Foglio di esercizi numero 2

Corso di Fondamenti di Algebra Lineare e Geometria Ingegneria Aerospaziale e Meccanica

Esercizio 1. Sia f l'endomorfismo di \mathbb{R}^4 definito nel modo seguente:

$$f(x, y, z, w) = (w, x + y, x + z, w).$$

Determinare un sottospazio T di \mathbb{R}^4 tale che $\mathbb{R}^4 = T \oplus \ker f$.

Esercizio 2. Sia $f: \mathbb{R}^4 \to \mathbb{R}^3$ l'applicazione definita da: f(x, y, z, w) = (x + z, 3z - w, y). Verificare che f è lineare e determinare ker f, Imf e le loro dimensioni.

Esercizio 3. Esiste una applicazione lineare $\varphi : \mathbb{R}^2 \to \mathbb{R}^2$ tale che $\varphi(0,1) = (2,4), \ \varphi(1,1) = (1,5)$? È unica? In caso di risposta affermativa determinare nucleo e immagine di φ .

Esercizio 4. Verificare che l'applicazione $f: \mathbb{R}^4 \to \mathbb{R}^3$ tale che

$$f(x, y, z, w) = (x + w, w - z, 2x + 2z)$$

è lineare. Determinare $\ker f$, Imf ed una base di ciascuno di tali sottospazi. Sia poi S il sottospazio di \mathbb{R}^3 generato dai vettori $v_1 = (0, 1, -2)$ e $v_2 = (1, 0, 2)$; determinare $f^{-1}(S)$.

Esercizio 5. Sia data la matrice

$$A = \left(\begin{array}{ccc} 10 & 11 & -4 \\ 15 & 14 & -5 \end{array} \right).$$

Determinare il nucleo e l'immagine dell'applicazione lineare $f: \mathbb{R}^3 \to \mathbb{R}^2$ associata, rispetto alle basi canoniche, alla matrice A. Determinare $f^{-1}(1,1)$.

Esercizio 6. Siano V e V' due spazi vettoriali, di dimensione rispettivamente due e tre, e siano $\mathcal{B} = \{v_1, v_2\}$ una base di V e $\mathcal{B}' = \{u_1, u_2, u_3\}$ una base di V'. Sia poi $f: V \to V'$ l'applicazione lineare tale che $f(v_1) = u_1 - 2u_2 + u_3$, $f(v_2) = u_3 - 2u_1$. Determinare la matrice A associata ad f rispetto alle basi \mathcal{B} e \mathcal{B}' e determinare le componenti rispetto a \mathcal{B}' del vettore f(v) dove $v = -\frac{1}{2}v_1 + v_2$.

Esercizio 7. Sia f l'endomorfismo di \mathbb{R}^3 associato, rispetto alla base canonica, alla matrice

$$A = \left(\begin{array}{ccc} 1 & \alpha & 1\\ 0 & \alpha & 0\\ 1 & 2\alpha & 1 \end{array}\right)$$

con $\alpha \in \mathbb{R}$. Determinare $\ker f$, Imf e le loro dimensioni, esibendo una base di tali sottospazi, al variare di $\alpha \in \mathbb{R}$.

Esercizio 8. Si consideri la seguente funzione f_s di \mathbb{R}^3 in se stesso:

$$f_s(x, y, z) = (x + y + z, x - y + s, sx + (s - 1)z).$$

- 1. Per quali valori di s l'applicazione f_s è lineare?
- 2. Per i valori di s trovati al punto 1.:
 - a) Determinare $\ker f_s$, $\operatorname{Im} f_s$.
 - b) Esiste una applicazione lineare $L: \mathbb{R}^2 \to \mathbb{R}^3$ tale che Im $L=\text{Im}f_s$? In caso affermativo costruire L.
 - c) Esiste una applicazione lineare $T: \mathbb{R}^3 \to \mathbb{R}^2$ tale che ker $T=\operatorname{Im} f_s$? In caso affermativo costruire T.

d) Determinare la controlimmagine mediante f_s del vettore (-1,1,1).

Esercizio 9. Si considerino i seguenti sottospazi vettoriali di \mathbb{R}^3 :

$$U_1 = \{(x, y, z) \mid 2x + y - z = 0, x - y = 0\}, U_2 = \langle (-1, 1, 1) \rangle.$$

- 1. Determinare $U_1 + U_2$, $U_1 \cap U_2$ e stabilire se la somma di U_1 ed U_2 è diretta.
- 2. Esiste una applicazione lineare $L: \mathbb{R}^3 \to \mathbb{R}^3$ che abbia U_1 come nucleo ed U_2 come immagine? In caso affermativo costruire L.
- 3. Esiste una applicazione lineare iniettiva $T: \mathbb{R}^3 \to \mathbb{R}^3$ che abbia U_2 come immagine? In caso affermativo costruire T.
- 4. Esiste una applicazione lineare suriettiva $f: \mathbb{R}^3 \to \mathbb{R}^2$ che abbia U_1 come nucleo? In caso affermativo costruire f.

