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Surface reconstruction from large unorganized data sets is very challenging, especially if
the data present undesired holes. This is usually the case when the data come from laser
scanner 3D acquisitions or if they represent damaged objects to be restored. An attractive
field of research focuses on situations in which these holes are too geometrically and topolog-
ically complex to fill using triangulation algorithms. In this work a local approach to surface
reconstruction from point-clouds based on positive definite Radial Basis Functions (RBF) is
presented that progressively fills the holes by expanding the neighbouring information. The
method is based on the algorithm introduced in [7] which has been successfully tested for the
smooth multivariate interpolation of large scattered data sets. The local nature of the algo-
rithm allows for real time handling of large amounts of data, since the computation is limited
to suitable small areas, thus avoiding the critical efficiency problem involved in RBF multi-
variate interpolation. Several tests on simulated and real data sets demonstrate the efficiency
and the quality of the reconstructions obtained using the proposed algorithm.
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1. Introduction

The digitalization and reconstruction of 3D shapes has numerous applications in
areas that include manufacturing, virtual simulation, medicine, entertainment, consumer
marketing and archaeology. Methods to digitize and reconstruct the shapes of complex
objects have evolved rapidly in recent years. The speed and accuracy of digitizing tech-
nologies allows us to take detailed measurements of the objects, but in order to capture
the complete shape of an object, many thousands of samples must be acquired. The
resulting mass of data requires algorithms that can efficiently and reliably generate com-
puter models from these samples.

The reconstruction of a 3D model is usually obtained from scattered data points
sampled from the surface of the physical 3D object. The acquisition of the data is re-
alized through 3D scanning systems which are able to capture a dense and accurate
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sampling usually organized into range images, i.e., sets of distances from the sensor to
the object being scanned. Each range image needs to be filtered to remove artifacts and
noise, and to fill the holes. Using laser light scanners, in fact, gives rise to range images
which can be noisy and affected by artifacts, depending on their material and on the pres-
ence of partially reflecting surfaces. Moreover, they can present simple or topologically
complex holes. Most of them can be naturally filled by the overlapping range images
process, since the most fundamental cause of holes is occlusion – recesses too deep to be
observed using a particular angle. However, holes can also be caused by low reflectance,
constraints on scanner placement, or simply missing views. This is frequently observed
in the scanning of works of art, which have a lot of self-occlusions and details. Works
of art also impose significant restrictions on the scanner placement. Moreover, the holes
can correspond to missing or damaged parts of the object when the scanning process is
used, e.g., in a computer aided restoration session.

Surface reconstruction from dense range data has been an active area of research for
several years. The strategies have proceeded along two basic directions: reconstruction
from unorganized points, and reconstruction that preserves the underlying structure of
the acquired data. These two strategies can be further subdivided, according to whether
they operate by reconstructing piecewise linear or smoother surfaces, or by reconstruct-
ing an implicit function. Examples of implicit surface reconstruction include the method
of Hoppe [6], Bajaj [1] and, more recently, Beatson et al. [2], which use RBF to fit a
signed distance function followed by an isosurface extraction.

Most of these approaches are not particularly concerned with the hole filling prob-
lem. In fact, they lead to a natural filling of the holes, which works well for simple holes
in nearly flat surfaces, but not for convoluted geometric holes. In many applications it
is important to be able to reconstruct this missing information for post-processing, as
well as for presentation in a more plausible way. One widely used approach to hole fill-
ing consists in triangulating each connected component of the surface boundary, thereby
filling the holes with a patch. Recently, in the pioneering work [3], the authors specif-
ically address situations in which the holes are too topologically complex to fill using
triangulation algorithms, and they propose solving the hole filling problem via isotropic
diffusion of volumetric data (i.e., iterative Gaussian convolution of some distance func-
tion to the known data). The approach proposed by these authors produces watertight
digital models, but it does not seem to give intuitive answers to the hole filling tests pre-
sented. We refer to this paper for an excellent and detailed description of the nature of
the holes in scanning statues, and for a review of the literature on this subject.

In this work we consider a method which is designed for multivariate interpolation
(approximation) of general data sets. It is based on an algorithm presented in an earlier
paper [7] which makes local use of radial basis function interpolants. This local approach
allows for real time handling of large amounts of data, since the computation is limited
to suitable small areas, thus avoiding the critical efficiency problem involved in RBF
multivariate interpolation (see, e.g., [10], and references herein). Here we adapt the
algorithm to the specific application of surface reconstruction from 3D scanning range
data by including an efficient hole filling procedure, which progressively fills the holes
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by expanding the neighbouring information. The locality of the proposed method allows
us to fill in a selected way only desiderated areas, without forcing a convex watertight
model which can be obtained using a unique interpolant function.

