
Forum Math. 13 (2001), 379±397 Forum
Mathematicum

( de Gruyter 2001

Genus one 1-bridge knots and Dunwoody manifolds*

Luigi Grasselli and Michele Mulazzani

(Communicated by Karl Strambach)

Abstract. In this paper we show that all 3-manifolds of a family introduced by M. J. Dunwoody
are cyclic coverings of lens spaces (possibly S3), branched over genus one 1-bridge knots. As
a consequence, we give a positive answer to the Dunwoody conjecture that all the elements of a
wide subclass are cyclic coverings of S3 branched over a knot. Moreover, we show that all
branched cyclic coverings of a 2-bridge knot belong to this subclass; this implies that the fun-
damental group of each branched cyclic covering of a 2-bridge knot admits a geometric cyclic
presentation.

1991 Mathematics Subject Classi®cation: 57M12, 57M25; 20F05, 57M05.

1 Introduction and preliminaries

The problem of determining if a balanced presentation of a group is geometric (i.e.
induced by a Heegaard diagram of a closed orientable 3-manifold) is quite important
within geometric topology and has been deeply investigated by many authors (see [9],
[22], [25], [26], [27], [28], [33]); further, the connections between branched cyclic cov-
erings of links and cyclic presentations of groups induced by suitable Heegaard dia-
grams have been recently pointed out in several papers (see [1], [3], [4], [6], [11], [12],
[16], [18], [17], [20], [34]). In order to investigate these connections, M. J. Dunwoody
introduces in [6] a class of planar, 3-regular graphs endowed with a cyclic symmetry.
Each graph is de®ned by a 6-tuple of integers; if this 6-tuple satis®es suitable con-
ditions (admissible 6-tuple), the graph uniquely de®nes a Heegaard diagram such that
the presentation of the fundamental group of the represented manifold is cyclic. This
construction gives rise to a wide class of closed orientable 3-manifolds (Dunwoody
manifolds), depending on 6-tuples of integers and admitting geometric cyclic pre-
sentations for their fundamental groups. Our main result is that each Dunwoody
manifold is a cyclic covering of a lens space (possibly the 3-sphere), branched over

* Work performed under the auspices of G.N.S.A.G.A. of C.N.R. of Italy and supported by
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a genus one 1-bridge knot. As a direct consequence, the Dunwoody manifolds be-
longing to a wide subclass are proved to be cyclic coverings of S3, branched over
suitable knots, thus giving a positive answer to a conjecture of Dunwoody [6].
Moreover, we show that all branched cyclic coverings of knots with classical (i.e.
genus zero) bridge number two belong to this subclass; as a corollary, the funda-
mental group of each branched cyclic covering of a 2-bridge knot admits a geometric
cyclic presentation.

For the theory of Heegaard splittings of 3-manifolds, and in particular for Singer
moves on Heegaard diagrams realizing the homeomorphism of the represented
manifolds, we refer to [13] and [31]. For the theory of cyclically presented groups, we
refer to [15].

We recall that a ®nite balanced presentation of a group hx1; . . . ; xn j r1; . . . ; rni is
said to be a cyclic presentation if there exists a word w in the free group Fn generated
by x1; . . . ; xn such that the relators of the presentation are rk � ykÿ1

n �w�, k � 1; . . . ; n,
where yn : Fn ! Fn denotes the automorphism de®ned by yn�xi� � xi�1 �mod n�,
i � 1; . . . ; n. Let us denote this cyclic presentation (and the related group) by the
symbol Gn�w�, so that:

Gn�w� � hx1; x2; . . . ; xn jw; yn�w�; . . . ; ynÿ1
n �w�i:

A group is said to be cyclically presented if it admits a cyclic presentation. We
recall that the exponent-sum of a word w A Fn is the integer ew given by the sum of the
exponents of its letters; in other terms, ew � u�w� where u : Fn ! Z is the homo-
morphism de®ned by u�xi� � 1 for each 1U iU n.

Following [10], we recall the de®nition of genus g bridge number of a link, which is
a generalization of the classical concept of bridge number for links in S3 (see [5]).

A set of mutually disjoint arcs ft1; . . . ; tng properly embedded in a handlebody U

is trivial if there is a set of mutually disjoint discs D � fD1; . . . ;Dng such that ti X
Di � ti X qDi � ti, ti XDj � j and qDi ÿ ti H qU for 1U i; j U n and i 0 j. Let U1

and U2 be the two handlebodies of a Heegaard splitting of the closed orientable 3-
manifold M and let T be their common surface: a link L in M is in n-bridge position
with respect to T if L intersects T transversally and if the set of arcs LXUi has
n components and is trivial both in U1 and in U2. A link in 1-bridge position is
obviously a knot.