Esercizio 10. Sia $f: \mathbb{R}^2 \to \mathbb{R}^3$ l'applicazione lineare f(x,y) = (x+3y,y,x+3y).

- 1. Determinare la matrice associata a f rispetto alle basi canoniche di \mathbb{R}^2 e \mathbb{R}^3 .
- 2. Determinare $\ker f \in Imf$.
- 3. Determinare $f^{-1}(1, 1, -1)$.

Esercizio 11. Si considerino, al variare del parametro reale k, le seguenti applicazioni lineari:

$$f_k: \mathbb{R}^3 \to \mathbb{R}^3$$

$$f_k(x, y, z) = (kx + y - z, ky + (k+1)z, (k-1)z).$$

- 1. Scrivere la matrice associata a f_k rispetto alla base canonica di \mathbb{R}^3 .
- 2. Determinare per quali valori di k l'applicazione f_k è iniettiva.
- 3. Determinare per quali valori di k il vettore (1,0,0) appartiene a $\text{Im} f_k$.
- 4. Sia k=1. Determinare un sottospazio vettoriale S di \mathbb{R}^3 tale che $S \oplus \ker f_1 = \mathbb{R}^3$.

Esercizio 12. 1) Esiste un'applicazione lineare $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ tale che: f(1,0,1) = (2,0,2), f(1,0,-1) = (1,1,1) e f(0,1,0) = (1,1,1)? In caso affermativo si dica se una siffatta applicazione è unica.

- 2) Esiste un'applicazione lineare $g: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ tale che: g(1,0,1) = (2,0,2), g(1,0,-1) = (1,1,1) e g(0,0,1) = (1,1,1)? In caso affermativo si dica se una siffatta applicazione è unica.
- 3) Esiste un'applicazione lineare $h: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ tale che: h(1,0,1) = (2,0,2), h(1,0,-1) = (1,1,1) e h(0,0,1) = (1/2,-1/2,1/2)? In caso affermativo si dica se una siffatta applicazione è unica.

Esercizio 13. Si costruisca, se possibile, un'applicazione lineare $L: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ tale che: $kerL = \langle (1,0,1), (1,1,0) \rangle$ e $ImL = \langle (1,1) \rangle$.

Esercizio 14. Sia $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ l'applicazione lineare definita da:

$$T(x,y) = (x+y, x-y, y).$$

1. Si determini KerT: se ne individui una base e se ne calcoli la dimensione. L'applicazione T è iniettiva?

- 2. Si determini ImT: se ne individui una base e se ne calcoli la dimensione. L'applicazione T è suriettiva?
- 3. Si costruisca, se possibile, un'applicazione lineare $S \neq T$, $S : \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ tale che KerS = KerT e ImS = ImT.

Esercizio 15. Si considerino gli spazi vettoriali \mathbb{R}^3 e \mathbb{R}^4 . Siano dati i vettori $u_1 = (1, 3, 2)$, $u_2 = (-1, 1, 1)$, $u_3 = (1, 0, 2)$ ed i vettori $v_1 = (1, 0, 1, 0)$, $v_2 = (-1, 1, 0, 2)$, $v_3 = (1, 2, 1, 0)$, $v_4 = (2, 0, 1, 2)$.

- 1. Esiste un'applicazione lineare $L: \mathbb{R}^3 \to \mathbb{R}^4$ tale che $L(u_1) = v_1 v_3$, $L(u_2) = v_2 + v_4$ e $L(u_3) = v_2 v_4$? È unica? In caso affermativo determinare L(1,0,0).
- 2. Esiste un'applicazione lineare $\ell: \mathbb{R}^3 \to \mathbb{R}^4$ tale che $\ell(u_1) = v_1 v_3$, $\ell(u_2) = v_2 + v_4$ e $\ker(\ell) = \langle (0, 4, 3) \rangle$?

Esercizio 16. Sia $T: \mathbb{R}^{\leq 3}[x] \to \mathbb{R}^{\leq 3}[x]$ l'applicazione definita da:

$$T(p(x)) = xp'(x)$$

dove p'(x) indica la derivata prima del polinomio p(x).