The paper is organized as follows. In section 2 we discuss some theoretical results
on interpolation with RBF, which will be assumptions to derive a fast and robust local
reconstruction method given in section 3. In section 4, we present the new hole filling
method and we discuss some relating theoretical aspects. The corresponding algorithm,
integrated in the reconstruction procedure, is described in section 5. Results follow in
section 6, where the efficiency and the capabilities of our approach are demonstrated by
considering real data sets.

2. Interpolation with positive definite radial basis functions

The interpolation problem can be stated as follows. Given a set of distinct nodes
X = {xi}Ni=1 ⊂ � ⊂ R

d , and a set of function values � = {fi}Ni=1 ⊂ R, the radial basis
function interpolant s : R

d → R on X is given by

s(x) =
N∑

j=1

cjϕ
(‖x − xj‖2

)
, (1)

where the function ϕ : [0, ∞) → R is called radial basis function, and the points xj are
referred to as centers of the radial basis functions. The coefficients c1, c2, . . . , cN are
determined by the interpolation conditions

s(xi ) = fi, i = 1, . . . , N, (2)

which lead to the linear system

AX,ϕc = f (3)

with AX,ϕ = (ϕ(‖xi − xj‖2))1�i,j�N . In order that the system (3) be solvable, the
interpolation matrix AX,ϕ must be nonsingular. In this work, we require that the matrix
AX,ϕ is positive definite. In this case, following, e.g., the definition in [12], the function
ϕ(‖ · ‖) is said to be positive definite in R

d , which we abbreviate by ϕ(‖ · ‖) ∈ PDd .
Well known PDd radial basis functions are the inverse multiquadrics. However,

in this case, the interpolation matrix in (3) is non-sparse, and even modestly large data
sets can lead to very ill-conditioned linear systems. Furthermore, the evaluation of the
interpolant function (1) can become computationally expensive. In order to overcome
these problems, Wendland [13] and Whu [14] have proposed compactly supported ra-
dial basis functions, which are positive definite on R

d according to their given order of
smoothness. Although they represent an effort in the direction of localization, they still
suffer from the inherent inability of the radial basis functions to interpolate very large
data sets in a numerically stable and accurate way. In fact, the reconstruction may be
poor, since it strongly depends on the radius of the support of these functions, which
has to be scaled to adapt it to the different densities of the scattered data set. Moreover,
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improving the smoothness of ϕ improves the reproduction quality but, at the same time,
also blows up the condition of AX,ϕ .

For the purpose of this work, we considered inverse multiquadrics and compactly
supported Wendland’s functions, thus in the following we investigate the critical aspects
of stability and accuracy for these classes of functions in greater details. For this aim,
we first introduce the following two measures which characterize the density of the data
set X: the separation distance qX, which measures the closest pair of points in X, and
the fill distance hX, which represents the radius of the largest inner empty sphere, given
by

qX = 1

2
min

1�i<j�N
‖xi − xj‖2, hX = sup

x∈�

min
1�i�N

‖x − xi‖2.

If we denote by qX(x) and hX(x) the previous quantities relative to the set X ∪ {x}, for
each x ∈ �, we get the following relation:

qX(x) � min
1�j�N

‖x − xj‖2 � hX(x).

The measures qX(x) and hX(x) are critical to the study of stability and accuracy of radial
basis function interpolants. Concerning the conditions for the numerical stability of
system (3), these can easily be derived from standard theory of numerical stability. In
fact, the sensitivity of the solution c with respect to variations in the data is given by the
condition number, which, in our case of symmetric positive definitive matrix, is given
by the ratio �/λ between the biggest and the smallest matrix eigenvalue.

Thus the stability analysis consists in finding good bounds for � and λ. In partic-
ular, it is necessary to find lower bounds on λ that are as tight as possible. This depends
on the separation distance of the set X.

On the other hand, if the data are values of a function f belonging to a function
space F, the accuracy of the reconstruction is evaluated by the error of the interpolant
defined by the solution of (3) with fi = f (xi ). When F is defined via ϕ itself in a natural
way [11], its characteristics depend on the d-variate generalized Fourier transform φ

of ϕ. If φ decays at least algebraically at infinity, then F contains a certain Sobolev
space, if φ decays exponentially, then F consists of C∞ functions. In any case, the
space F carries a specific seminorm | · |F and the interpolation error can be bounded by

∣∣f (x) − s(x)
∣∣ � |f |FP(x), (4)

where the power function P(x) is the norm of the error functional on F, evaluated at x.
Note that P depends on x, X, ϕ, and F, but not on f .