The genus g bridge number of a link L in M, bg�L�, is the smallest integer n for
which L is in n-bridge position with respect to some genus g Heegaard surface in M.
If the genus g bridge number of a link L is b, we say that L is a genus g b-bridge link
or simply a (g; b)-link. Of course, the genus g bridge number of a link in a manifold of
Heegaard genus g 0 is de®ned only for gV g 0 and the genus 0 bridge number of a link
in S3 is the classical bridge number. Moreover, a (g; 1)-link is a knot, for each gV 0.

In what follows, we shall deal with (1; 1)-knots, i.e. knots in S3 or in lens spaces.
This class of knots is very important in the light of some results and conjectures
involving Dehn surgery on knots (see [2], [7], [8], [35], [36], [37]). Notice that the class
of (1; 1)-knots in S3 contains all torus knots (trivially) and all 2-bridge knots (i.e.
�0; 2�-knots) [23].
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2 Dunwoody manifolds

Let us sketch now the construction of Dunwoody manifolds given in [6]. Let a; b; c; n
be integers such that n > 0, a; b; cV 0 and a� b� c > 0. Let G � G�a; b; c; n� be the
planar regular trivalent graph drawn in Figure 1.

It contains n upper cycles C 01; . . . ;C 0n and n lower cycles C 001 ; . . . ;C 00n , each having d �
2a� b� c vertices. For each i � 1; . . . ; n, the cycle C 0i (resp. C 00i ) is connected to the
cycle C 0i�1 (resp. C 00i�1) by a parallel arcs, to the cycle C 00i by c parallel arcs and to the

cycle C 00i�1 by b parallel arcs (assume n� 1 � 1). We set C 0 � fC 01; . . . ;C 0ng and C 00 �
fC 001 ; . . . ;C 00n g. Moreover, denote by A 0 (resp. A 00) the set of the arcs of G belonging to
a cycle of C 0 (resp. C 00) and by A the set of the other arcs of the graph. The one-point
compacti®cation of the plane leads to a 2-cell embedding of the graph G in S2; it is
evident that the graph is invariant with respect to a rotation rn of the sphere by 2p=n

radians along a suitable axis intersecting S2 in two points not belonging to the graph.
Obviously, rn sends C 0i to C 0i�1 and C 00i to C 00i�1 �mod n�, for each i � 1; . . . ; n.

By cutting the sphere along all C 0i and C 00i and by removing the interior of the
corresponding discs, we obtain a sphere with 2n holes. Let now r and s be two new
integers; give a clockwise (resp. counterclockwise) orientation to the cycles of C 0

(resp. of C 00) and label their vertices from 1 to d, in accordance with these orient-
ations (see Figure 2) so that:

± the vertex 1 of each C 0i is the endpoint of the ®rst arc of A connecting C 0i with C 0i�1;

± the vertex 1-r �mod d � of each C 00i is the endpoint of the ®rst arc of A connecting
C 00i with C 00i�1.

Fig. 1. The graph G.
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Then glue the cycle C 0i with the cycle C 00iÿs �mod n� so that equally labelled vertices are
identi®ed together.

It is evident by construction that the integers r and s can be taken mod d and mod n

respectively. Denote by S the set of all the 6-tuples �a; b; c; n; r; s� A Z6 such that
n > 0, a; b; cV 0 and a� b� c > 0.

The described gluing gives rise to an orientable surface Tn of genus n and the
nd arcs belonging to A are pairwise connected through their endpoints, realizing m

cycles D1; . . . ;Dm on Tn. It is straightforward that the cut of Tn along the n cycles
Ci � C 0i � C 00iÿs does not disconnect the surface. Set C � fC1; . . . ;Cng and D �
fD1; . . . ;Dmg.

If m � n and if the cut along the cycles of D does not disconnect Tn, then the two
systems of meridian curves C and D in Tn represent a genus n Heegaard diagram of a
closed orientable 3-manifold, which is completely determined by the 6-tuple. Each
manifold arising in this way is called a Dunwoody manifold.

Thus, we de®ne to be admissible the 6-tuples �a; b; c; n; r; s� of S satisfying the
following conditions:

(1) the set D contains exactly n cycles;

(2) the surface Tn is not disconnected by the cut along the cycles of D.

The ``open'' Heegaard diagram G and the Dunwoody manifold associated to the
admissible 6-tuple s will be denoted by H�s� and M�s� respectively.

Fig. 2.
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Remark 1. It is easy to see that not all the 6-tuples in S are admissible. For example,
the 6-tuples �a; 0; a; 1; a; 0�, with aV 1, give rise to exactly a cycles in D; thus, they
are not admissible if a > 1. The 6-tuples �1; 0; c; 1; 2; 0� are not admissible if c is even,
since, in this case, we obtain exactly one cycle D1, but the cut along it disconnects the
torus T1.

