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Motivations

Padua, Two-days of Numerical Linear Algebra 2007

F. Poloni: “Fast Newton method for an algebraic Riccati equation”

Research lines

• Fast SDA? The SDA iterates are generalized Cauchy-like as
well

This year I am going to fill in the gap: fast O(n2) versions of two
other algorithms for the same equation

Derivation and comparison between the algorithms
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Algebraic Riccati equations

Nonsymmetric algebraic Riccati equation (NARE)

XCX − AX − XE + B = 0

X ∈ Rm×n, other matrices compatible
(NARE)

Recent interest in the literature e.g. [Guo–Laub ’00, Lu ’05,
Guo–Higham ’05, Bini–Iannazzo–Latouche–Meini ’06]

X solves (NARE) ⇔
[
E −C
B −A

] [
I
X

]
=

[
I
X

]
(E − CX )

Solutions ⇔ invariant subspaces of H :=

[
E −C
B −A

]
• Explicit calculation of the eigenvectors: numerical problems

• Iterative methods: cost O(n3)/step, quadratic convergence
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Rank-structured NAREs

From a physics problem, we get

One-group neutron transport equation

∆X + XD = (Xq + e)(eT + qTX ) (NT)

D,∆ “positive” diagonal matrices, e, q > 0 vectors

(NT) is a NARE with rank structure:

A = ∆− eqT , B = eeT , C = qqT , E = D − qeT

Defined by O(n) parameters; we can expect to find faster
structured algorithms.
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Solution algorithms

Brown: O(n3) per step, Green: O(n2) per step
Generic NARE

1. Newton’s method [Guo–Laub, ’99]

2. Cyclic Reduction [Ramaswami ’99,
Bini–Iannazzo–Latouche–Meini ’05]

3. Structured doubling algorithm [Guo–Lin–Xu, ’06]

Rank structured problem (NT)

4. Newton method on Lu’s iteration [Lu ’05]

5. Structured version of 1 and 4 [Bini–Iannazzo–P., preprint ’06]

6. Secular equation [Mehrmann–Xu, preprint ’07]

7. Structured version of 2 [Bini–Meini–P., preprint ’08, this talk]

8. Structured version of 3 [Bini–Meini–P., preprint ’08, this talk]



Introduction Structured SDA Structured CR Numerical results

Cauchy-like matrices
Displacement operator

∇s,t(M) := DsM −MDt

with Ds = diag(s), Dt = diag(t) diagonal matrices

M is said Cauchy-like if ∇s,t(M) has low rank r ⇐⇒

Mij =
(U · V )ij

si − tj
whenever si 6= tj

U, V (generators) are n × r , r × n matrices
We only keep in memory the generators, 2nr parameters

Usually one requires si 6= tj for all i ,j

Instead, we will also need the case s = t (singular operator):
nothing is known about the main diagonal of M

We keep in memory generators + diagonal (separately)
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The GKO algorithm

Solving linear systems with Cauchy-like matrices: GKO algorithm
[Gohberg–Kailath–Olshevsky ’95]

Theorem (Gohberg–Kailath–Olshevsky)

During each step of Gaussian elimination M −→
[
∗ ∗
0 S

]
, S (the

Schur complement) is Cauchy-like

Instead of computing the elements of S O(n3), compute its
generators O(n2)

Singular operator case: hybrid strategy

• Update the diagonal of M as in the traditional Gaussian
elimination O(n2)

• Update the other elements as in GKO O(n2)
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Structured doubling algorithm (SDA)

Ek+1 = Ek(I − GkHk)−1Ek

Fk+1 = Fk(I − HkGk)−1Fk

Gk+1 = Gk + Ek(I − GkHk)−1GkFk

Hk+1 = Hk + Fk(I − HkGk)−1HkEk

(SDA)

1. Spectral transformation:

H =

[
E −C
B −A

]
7→ Hγ := (H+ γI )−1(H− γI )

2. Block UL factorization: Hγ = U−1
0 L0 with

U0 =

[
I −G0

0 F0

]
, L0 =

[
E0 0
−H0 I

]
3. Implicit update H2k

γ = U−1
k Lk
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The structured case

In the problem (NT), H = D + uv (diagonal plus rank 1)

H2k

γ and H commute ⇐⇒

DH2k

γ −H2k

γ D = H2k

γ uv − uvH2k

γ (1)

SDA preserves the Cauchy-like structure.