Theoretical and numerical results have revealed a strict connection between the
error and the sensitivity described by P(x) and λ, respectively. Schaback proved in [11]
that the accuracy and the condition number of the interpolation matrix cannot both be
kept small. This effect is a sort of uncertainty principle, and it takes the form

P 2(x) � λ(x), (5)

where λ(x) is the smallest eigenvalue of the matrix AX∪{x},ϕ .
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Let us recall some well known results for a better comprehension of the choices
we made in the design of our RBF interpolation method. According to [11] the known
upper and lower bounds for P(x) and λ(x) take the forms

P(x)2 � F
(
hX(x)

)
and λ(x) � G

(
qX(x)

)
, respectively (6)

where F ,G : R
+ → R

+ are continuous and decreasing functions for small arguments.
We refer to [11] for a list of known examples of functions F and G related to some
special RBF. Considering the uncertainty principle (5), we then obtain the two-sided
bounds

G
(
qX(x)

)
� λ(x) � P 2(x) � F

(
hX(x)

)
. (7)

These bounds can be made more useful for practical applications if conditions can be
given under which hX(x) can be bounded from above, in terms of qX(x). This is the case
if we deal with a set of centers X ⊂ � which is quasi-uniform, i.e., if there are ρ > 0
and h > 0, such that

1. hX(x) � h,

2. qX = 1

2
min

1�i<j�N
‖xi − xj‖2 � h · ρ.

(8)

In this case we call h the density and ρ the uniformity of X with respect to �. For
example, a regular square grid has uniformity ρ = 1/

√
2, while a triangular grid has

ρ = √
3/3 [4].

As proved in [11], for quasi-uniform sets of centers with density h and quasi-
uniformity ρ, we have two-sided bounds

G(hε) � λ(x) � P 2(x) � F(h) (9)

for all x ∈ � with q(x) � hε, and G(h) � F(h
√

d) for sufficiently small arguments. For
inverse multiquadrics (with constant γ ) these bounds decay exponentially, as we have
F(h) = O(e−ρ/h), and G(h) = O(h−1e−γ d/h) [8]. For compactly supported radial basis
functions ϕ ∈ PDd ∩ C2k of minimal degree, the results from [12] state that G(h) =
O(q−d−2k−1

X ) , and F(h) = O(hk+1/2). Thus the condition number of the interpolation
matrix only grows polynomially, in terms of the separation distance, if the latter tends to
zero.

The previous analysis highlights that, when we interpolate on a set of centers, the
best possible situation for balancing the stability and the approximation behaviour is
when the uniformity of the set is maximized. This suggests a criterion for selecting
suitable subsets of X, on which a good compromise between stability and accuracy can
be achieved. This is, in fact, the main feature of the proposed RBF interpolation method,
which performs local interpolations on well selected quasi-uniform subsets of X, and
obtains a global reconstruction by suitably weighting the local contributions.
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3. The local approach to the reconstruction

In this section we describe a local method which is designed for the reconstruction
of large general data sets. The reconstruction method is based on a technique presented
in an earlier paper [7], that is here adapted to the construction of a digital surface model
from range data acquired from a physical object.

Our local approach to the reconstruction exploits the characteristics of flexibility
and accuracy which have made the radial basis functions a well established tool for mul-
tivariate interpolation, overcoming the drawbacks presented by RBF global interpolation
methods, such as instability and unacceptable computational cost. The method is a vari-
ant of the well-known modified Shepard’s method proposed by Renka [9], and uses RBF
interpolants as nodal functions.

We consider the set X ⊂ � ⊂ R
d , where, for convenience, � is assumed to be the

convex hull of X, and the corresponding set of function values � = {fi}i=1,...,N .
For each xk ∈ X, k = 1, . . . , N , we associate a set Xk = {xi ∈ X, i ∈ Ik}, where

Ik is the set of indexes of Nq − 1 suitable neighbours of xk, as well as xk itself, and we
determine an RBF nodal function Rk(x) in the form:

Rk(x) =
∑

i∈Ik

ciϕ
(‖x − xi‖2

)
, (10)

by solving on Xk the local interpolation problem:

Rk(xi ) = fi, i ∈ Ik.