Consider now a 6-tuple s A S. The graph G becomes, via the gluing quotient map, a
regular 4-valent graph denoted by G 0 embedded in Tn. Its vertices are the intersection
points of the spaces W �6n

i�1Ci and L �6m

j�1Dj; hence they inherit the labelling of
the corresponding glued vertices of G. Since the gluing of the cycles of C 0 and C 00 is
invariant with respect to the rotation rn, the group Gn � hrni naturally induces a
cyclic action of order n on Tn such that the quotient T1 � Tn=Gn is homeomorphic
to a torus. The labelling of the vertices of G 0 is invariant under the rotation rn and
rn�Ci� � Ci�1 �mod n�. We are going to show that, if the 6-tuple is admissible, this
last property also holds for the cycles of D.

Lemma 1. a) Let s � �a; b; c; n; r; s� be an admissible 6-tuple. Then rn induces a cyclic

permutation on the curves of D. Thus, if D is a cycle of D, then D � frkÿ1
n �D� j k �

1; . . . ; ng.
b) If �a; b; c; n; r; s� is admissible, then also �a; b; c; 1; r; 0� is admissible and the

Heegaard diagram H�a; b; c; 1; r; 0� is the quotient of the Heegaard diagram

H�a; b; c; n; r; s� with respect to Gn.

Proof. a) First of all, note that rn�L� � L; thus the group Gn also acts on the spaces
Tn ÿL and L (and hence on the set D). If the 6-tuple s is admissible, then Tn ÿL is
connected, and hence the quotient �Tn ÿL�=Gn � Tn=Gn ÿL=Gn must be connected
too. This implies that L=Gn has a unique connected component. Since L has exactly
n connected components, the cyclic group Gn of order n de®nes a simply transitive
cyclic action on the cycles of D.

b) Let C;DHT1 the two curves C � W=Gn and D � L=Gn. Then, the two systems
of curves C � fCg and D � fDg on T1 de®ne a Heegaard diagram of genus one.
The graph G1 corresponding to s1 � �a; b; c; 1; r; 0� is the quotient of the graph Gn

corresponding to s � �a; b; c; n; r; s�, with respect to Gn. Moreover, the gluings on Gn

are invariant with respect to rn. Therefore, the gluings on G1 give rise to the Hee-
gaard diagram above. This show that the 6-tuple s1 is admissible and obviously
H�a; b; c; 1; r; 0� is the quotient of H�a; b; c; n; r; s� with respect to Gn. r

Remark 2. More generally, given two positive integer n and n 0 such that n 0 divides n,
if �a; b; c; r; n; s� is admissible, then �a; b; c; r; n 0; b� is admissible too. Moreover, the
Heegaard diagram H�a; b; c; r; n 0; b� is the quotient of H�a; b; c; r; n; b� with respect to
the action of a cyclic group of order n=n 0.

It is easy to see that, for admissible 6-tuples, each cycle in D contains d vertices with
di¨erent labels and is composed by exactly d arcs of G (in fact, 2a horizontal arcs, b

oblique arcs and c vertical arcs).
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An important consequence of point a) of Lemma 1 is that, if s is an admissible 6-
tuple, the presentation of the fundamental group of M�s� induced by the Heegaard
diagram H�s� is cyclic.

To see this, let v be the vertex belonging to the cycle C1 and labelled by a� b� 1;
denote by D1 the curve of D containing v and by v 0 the vertex of C 01 corresponding to
v. Orient the arc e 0 A A of the graph G containing v 0 so that v 0 is its ®rst endpoint and
orient the curve D1 in accordance with the orientation of this arc. Now, set Dk �
rkÿ1

n �D1�, for each k � 1; . . . ; n; the orientation on D1 induces, via rn, an orientation
also on these curves. Moreover, these orientation on the cycles of D induce an ori-
entation on the arcs of the graph G belonging to A. By orienting the arcs of C 0 and
C 00 in accordance with the ®xed orientations of the cycles C 0i and C 00i , the graph G
becomes an oriented graph, whose orientation is invariant under the action of the
group Gn. Let us de®ne to be canonical this orientation of G.

Let now w A Fn be the word obtained by reading the oriented arcs e1 � e 0; e2; . . . ;
ed of G corresponding to the oriented cycle D1, starting from the vertex v 0. The letters
of w are in one-to-one correspondence with the oriented arcs eh; more precisely, the
letter of w corresponding to eh is xi if eh comes out from the cycle C 0i and is xÿ1

i if eh

comes out from the cycle C 00iÿs. Note that the word ykÿ1
n �w� in the cyclic presentation

Gn�w� is obtained by reading the cycle Dk along the given orientation, for 1U k U n

(roughly speaking, the automorphism yn is ``geometrically'' realized by rn).
This proves that each admissible 6-tuple s uniquely de®nes, via the associated

Heegaard diagram H�s�, a word w � w�s� and a cyclic presentation Gn�w� for the
fundamental group of the Dunwoody manifold M�s�. Note that the sequence of
the exponents in the word w�s�, and hence its exponent-sum ew�s�, only depends on
the integers a; b; c; r.