Need to compute explicit block generators? e.g. Fk :

pre- and post-multiply (1) by
[
0 Fk

]
and

[
0
Fk

]
to get

∆Fk − Fk∆ = (Hku1 + u2)v2Fk − Fku2(v1 + v2Gk)
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Cauchy-like structure of SDA

In the same way,

DEk − EkD = (u1 + Gku2)v1Ek − Eku1(v1 + v2Hk)

∆Fk − Fk∆ = (Hku1 + u2)v2Fk − Fku2(v1 + v2Gk)

DGk + Gk∆ = (u1 + Gku2)(v1 + v2Gk)− Eku1v2Fk

∆Hk + HkD = (Hku1 + u2)(v1 + v2Hk)− Fku2v1Ek

(GEN’S)

We can reconstruct the iterates from the eight vectors in
blue/green (generators).
Instead of updating the matrices O(n3), update the generators
O(n2)
e.g.

Fk+1u2 = Fk(I − HkGk)−1Fku2

everything in the RHS can be computed using (GEN’S) and the
generators at step k .
GKO for the inversion O(n2)
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Updating the diagonals

Problem: some of the operators are singular:

DEk − EkD = . . .

∆Fk − Fk∆ = . . .
(GEN’S)

We need to compute the diagonals of Ek+1 and Fk+1 as well.
Idea: after the generators update, we know:

• The off-diagonal elements of Ek+1 and Fk+1 (via the
generators)

• Ek+1u1 and Fk+1u2 (two of the generators)

Easy to recover them:

(Ek+1)jj =
(Ek+1u1 − off-diag(Ek+1)u1)j

(u1)j

Issue: stability?
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Outline of cyclic reduction (CR)

1. Spectral transformation (as in SDA)

2. Transform (NARE) to the unilateral equation[
E 0
B 0

]
+

[
−I −C
0 −A

]
Y +

[
0 0
0 −I

]
Y 2 = 0 (UNI)

3. Solve (UNI) via cyclic reduction.
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Cyclic reduction [Buzbee–Golub–Nielson, ’69]

Sk+1 = Sk − RkS
−1
k Tk − TkS

−1
k Rk

Rk+1 = −RkS
−1
k Rk

Tk+1 = −TkS
−1
k Tk

Ŝk+1 = Ŝk − TkS
−1
k Rk , Ŝ0 = S0

(CR)

Converges quadratically to the spectral minimal solution of
R0 + S0Y + T0Y

2 = 0
Interpretation of CR [Bini–Latouche–Meini ’05]:

• Let ϕ(k)(z) = Rkz−1 + Sk + Tkz

• Let ψ(k)(z) = ϕ(k)(z)−1

• (CR) can be seen as the update ψ(k+1) = even
(
ψ(k)

)
even(ψ) = · · ·+ ψ−4z

−2 + ψ−2z
−1 + ψ0 + ψ2z + ψ4z

2 + · · ·
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The structured case

For the low-rank problem (NT),

ϕ(0) = D(z) + uv(z)

is diagonal plus rank 1

. . . some computations lead to. . .

∇D,Dψ(0) = u1v1(z) + u2v2(z) + u3(z)v3

This structure is preserved under even(·) ⇒ ∇D,Dψ(k) has rank 3
for all k

. . . even more computations lead to. . .
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Cauchy-like structure of CR

Cauchy-like structure

∇D,DRk =Rku1s
(k)
0 + Sku2t

(k)
−1 + u0v3Rk ,

∇D,DSk =Rku1s
(k)
1 + Sku1s

(k)
0 + Sku2t

(k)
0 + Tku2t

(k)
−1 + u0v3Sk ,

∇D,DTk =Sku1s
(k)
1 + Tku2t

(k)
0 + u0v3Tk ,

Rk , Sk , Tk have size n + m, but there are some zero or known
blocks we can skip
We can reconstruct the iterates from

• 8 vectors of length n or m

• 2 diagonals

Proceed as in SDA: update vectors and diagonals



Introduction Structured SDA Structured CR Numerical results

Numerical results – noncritical case
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Numerical results – quasi-critical case
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To sum up. . .

• Structural analysis (for Cauchy-like input) of SDA and CR
• Better understanding of the algorithms

• Developed structured versions of SDA and CR

• Faster than nonstructured algorithms

• Not as fast as structured Lu/Newton

• Loss of precision in near-to-critical cases
• Stabler ways to recover diagonal of iterates?

• Can be generalized to diag+rank r ; scales as O(n2r)
• Lu/Newton would scale as O(n2r2)
• Needed in applications? Solution “looking for a problem”
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Another kind of fast SDA

(Thanks to Antonio for the joke)
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