In order to achieve a real local approach, it is necessary to limit the influence of
Rk(x) by means of a weight function which decreases with the inverse of the distance
from xk. To further control the locality of the reconstruction, Renka in [9] has suggested
to associate with each xk a parameter rWk

, named radius of influence, that truncates the
contribution of the kth nodal function outside of the circle with this radius. To choose
the radius of influence rWk

, a certain number NW of points closed to xk is considered,
then rWk

is taken as the distance from the farthest of these NW points. NW (� Nq) is
thus a parameter which has to be small enough to guarantee the locality of the method.

Therefore, we define, for each xk, the kth nodal weight function as

Wk(x) = Wk(x)
∑N

i=1 Wi(x)
, Wk(x) =

[
(rWk

− rk(x))+
rWk

rk(x)

]p

, (11)

where rk(x) = ‖x − xk‖2 and rWk
is the radius of influence around the point xk. Thus

the value fk at xk influences only the evaluation of points within this radius. It can be
shown (see [5]) that the positive weights Wk(x) satisfy the cardinality relations Wk(xi) =
δik, i, k = 1, . . . , N and constitute a partition of unity, namely

∑N
k=1 Wk(x) = 1.
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Finally, for each evaluation point x, the reconstruction is obtained by a weighted
combination of a few local contributions, namely the nodal functions whose radius of
influence contains x. More precisely,

F(x) =
∑

k∈Nx

Wk(x)Rk(x), (12)

where Nx is the set of indexes of all the nodes xk s.t. ‖x − xk‖2 < rWk
.

Note that the choice of the radial function ϕ(‖ · ‖) ∈ C
(Rd) leads to F ∈ Cs(�),

where s = min{p, 
}. Moreover, for each x ∈ �, the global approximation error E(x) is
given by:

E(x) = ∣∣f (x) − F(x)
∣∣ �

N∑

k=1

Wk(x)ek(x), (13)

ek(x) being the interpolation error (4) of the RBF interpolant Rk(x) on the set Xk. The
choice of the sets Xk is therefore crucial for the effectiveness of the reconstruction algo-
rithm and must be made with great care. In fact, as we are interested in the reconstruction
of dense range data, a naive choice for Xk, given considering xk and its nearest neigh-
bours, would certainly lead to instability problems. According to the theoretical results
of the previous section, we have therefore made a better choice obtained by selecting
suitable neighbours of xk, such that the set Xk consists of quasi equi-spread points, thus
satisfying the quasi-uniformity conditions (8). This strategy yields an interpolation ma-
trix AXk,ϕ with minimum condition number still maintaining a good approximation be-
haviour. Moreover, since each point xj ∈ X is associated with a nodal function Rj(x),
the points discarded in the choice of Xk also give a contribution to the final reconstruc-
tion, thus avoiding any loss of information.

In the case of noisy data, or data which are affected by considerable acquisition
errors, a local RBF least squares approximation is a better choice for the nodal function
Rk(x). For this aim, we select a subset Sk ⊂ Xk of Nc points, including xk itself, which
represents the centers of the radial basis functions considered. Given Sk = {xj ∈ Xk;
j ∈ Jk}, we consider the matrix BXk,ϕ = (ϕ(‖xi − xj‖2))i∈Ik,j∈Jk

, and we solve the
following minimization problem

min
c

‖BXk,ϕc − fk‖2, (14)

where fk is the vector of the function values {fi}, i ∈ Ik, and the entries of c are the
coefficients of the RBF approximant:

Rk(x) =
∑

j∈Jk

cjϕ
(‖x − xj‖2

)
. (15)

Note that the choice of the centers guarantees that the matrix BXk,ϕ is full rank, as
its columns are in the column space of AXk,ϕ .
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4. The hole filling method

The reconstruction method described in the previous section, for its local nature,
preserves the topology of the data sets, that is, roughly speaking, any hole in the data
set produces an hole in the reconstruction. This can be considered an advantage both
when the original shape presents some empty regions (think, for example, to eye holes
in a carnival mask), and when it is necessary to preserve missing regions in an ancient
sculpture. But, if we are in the case of lacunary data that we want to restore, the local
approach just described can be easily expanded with an efficient method for filling these
holes. This will be the subject of the current section.