Let us consider now the Dunwoody manifolds M�a; b; c; n; r; s� with n � 1 (and hence
s � 0), which arises from a genus one Heegaard diagram.

Proposition 2. Let �a; b; c; 1; r; 0� be an admissible 6-tuple and let w � w�a; b; c; 1; r; 0�
be the associated word. Then the Dunwoody manifold M�a; b; c; 1; r; 0� is homeo-

morphic to:

i) S3, if ew �G1;

ii) S1 � S2, if ew � 0;

iii) a lens space L�a; b� with a � jewj, if jewj > 1.

Proof. From n � 1 we obtain w A F1 GZG hxjji. Thus, p1�M�GG1�w�G
hxjxewiGZjewj. r

Example 1. The Dunwoody manifolds M�0; 0; 1; 1; 0; 0�, M�1; 0; 0; 1; 1; 0� and

M�0; 0; c; 1; r; 0�, with c; r coprime, are homeomorphic to S3, S1 � S2 and to the lens
space L�c; r�, respectively. Moreover, all lens spaces also arise with a 6� 0 ; in fact, for
each a > 0, M�a; 0; c; 1; a; 0� is homeomorphic with the lens space L�c; a�, if a and c
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are coprime, since it is easy to see that H�a; 0; c; 1; a; 0� can be transformed into the
canonical genus one Heegaard diagram of L�c; a� by Singer moves of type IB.

Let us see now how the admissibility conditions for the 6-tuples of S can be given in
terms of labelling of the vertices of G 0, belonging to the curve D1 A D. With this aim,
consider the following properties for a 6-tuple s A S:

(i 0) the set of the labels of the vertices belonging to the cycle D1 is the set of all
integers from 1 to d;

(ii 0) the vertices of the cycle D1 have di¨erent labels.

It is easy to see that, if a 6-tuple s A S is admissible, then it satis®es (i 0) and (ii 0). On
the other side, if a 6-tuple s A S satis®es (i 0) and (ii 0), then the curves rkÿ1

n �D1� A D,
with k � 1; . . . ; n, which are all di¨erent from each other, are precisely the curves of
D. Thus, D has exactly n curves and they are cyclically permutated by rn. However,
this does not imply that s is admissible; for example, the 6-tuple �1; 0; 2; 1; 2; 0� sat-
is®es (i 0) and (ii 0), but it is not admissible (see Remark 1). Note that, for n � 1,
property (ii 0) always holds, while condition (i 0) holds if and only if D has a unique
cycle.

If a 6-tuple satis®es property (i 0), then Gn acts transitively (not necessarily simply)
on D, and hence it is possible to induce an orientation (which is still said to be ca-
nonical) on the cycles of D and on the graph G, by extending, via rn, the orientation
of D1 to the other cycles of D.

Property (i 0) implies that the cycles of D naturally induce a cyclic permutation on
the set N � f1; . . . ; dg of the vertex labels. In fact, by walking along these canoni-
cally oriented cycles, starting from an arbitrary vertex v labelled j, one sequentially
meets d vertices (whose labels are di¨erent from each other), and then a new vertex v 0

labelled j which can be di¨erent from v. The sequence of the labellings of these d

consecutive vertices de®nes the cyclic permutation on N. Further, each cycle of D
precisely contains d 0 � ld arcs, with l V 1, and l � 1 if and only if the 6-tuple satis®es
(ii 0) too. Moreover, property (i 0) is independent from the integers n and s; hence,
given two 6-tuples s � �a; b; c; n; r; s� and s 0 � �a; b; c; n 0; r; s�, then s satis®es (i 0) if
and only if s 0 satis®es (i 0).

Let now s be a 6-tuple satisfying (i 0) and suppose that G is canonically oriented.
An arc of G belonging to A is said to be of type I if it is oriented from a cycle of C 0 to
a cycle of C 00, of type II if it is oriented from a cycle of C 00 to a cycle of C 0 and of type
III otherwise (it joins cycles of C 0 or cycles of C 00). Moreover, the arc is said to be of
type I 0 if it is oriented from a cycle C 0i (resp. C 00i ) to a cycle C 0i�1 (resp. C 00i�1), of type
II 0 if it is oriented from a cycle C 0i�1 (resp. C 00i�1) to a cycle C 0i (resp. C 00i ) and of type
III 0 otherwise (it joins C 0i with C 00i ). Let D be the set of the ®rst d arcs of D1, following
the canonical orientation, starting from the arc coming out from the vertex v 0 of C 01
labelled a� b� 1. Obviously, the set D contains all the arcs of D1 if and only if the 6-
tuple s also satis®es (ii 0).

Now, denote by p 0s (resp. p 00s ) the number of the arcs of type I (resp. of type II) of
D and set ps � p 0s ÿ p 00s . Similarly, denote by q 0s (resp. q 00s ) the number of the arcs of
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type I 0 (resp. of type II 0) of D and set qs � q 0s ÿ q 00s . Note that ps has the same parity
of b� c and qs has the same parity of 2a� b and hence of b. It is evident that ps and
qs only depend on the integers a; b; c; r.

