−1

hk−1

Xk
hk

= 0 .

Thus, the resulting subdivision method consists of the ap-
plication of the two basic operations“refinement” and
“smoothing” in every subdivision step. In the following
picture two subdivision steps applied to the coarse triangu-
lation on the very left are shown. Each of the subdivision
steps is split into the two basic operations“refinement” and
“smoothing”:

4 LOCAL FILTER WIDTH EXPAN-
SION

In the case of triangulations with a considerable variation
in the grid size, we locally adapt the geometric filter width
to the grid size of the triangulation. The following figure
shows two examples of limit surfaces without (left) and
with (right) the local filter width expansion:

5 CASCADIC ITERATIONS

For the already mentioned discretization in space we use
linear finite elements. The resulting linear systems are
solved by CG- or Jacobi-iterations where we restrict the
number of iterations in a multigrid fashion to

nk = nkmax
2

3
2(kmax−k)

in the case of CG-iterations and

nk = nkmax
22(kmax−k)

in the case of Jacobi-iterations using the results of Borne-
mann and Deuflhard.

Thus, on thefinest levelnkmax
we restrict to asingle iter-

ation in the iterative solver, thus getting (nearly) optimal
complexity of the proposed method.

6 RESULTS

A sequence of flatshaded subdivision surfaces is shown us-
ing the proposed local filter width expansion. The starting
surface comes along with a very irregular triangulation grid
like different valences of the nodes, thin triangles and non-
homogeneous grid size. The proposed method is able to
effectively deal with such surfaces:

We conjecture the limit surface of the proposed subdivision
method to be in the classC2. As a numerical indication for
bounded second derivatives we depict the color coded mod-
ulus of the mean curvature of the last surface:
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