We now deal with the problem of the reconstruction of an RBF function on a data
set (X, �) which presents an empty, lacunary or damaged region. Let us call this region
for simplicity the hole. The reconstruction method exploits only the available informa-
tion on the hole surroundings that we denote by B ⊂ X, thus the processing is limited
to the vicinities of the hole. The simplest approach we can consider, is a global recon-
struction on B using relation (1); this would lead us to two main drawbacks. First, the
gap in the data domain would produce a fill distance parameter hB large with respect
to qB , thus losing the quasi uniformity conditions. This would give rise to the well
known problems regarding accuracy and stability in the reconstruction. Moreover, the
global method would fill the gap without allowing any kind of control on the shape of
the reconstructed region.

From the above considerations, we propose a multilayer technique which incre-
mentally expands the information on the hole boundary until the gap has been completely
filled. This approach reaches the following goals: it maintains the quasi-uniformity con-
ditions for each local interpolant, and enables a local control on the reconstruction by
suitably setting the local nodal function parameters.

The key idea of the multilayer method is the following. We build a uniform grid,
with an estimated grid data density HG, and we overlap it on the boundary data B,
thus filling completely the missing part in the data domain X. This set of grid points is
denoted by G. In order to incrementally extend the original data set (X, �) for including
the new set (G, �G), we proceed with a decomposition of B ∪ G into a nested sequence
of layers:

B = L0 ⊂ L1 ⊂ L2 ⊂ · · · ⊂ LNL ≡ B ∪ G,

according to the hole width and to the grid data density. This layer structure, shown in
figure 1, allows us to fill the hole by splitting up the reconstruction into NL steps. Each
step m, for m = 1, . . . , NL, consists of the following three phases:

• First we construct the set �Lm\Lm−1 by evaluating, using relation (12), an estimate of
the reconstruction F(xi) for each point xi in Lm\Lm−1, that is:

F(xi ) =
∑

k∈Nxi

Wk(xi )Rk(xi ), xi ∈ Lm\Lm−1, (16)
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Figure 1. Scheme of the layer structure; the white dots represent points in B, while the black are points
in G.

where Nxi
is the set of indexes of the nodes xk ∈ Lm−1 whose radius of influence

contains the point xi , and Rk(x) are the corresponding nodal functions.

• In the second phase, the data set is enlarged by including the set (Lm\Lm−1, �Lm\Lm−1).

• Then, for each point xk ∈ Lm\Lm−1, the new nodal function Rk(x) is computed by
solving the corresponding local interpolation problem.

After the processing of all the layers the original data set has been completed, thus
allowing us for the evaluation of the reconstruction everywhere.

Determining the layer points represents a critical aspect to the success of the
method. As previous mentioned, the local nature of our method allows us to deal al-
ways with small sets Xk for each xk ∈ B, characterized by a predefined separation dis-
tance qXk

, and a fill distance hXk
of the same order of magnitudo. In order to maintain

these good properties also for the new points in the layers, the set G has been built with
the following grid data density:

HG := min
xk∈B

hXk
.

Then the subdivision of G into layers is obtained by requiring that each point xk ∈ G

is considered into a given layer Lm if there is at least a point in Lm−1 whose distance
from xk is less than HG. This choice, in fact, guarantees that the point is in the radius of
influence of some of its neighbours and that the error given by (13) is limited.

The multilayer procedure causes inevitably a propagation of the local interpolation
error into the hole region. This is due to the fact that the reconstructed values at each step
are not all belonging to the original data set, but they are computed using relation (16)
and therefore are affected by a reconstruction error. This error is a convex combination
of the errors generated by the local interpolation functions Rk(x). A theoretical study
of the propagation of this error is, at first glance, very discouraging. In fact, the upper
bound of the difference between the local reconstructions of exact and perturbed data,
given in the following proposition, shows that the propagation of the perturbation error
can be very large.
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Proposition 1. Let (xi , fi), xi ∈ Xk, fi ∈ �, be a set of interpolation points and
(xi , f̂i), xi ∈ Xk, fi ∈ �̂, the associated perturbed data set. Using relation (10), the
error on the local interpolation function R̂k(x), is bounded by

∣∣Rk(x) − R̂k(x)
∣∣ �

∥∥A−1
X,ϕ

∥∥∞
∑

i∈Ik

∣∣ϕ
(‖x − xi‖2

)∣∣ ∥∥fk − f̂k
∥∥∞. (17)

Proof.
∣∣Rk(x) − R̂k(x)

∣∣ �
∑

i∈Ik

|ci − ĉi |
∣∣ϕ

(‖x − xi‖2
)∣∣

� max
i∈Ik

(ci − ĉi)
∑

i∈Ik

∣∣ϕ
(‖x − xi‖2

)∣∣

= ‖c − ĉ‖∞
∑

i∈Ik

∣∣ϕ
(‖x − xi‖2

)∣∣.