The integers ps and qs give an useful tool for verifying condition (ii 0). In fact,
suppose to walk along the canonically oriented cycle Dj of D, starting from a vertex v

and let Ci be the cycle of C containing v. If v 0 is the ®rst vertex with the same label of
v and if Ci 0 is the cycle of C containing v 0, we have i 0 � i � qs � sps. Thus, the cycle
Dj contains d arcs if and only if qs � sps 1 0 �mod n�. This proves that the 6-tuple
satis®es (ii 0). Thus, (i 0) and (ii 0) are respectively, in a di¨erent language, conditions (i)
and (ii) of Theorem 2 of [6], which gives a necessary and su½cient condition for a 6-
tuple to be admissible when d is odd. In fact, we have the following result:

Lemma 3 ([6], Theorem 2). Let s � �a; b; c; n; r; s� be a 6-tuple with d � 2a� b� c

odd. Then s is admissible if and only if it satis®es (i 0) and (ii 0).

Remark 3. This result does not hold when d is even. In fact, the 6-tuples �1; 0; c; 1;
2; 0�, with c even, satisfy (i 0) and (ii 0), but they are not admissible, as pointed out in
Remark 1.

An immediate consequence of Lemma 3 is the following result:

Corollary 4. Let s � �a; b; c; n; r; s� be a 6-tuple with d � 2a� b� c odd and n � 1.
Then s is admissible if and only if D has a unique cycle.

Proof. If s is admissible, then it is straightforward that D has a unique cycle. Vice
versa, if D has a unique cycle, then (i 0) holds. Since n � 1 implies (ii 0), the result is a
direct consequence of the above lemma. r

The parameter ps associated to an admissible 6-tuple s is strictly related to the word
w�s� associated to s. In fact, we have:

Lemma 5. Let s � �a; b; c; n; r; s� be an admissible 6-tuple, w � w�s� the associated
word and ew its exponent-sum. Then

ps � ew:

Proof. Since s is admissible, the arcs of D are precisely the arcs of D1. Let e1; e2; . . . ;
ed be the sequence of these arcs, following the canonical orientation on D1, and let
w � Qd

h�1 xuh

ih
, with uh A f�1;ÿ1g. We have: ew �

Pd
h�1 uh � 1=2

Pd
h�1�uh � uh�1�,

where d � 1 � 1. Since uh � uh�1 � �2 if eh is of type I, uh � uh�1 � ÿ2 if eh is of
type II and uh � uh�1 � 0 if eh is of type III, the result immediately follows. r

In [6] Dunwoody investigates a wide subclass of manifolds M�s� such that ps �G1
and he conjectures that all the elements of this subclass are cyclic coverings of S3

branched over knots. In the next chapter this conjecture will be proved as a corollary
of a more general theorem.
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3 Main results

The following theorem is the main result of this paper and shows how the cyclic
action on the Heegaard diagrams naturally extends to a cyclic action on the asso-
ciated Dunwoody manifolds, which turn out to be cyclic coverings of S3 or of lens
spaces, branched over suitable knots.

Theorem 6. Let s � �a; b; c; n; r; s� be an admissible 6-tuple, with n > 1. Then the

Dunwoody manifold M �M�a; b; c; n; r; s� is the n-fold cyclic covering of the manifold
M 0 �M�a; b; c; 1; r; 0�, branched over a genus one 1-bridge knot K � K�a; b; c; r� only

depending on the integers a; b; c; r. Further, M 0 is homeomorphic to:

i) S3, if ps �G1,

ii) S1 � S2, if ps � 0,

iii) a lens space L�a; b� with a � jpsj, if jpsj > 1.

Proof. Since the two systems of curves C � fC1; . . . ;Cng and D � fD1; . . . ;Dng on
Tn de®ne a Heegaard diagram of M, there exist two handlebodies Un and U 0

n of
genus n, with qUn � qU 0

n � Tn, such that M � Un WU 0
n. Let now Gn be the cyclic

group of order n generated by the homeomorphism rn on Tn. The action of Gn on Tn

extends to both the handlebodies Un and U 0
n (see [29]), and hence to the 3-manifold

M. Let B1 (resp. B 01) be a disc properly embedded in Un (resp. in U 0
n) such that qB1 �

C1 (resp. qB 01 � D1). Since rn�Ci� � Ci�1 and rn�Di� � Di�1 �mod n), the discs Bk �
rkÿ1

n �B1� (resp. B 0k � rkÿ1
n �B 01�), for k � 1; . . . ; n, form a system of meridian discs for

the handlebody Un (resp. U 0
n). By arguments contained in [38], the quotients U1 �

Un=Gn and U 0
1 � U 0

n=Gn are both handlebody orbifolds topologically homeomorphic
to a genus one handlebody with one arc trivially embedded as its singular set with a
cyclic isotropy group of order n. The intersection of these orbifolds is a 2-orbifold
with two singular points of order n, which is topologically the torus T1 � Tn=Gn; the
curve C (resp. D), which is the image via the quotient map of the curves Ci (resp. of
the curves Di), is non-homotopically trivial in T1. These curves, each of which is a
fundamental system of curves in T1, de®ne a Heegaard diagram of M 0 (induced by
H�a; b; c; 1; r; 0�). The union of the orbifolds U1 and U 0

1 is a 3-orbifold topologically
homeomorphic to M 0, having a genus one 1-bridge knot K HM 0 as singular set of
order n. Thus, M 0 is homeomorphic to M=Gn and hence M is the n-fold cyclic cov-
ering of M 0, branched over K . Since the handlebody orbifolds and their gluing only
depend on a; b; c; r, the same holds for the branching set K . The homeomorphism
type of M 0 follows from Proposition 2 and Lemma 5. r

Remark 4. More generally, given two positive integers n and n 0 such that n 0 divides n,
if �a; b; c; r; n; s� is admissible, then the Dunwoody manifold M�a; b; c; n; r; s� is the
n=n 0-fold cyclic covering of the manifold M 0 �M�a; b; c; n 0; r; s�, branched over an
�n 0; 1�-knot in M 0.

Example 2. The Dunwoody manifolds M�0; 0; 1; n; 0; 0�, M�1; 0; 0; n; 1; 0� and
M�0; 0; c; n; r; 0�, with c; r coprime, are n-fold cyclic coverings of the manifolds S3,
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S1 � S2 and L�c; r� respectively, branched over a trivial knot. In fact, these
Dunwoody manifolds are the connected sum of n copies of S3, S1 � S2 and L�c; r�
respectively.

Let us consider now the class of the Dunwoody manifolds Mn �M�a; b; c; n; r; s�
with p �G1 (and hence d odd) and s � ÿpq. Many examples of these manifolds
appear in Table 1 of [6], where it was conjectured that they are n-fold cyclic coverings
of S3, branched over suitable knots. The following corollary of Theorem 6 proves
this conjecture.

Corollary 7. Let s1 � �a; b; c; 1; r; 0� be an admissible 6-tuple with ps1
�G1 and

s � ÿps1
qs1

. Then the 6-tuple sn � �a; b; c; n; r; s� is admissible for each n > 1 and the

Dunwoody manifold Mn �M�a; b; c; n; r; s� is an n-fold cyclic coverings of S3,
branched over a genus one 1-bridge knot K HS3, which is independent on n.

Proof. Obviously �a; b; c; 1; r; s� � s1. Since s1 is admissible, it satis®es (i 0). This
proves that sn satis®es (i 0), for each n > 1. Since s � ÿps1

qs1
� ÿpsn

qsn
and psn

�
ps1
�G1, we obtain qsn

� spsn
� 0, for each n > 1, which implies condition (ii) of

Theorem 2 of [6], or equivalently (ii 0). Moreover, d is odd, since �d �2 � �2a� b� c�2 �
�b� c�2 � � psn

�2 � � ps1
�2 � 1. Thus, Lemma 3 proves that sn is admissible. The ®nal

result is then a direct consequence of Theorem 6. r

We point out that the above result has been independently obtained by H. J. Song
and S. H. Kim in [32].

An interesting problem which naturally arises is that of characterizing the set K of
branching knots in S3 involved in Corollary 7. The next theorem shows that it con-
tains all 2-bridge knots. We recall that a 2-bridge knot is determined by two coprime
integers a and b, with a > 0 odd. The classi®cation of 2-bridge knots and links has
been obtained by Schubert in [30]. Since the 2-bridge knot of type �a; b� is equivalent
to the 2-bridge knot of type �a; aÿ b�, then b can be assumed to be even.

Theorem 8. The 6-tuple s1 � �a; 0; 1; 1; r; 0� with �2a� 1; 2r� � 1 is admissible. More-

over, if s � ÿqs1
, then the 6-tuple sn � �a; 0; 1; n; r; s� is admissible for each n > 1 and

the Dunwoody manifold Mn �M�a; 0; 1; n; r; s� is the n-fold cyclic covering of S3,
branched over the 2-bridge knot of type �2a� 1; 2r�. Thus, all branched cyclic cover-
ings of 2-bridge knots are Dunwoody manifolds.