The result follows replacing relation (3). �

This theoretical result suggests that, in order to limit the growth factor
∥∥A−1

X,ϕ

∥∥∞
∑

i∈Ik

∣∣ϕ
(‖x − xi‖2

)∣∣,

the selection of the radial basis functions and of the dimension of the local interpolation
problems is really crucial. In our work we are able to maintain a limited growth factor
by keeping the system dimension as small as possible, and acting on the inverse mul-
tiquadrics constant and on the support of the compactly supported RBF. Moreover this
allows us to have a good local control on the shape reconstruction.

Our experimental results support our choices revealing a limited error in the re-
construction of test data sets (see section 6) and obtaining a plausible reconstruction by
expanding the shape of the boundary data.

In the next section, an efficient hole filling procedure which implements the mul-
tilayers method has been integrated in the basic reconstruction algorithm in order to
manage any number of holes.

5. The reconstruction algorithm with hole filling

The basic algorithm for the reconstruction of a surface F(x), starting from a set
(X, �) of N = |X| distinct points, consists of a preprocessing and two main phases. In
the preprocessing the data X are scaled in [0, 1]× [0, 1], and they are suitably organized
and stored in a grid data structure. Following [9], we used a uniform 2D grid of cells
as efficient data structure, which allowed us to design a fast procedure for performing a
nearest-neighbour search. Algorithm 1 describes the main steps of our approach.



G. Casciola et al. / Fast surface reconstruction and hole filling 299

Algorithm 1 (Surface reconstruction).
INPUT: (X, �), Nq, NW, q, ϕ

OUTPUT: F(ξ), ξ ∈ �

COEFFICIENT PHASE: Compute the coefficients of the local interpolants Rk(x),
k = 1, . . . , N

for each xk ∈ X,

Construct a set Ik of Nq indexes s.t. Xk = {xk} ∪ {xj ∈ X; xj ∈ Neigh(xk)} and
qXk

� q

Compute the radius of influence rWk
of xk using NW points;

Interpolation step:
Build the matrix AXk,ϕ ∈ R

Nq×Nq , AXk,ϕ = ϕ(‖xi − xj‖2), i, j ∈ Ik

Solve the linear system: AXk,ϕc = fk
endfor

EVALUATION PHASE: Evaluate the reconstructed surface
for each evaluation point ξ ∈ �:

Construct a set Nξ of indexes of all the nodes xk s.t. ‖ξ − xk‖2 < rWk

Evaluate Rk(ξ), ∀k ∈ Nξ using (10)
Compute the weight Wk(ξ) , ∀k ∈ Nξ , using (11) with p = 2
Compute F(ξ) = ∑

k∈Nξ
Wk(ξ)Rk(ξ)

endfor

In the first phase (COEFFICIENT PHASE) the most important step is the con-
struction of the sets Xk ⊂ X, as already underlined in the previous section. For this aim,
we look for Nq − 1 points in the area around xk (Neigh(xk)), such that the separation
distance of Xk is greater than a given constant q. From an implementation point of view,
this means selecting the corresponding set of indexes Ik. In our implementation, q is the
same for each Xk.

Then we compute the influence radii rWk
of xk, chosen large enough to include NW

points of X. Finally, in order to compute the coefficients of the nodal functions Rk(x),
we solve the linear system AXk,ϕc = fk, where the elements of fk are the function values
corresponding to the nodes in Xk. The coefficient matrix AXk,ϕ is symmetric and positive
definite. Thus the linear system is solved by applying a Cholesky factorization.

The second phase (EVALUATION PHASE) provides the values of the recon-
structed function F on a set of points � ⊂ R

2. For each evaluation point ξ the algorithm
detects the set Nξ of indexes of all the nodes xk, whose radii of influence rWk

include ξ ,
and it computes the local contributions (10) in ξ . Thus the reconstructed surface F(ξ)

is evaluated by weighting all the nodal functions according to (12). In order to obtain
a reconstructed surface using the least square criterion, a new input parameter Nc is re-
quired, which indicates the number of centers to consider for the computation of the
local approximant Rk(x). In this case we construct the set Sk ⊂ Xk given by xk and its
Nc −1 suitable neighbours. This subset Sk can be chosen in several way as, for example,
using the farthest star-spread neighbours of xk. We then compute the coefficients of the
nodal function Rk(x) by solving the overdetermined linear system BXk,ϕc = fk using
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a QR algorithm. Therefore, we follow algorithm 1, in which the interpolation step is
replaced with:

Approximation step:
Construct the set Jk of Nc(� Nq) indexes of points ∈ Sk

Build the matrix BXk,ϕ ∈ R
Nq×Nc, BXk,ϕ = ϕ(‖xi − xj‖2), i ∈ Ik, j ∈ Jk

Solve the overdetermined linear system: BXk,ϕc = fk

Note that, in the evaluation phase, the local approximant Rk(x) is given by (15)
instead of (10).