Proof. From �2a� 1; 2r� � 1 it immediately follows that s1 has a unique cycle in D.
Since d � 2a� 1 is odd, Corollary 4 proves that s1 is admissible. Since psn

� ps1
�

�1, all assumptions of Corollary 7 hold; hence sn is admissible for each n > 1 and
Mn is an n-fold cyclic covering of S3, branched over a knot K HS3 which is inde-
pendent on n. In order to determine this knot, we can restrict our attention to the case
n � 2. Note that �s�2 � �ÿqs1

�2 � �b�2 � 0 and hence s is always even. Thus, in the
case n � 2 we can suppose s � 0. Let us consider now the genus two Heegaard dia-
gram H�a; 0; 1; 2; r; 0�. The sequence of Singer moves [31] on this diagram, drawn
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in Figures 3±10 and described in the Appendix of the paper, leads to the canonical
genus one Heegaard diagram of the lens space L�2a� 1; 2r� (see Figure 10). Since the
representation of lens spaces (including S3) as 2-fold branched coverings of S3 is
unique [14], the result immediately holds. r

Remark 5. The Dunwoody manifold M�a; 0; 1; n; r; s� of Theorem 8 is homeomorphic
to the Minkus manifold Mn�2a� 1; 2r� [21] and the Lins-Mandel manifold
S�n; 2a� 1; 2r; 1� [19, 24].

An immediate consequence of Theorem 8 is:

Corollary 9. The fundamental group of every branched cyclic covering of a 2-bridge

knot admits a cyclic presentation which is geometric.

Remark 6. In [21] is shown that the fundamental group of every branched cyclic
covering of a 2-bridge knot admits a cyclic presentation, but without pointing out
that this presentation is geometric.

About the set K of knots in S3 involved in Corollary 7, we propose the following:

Conjecture. The set K contains all torus knots.

If this conjecture is true, the set K contains knots with an arbitrarily high number of
bridges. Moreover, the conjecture implies that every branched cyclic covering of a
torus knot admits a geometric cyclic presentation. The above conjecture is supported
by several cases contained in Table 1 of [6] (see [32]). For example, the Dunwoody
manifolds M�1; 2; 3; n; 4; 4� (resp. M�1; 3; 4; n; 5; 5�) are the n-fold branched cyclic
coverings of the 4-bridge torus knot K�4; 5� (resp. of the 5-bridge torus knot K�5; 6�).

4 Appendix

Now we show how to obtain, by means of Singer moves [31] on the genus two
Heegaard diagram H�a; 0; 1; 2; r; 0� of Figure 3, the canonical genus one Heegaard
diagram of the lens space L�2a� 1; 2r� of Figure 10. The result will be achieved by a
sequence of exactly a� 4 Singer moves: one of type ID, a� 2 of type IC and the ®nal
one of type III.

Figure 3 shows the open Heegaard diagram H�a; 0; 1; 2; r; 0�. Note that, since s �
0, the cycle C 01 (resp. C 02) is glued with the cycle C 001 (resp. C 002 ). Let D1 (resp. D2) be
the cycle of the Heegaard diagram corresponding to the arc e 0 (resp. e 00) coming out
from the vertex v 0 of C 01 (resp. v 00 of C 02) labelled a� 1. Orient D1 (resp. D2) so that
the arc e 0 (resp. e 00) is oriented from up to down (resp. from down to up). This ori-
entation on D2 is opposite to the canonical one but, in this way, all the 2a arcs con-
necting C 01 with C 02 are oriented from C 01 to C 02 and all the 2a arcs connecting C 001 with
C 002 are oriented from C 002 to C 001 . The cycle D1, besides the arc e 0, has two arcs for each
k � 0; . . . ; aÿ 1, one joining the vertex of C 01 labelled a� 1ÿ �1� 2k�r with the
vertex of C 02 labelled a� 1� �1� 2k�r, and the other one joining the vertex of C 002
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labelled a� 1� �1� 2k�r with the vertex of C 001 labelled a� 1ÿ �3� 2k�r. The cycle
D2, besides the arc a2, has two arcs for each k � 0; . . . ; aÿ 1, one joining the vertex
of C 01 labelled a� 1ÿ �2� 2k�r with the vertex of C 02 labelled a� 1� �2� 2k�r, the
other joining the vertex of C 002 labelled a� 1� 2kr with the vertex of C 001 labelled
a� 1ÿ �2� 2k�r.

The ®rst Singer move consists of replacing the curve D2 with the curve D 02 �
D1 �D2 (move of type ID of [31]) obtained by isotopically approaching the arcs e 0

and e 00 until their intersection becomes a small arc and by removing the interior of
this arc. The move is completed by shifting, with a small isotopy, D1 in D 01 so that it
becomes disjoint from D 02.

The resulting Heegaard diagram is drawn in Figure 4. The new 2a� 1 pairs of
vertices obtained on C 01;C

00
1 ;C

0
2;C

00
2 are labelled by simply adding a prime to the

old label, while the 4a� 2 pairs of ®xed vertices keep their old labelling. Note that
each new vertex labelled j 0 is placed, in the cycles C 01;C

00
1 ;C

0
2 and C 002 , between the old

vertices labelled j and j � 1 respectively. The cycles C 02 and C 002 are no longer con-
nected by any arc, while the cycles C 01 and C 001 are connected by a unique arc
(belonging to D 01) joining the vertex labelled �a� 1�0 of C 01 with the vertex labelled
�a� 1ÿ r�0 of C 001 . All the 3a arcs connecting C 01 and C 02 are oriented from C 01 to

Fig. 3.
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C 02 and all the 3a arcs which now connect C 001 with C 002 are oriented from C 002 to
C 001 . The cycle D 02 contains exactly 4a� 2 arcs; more precisely, for each i � 1; . . . ;
2a� 1, it has one arc joining the vertex labelled i of C 01 with the vertex labelled
2a� 2ÿ i of C 02 and one arc joining the vertex labelled i of C 002 with the vertex
labelled 2a� 2ÿ 2rÿ i of C 02. The cycle D 01 is a copy of the cycle D1 and hence it
contains 2a� 1 arcs. One of these arcs connects C 01 with C 001 ; moreover, for each
k � 0; . . . ; aÿ 1, D 01 has one arc joining the vertex of C 01 labelled �a� 1ÿ �1� 2k�r�0
with the vertex of C 02 labelled �a� 1� �1� 2k�r�0 and one arc joining the vertex of
C 002 labelled �a� 1� �1� 2k�r�0 with the vertex of C 001 labelled �a� 1ÿ �3� 2k�r�0.

Now, apply to the diagram a Singer move of type IC, cutting along the cycle E

(drawn in Figure 4) containing C 001 and C 002 and gluing the curve C 002 of the resulting
disc with C 02.

The new Heegaard diagram obtained in this way shown in Figure 5. It contains the
new cycles E 0 and E 00, which are copies of the cutting cycle E. These cycles replace C 02
and C 002 and they both have a unique vertex (w 0 and w 00 respectively). The cycle E 0

Fig. 4.
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(resp. E 00) is connected with C 01 (resp. with C 001 ) by an arc joining w 0 (resp. w 00) with
the vertex labelled �a� 1�0 (resp. �a� 1ÿ r�0), oriented as in Figure 5. The cycles C 01
and C 001 are joined by 3a� 1 arcs, all oriented from C 01 to C 001 ; 2a� 1 of them belong
to D 02 and the other a belong to D 01. More precisely, for each i � 1; . . . ; 2a� 1, there
is an arc of D 02 joining the vertex labelled i of C 01 with the vertex labelled i ÿ 2r of C 001 ;
while, for each k � 0; . . . ; aÿ 1, there is an arc of D 01 joining the vertex labelled
�a� 1ÿ �1� 2k�r�0 of C 01 with the vertex labelled �a� 1ÿ �3� 2k�r�0 of C 001 .

Apply again a Singer move of type IC, cutting along the cycle F1 (drawn in Figure
5) containing C 001 and E 00 and gluing the curve C 001 of the resulting disc with C 01.

The resulting Heegaard diagram is shown in Figure 6. It contains the new cycles F 01
and F 001 , which are copies of the cutting cycle F1. These cycles replace C 01 and C 001 and
they both have one vertex less. It is easy to see that the cycle D 02 has exactly the same
2a� 1 arcs connecting F 01 and F 001 , all oriented from F 01 to F 001 ; if the labelling of
the vertices of F 01 and F 001 is induced by the labelling of F1 shown in Figure 5, these
arcs join pairs of vertices with the same labelling of the previous step. The cycle D 01
instead has one arc less than in the previous step. In fact, it has aÿ 1 arcs, connecting
F 01 and F 001 , all oriented from F 01 to F 001 and joining the vertex labelled �a� 1ÿ
�1� 2k�r�0 of F 01 with the vertex labelled �a� 1ÿ �3� 2k�r�0 of F 001 , for k � 1; . . . ;
aÿ 1.

Now, apply again a Singer move of type IC, cutting along the cycle F2 (drawn in
Figure 6) containing F 001 and E 00 and gluing the curve F 001 of the resulting disc with F 01.

The new Heegaard diagram only di¨ers from the previous one for containing one
arc less in the cycle D 01. By inductive application of Singer moves of type IC, cutting
along the cycle Fh (drawn in Figure 7) containing F 00hÿ1 and E 00 and gluing the curve
F 00hÿ1 of the resulting disc with F 0hÿ1, we obtain, for h � a, the situation shown in

Fig. 5.
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Fig. 6.

Fig. 7.
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Figure 8, where the cycle D 01 contains only two arcs, none of which connects F 0a with
F 00a .

After the move of type IC corresponding to h � a� 1, we obtain the situation of
Figure 9 in which the Heegaard diagram contains a pair of complementary handles

Fig. 8.

Fig. 9.
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given by the pair of cycles E 0;E 00 and by the cycle D 01, composed by a unique arc
connecting E 0 with E 00. The deletion of this pair of complementary handles (Singer
move of type III) leads to the genus one Heegaard diagram drawn in Figure 10,
which is the canonical Heegaard diagram of the lens space L�2a� 1; 2r�.
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