Now, following section 4, we extend the previous reconstruction algorithm (algo-
rithm 1) by completing it with an efficient hole filling procedure (named algorithm 2).
This has been designed to be able to manage topological complex holes and restore sur-
face shapes, preserving the geometry where it exists, while producing smooth transitions
to plausible geometry in unobserved areas.

Algorithm 2 (Surface reconstruction with hole filling).
INPUT: (X, �), Nq, NW, q, ϕ, Bi, i = 1, . . . , nH

OUTPUT: F(ξ), ξ ∈ �

PRELIMINARY PHASE
for each marked hole i = 1, . . . , nH

Overlap a grid of points Gi on Bi ;
Label points in Gi in NLi layers, s.t. Bi = L0 ⊂ L1 ⊂ L2 ⊂ · · · ⊂ LNLi

≡ Gi ∪ Bi ;
endfor
COEFFICIENT PHASE: for the set X

HOLE FILLING PHASE:
for each marked hole Bi i = 1, . . . , nH

for each layer L
, 
 = 1, . . . , NLi

EVALUATION PHASE: compute {�L
\L
−1}
X = X ∪ {L
\L
−1}; � = � ∪ {�L
\L
−1};
COEFFICIENT PHASE: compute Rk(x) for xk ∈ {L
\L
−1}

endfor
endfor
EVALUATION PHASE: for the set �

The critical aspect of algorithms 1 and 2 turns out to be the choice of the free
parameters, namely Nq , NW and q, which influences both the reconstruction quality and
the computational complexity. For the right values of these free parameters we have
followed the guidelines given in the theoretical analysis of section 2.

Concerning the computational complexity of these algorithms, this is due both to
the numerical computation and to the data structure management. The former can be
well quantified in the solution of N linear systems of dimension Nq (interpolation case)
using Cholesky factorization, i.e., a computational cost of O(N ·N3

q /6) for the coefficient
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phase, and in the evaluation of the reconstruction in a generic point ξ , whose cost is
O(Nq · M), where M = |Nξ |.

Regarding the spatial data structure, we can clearly single out a building cost in the
preprocessing phase of O(N), while the complexity of any search inside the fixed grid
depends on the number of cells visited, and therefore on the separation distance q, on the
density h and, of course, on the number of searched points Nq for each linear system.

6. Numerical results

The surface reconstruction algorithm described in this work has been implemented
and tested with several range images acquired with a PICZA PIX-30 touching probe
scanner (Dep. of Math., University of Bologna), and with a VIVID 900 laser scanner
(ENEA, Bologna). The scanning technologies considered acquire the shape of an object
by generating regular range images. However, since they present outliers and systematic
range distorsions, they can be considered quasi-uniform data sets.

To illustrate the behaviour of our algorithm, we have reported the results from two
data sets.

The first data set (angel) has been acquired using PICZA scanner and it does not
present any holes. This has been used both to test reconstruction algorithm 1 and to ver-
ify the quality of the hole filling procedure. For this purpose we have removed parts of
the data in different regions to create synthetic holes (angel-h1, angel-h2 and angel-h3)
with different topologies. All the regions considered are characterized by convoluted de-
tails, because it is well known that, for simple and relatively flat holes, the reconstruction
by radial basis functions naturally works pretty well [2].

The second data set (minerva) presents two holes due to the scanner acquisition,
one in the neck and the other under the nose. Moreover, a vertical data zone has inten-
tionally been removed in order to simulate a restoration by hiding the join between the
two parts of the statue, while this join has been left on the lips and chin. This data set
has been acquired by a VIVID laser scanner and presents inherent noise due to the laser
scanner acquisition.

The examples have been obtained using the inverse multiquadric radial basis func-
tions, and similar results have been produced by Wendland’s compact support radial
basis functions. For each local interpolant/approximant on Xk the constant γk of the
inverse multiquadric functions and the support αk of the Wendland’s basis functions,
have been automatically adapted to be proportional to the support of the local problems
according to the formula: const · maxxi∈Xk

‖xk − xi‖2.
This yields a common reproducing quality for all the nodal functions Rk(x) and

therefore a better quality for the global interpolant/approximant. In our examples, where
the data are scaled in [0, 1] × [0, 1], the constant const has been chosen to be 0.35.

Figure 2 shows the reconstruction of the angel data set obtained with algorithm 1,
using the interpolation criterion. Algorithm 1 has also been applied to the incomplete
angel data sets, highlighting the algorithm’s ability to preserve a hole in the data sets
when desired. The results of these reconstructions are displayed in figures 3(a), 4(a)
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Figure 2. Reconstructed angel data set using algorithm 1.

(a) (b)

Figure 3. Reconstructed angel-h1 data set: (a) algorithm 1; (b) algorithm 2.

(a) (b)

Figure 4. Reconstructed angel-h2 data set: (a) algorithm 1; (b) algorithm 2.

and 5(a). The corresponding reconstructions, obtained using the hole filling procedure
(algorithm 2), are given in figures 3(b), 4(b) and 5(b). The quality of these reconstruc-
tions can be appreciated by comparing them with the reconstructions of the complete
data set (figure 2) and the corresponding reconstruction errors have always been be-
low 5%.

Similarly, we applied algorithm 1 to the minerva data set using the interpolation
procedure to preserve the inherent noise and the holes of the original data (figure 6(a)).
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(a) (b)

Figure 5. Reconstructed angel-h3 data set: (a) algorithm 1; (b) algorithm 2.

(a) (b) (c)

Figure 6. Reconstructed minerva data set: (a) algorithm 1; (b) algorithm 2 (int.); (c) algorithm 2 (app.).

Table 1
Computational results (in seconds) of algorithm 1.

DATA SET No. points NW Nq HX q Tc Te TTOT

angel 13956 9 9 1.5e−3 0.5e−3 4.34 1.86 6.36
minerva 17050 9 9 1.8e−3 0.5e−3 6.19 1.89 8.28

The surface obtained using algorithm 2 with interpolation is shown in figure 6(b), while
figure 6(c) is an example of removing the noise in the reconstruction using the approxi-
mation procedure. Obviously the amount of smoothing applied can easily be modified,
considering different choices for the number of centers (Nc) and the number of points
used in the local approximation (Nq). Note that in figure 6(c) we used Nc = 6 and
Nq = 20. The illustrations show the high quality of the reconstruction.

Another key aspect of the proposed algorithms is their efficiency, due to the local
nature of the method. Tables 1 and 2 quantify the computational time of the main phases
of algorithms 1 and 2, respectively, running on a PC Intel Pentium IV, 2.4 GHz, with 1 Gb
of RAM. In the TTOT column we report the execution time of the algorithms, including
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Table 2
Computational results (in seconds) of algorithm 2.

DATA SET No. points NW Nq HX q Tc Thf Te TTOT

angel-h1 13856 9 9 1.5e−3 0.5e−3 4.30 2.78 2.06 9.34
angel-h2 13583 9 9 1.5e−3 0.5e−3 4.19 11.08 2.56 18.11
angel-h3 13783 9 9 1.5e−3 0.5e−3 4.27 5.90 2.25 12.63
minerva (int) 17050 9 9 1.8e−3 0.5e−3 6.18 12.16 5.00 23.66
minerva (app) 17050 20 20 1.8e−3 0.5e−3 8.17 14.05 5.02 27.23

the preprocessing phase, while the Tc, Thf and Te report the computational time of the
coefficient, the hole filling and the evaluation phases, respectively. The latter strongly
depends on the evaluation grid used; all the reconstructed surfaces we considered have
been evaluated in a 300 × 300 uniform grid.

In the tables we also report the free parameters NW , Nq , the separation distance q

and the estimated density HX of the data sets. Note that the latter corresponds to the
acquisition step of the scanner and its value represents the fill distance of the local inter-
polation problems and it has been used to estimate the separation distance q. This has
allowed us to satisfy the quasi-uniformity conditions (8), guaranteeing a compromise
between stability and quality. In fact, the uniformity parameter ρ of the sets Xk turns out
to be ρ � 0.67 for the angel data set and ρ � 0.55 for the minerva data set. Note that,
in the minerva data set, we could have considered a slightly bigger value for q yielding
a bigger density value, but the algorithm would have been less efficient.
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