- 1. Mostrare che T è lineare.
- 2. Determinare nucleo e immagine di T.
- 3. Scrivere la matrice associata a T rispetto alla base $\{1, x, x^2, x^3\}$ di $\mathbb{R}^{\leq 3}[x]$.
- 4. Determinare i polinomi p tali che T(p) = p.

Esercizio 17. Sia f l'endomorfismo di \mathbb{R}^3 associato, rispetto alla base canonica, alla matrice:

$$A = \left(\begin{array}{ccc} 1 & 0 & \alpha \\ 1 & \alpha & 0 \\ 2 & 0 & 1 \end{array}\right)$$

con $\alpha \in \mathbb{R}$. Determinare $\ker f$, Imf e le loro dimensioni, fornendo una base di tali sottospazi, al variare di $\alpha \in \mathbb{R}$.

Esercizio 18. Sia $f: \mathbb{R}^3 \to \mathbb{R}^3$ la trasformazione lineare così definita:

$$f(a, b, c) = (3a + c, -2a + b, -a + 2b + 4c).$$

Si richiede di:

- 1. dimostrare che f è un isomorfismo;
- 2. determinare la matrice A associata ad f rispetto alla base canonica;
- 3. dimostrare che i vettori u=(1,0,1), v=(-1,0,1), w=(0,2,0) sono una base di \mathbb{R}^3 e determinare la matrice A associata ad f rispetto a tale base.

Esercizio 19. Sia V uno spazio vettoriale reale di dimensione finita e sia $V = V_1 \oplus V_2$. Sia

$$p_{V_1}^{V_2}:V\to V$$

l'applicazione che ad ogni vettore v di V associa la sua componente lungo V_1 : se $v=v_1+v_2$ con $v_1\in V_1$ e $v_2\in V_2,\ p_{V_1}^{V_2}(v)=v_1.$

- 1. Mostrare che $p_{V_1}^{V_2}$ è un'applicazione lineare.
- 2. Sia $V = \mathbb{R}^3$ e sia $V_1 = \langle (1,0,1), (0,1,0) \rangle$. Determinare due sottospazi distinti V_2 , V_3 di \mathbb{R}^3 tali che $\mathbb{R}^3 = V_1 \oplus V_2$ e $\mathbb{R}^3 = V_1 \oplus V_3$. Calcolare $p_{V_1}^{V_2}(1,0,2)$ e $p_{V_1}^{V_3}(1,0,2)$. I vettori trovati coincidono?

Esercizio 20. In \mathbb{R}^3 siano dati i vettori $v_1 = (2, t, 1), v_2 = (-1, 1, 0), v_3 = (1, 1, t)$ dove t è un parametro reale. Si consideri l'endomorfismo f di \mathbb{R}^3 definito da:

$$f(e_1) = v_1, \quad f(e_2) = v_2, \quad f(e_3) = v_3$$

essendo $\{e_1, e_2, e_3\}$ la base canonica di \mathbb{R}^3 .

- 1. Esistono valori del parametro t per i quali l'applicazione f è invertibile?
- 2. Si ponga $t = -1 + \sqrt{3}$.
 - a) Si determinino una base di $\ker f$ ed una base di Imf.
 - b) Si scriva una applicazione lineare $g: \mathbb{R}^2 \to \mathbb{R}^3$ tale che $Im g = \ker f$ e si determini $f \circ g$.
 - c) Si scriva una applicazione lineare $h: \mathbb{R}^2 \to R^3$ tale che $Im \, h = Im f$ e si determini $f \circ h$.

Soluzioni.

Esercizio 1. Si ha ker $f = \langle (1, -1, -1, 0) \rangle$ dunque T ha dimensione 3. Per esempio $T = \langle (0, 0, 0, 1), (0, 0, 1, 0), (0, 1, 0, 0) \rangle$ soddisfa le condizioni richieste.

Esercizio 2. $\ker f = \langle (-1,0,1,3) \rangle$, $Imf = \mathbb{R}^3$, dunque $\dim(\ker f) = 1$ e $\dim(Imf) = 3$.

Esercizio 3. Esiste una ed una sola applicazione lineare φ soddisfacente le condizioni richieste. Si ha: $Im\varphi = \mathbb{R}^2$, $\ker \varphi = \{0_{\mathbb{R}^2}\}$.

Esercizio 4. ker $f = \langle (1,0,-1,-1), (0,1,0,0) \rangle$, $Im f = \langle (1,0,2), (1,1,0) \rangle$. Si ha: S = Im f, dunque $f^{-1}(S) = \mathbb{R}^4$.

Esercizio 5. $\ker f = \langle (-\frac{1}{5}, 2, 5) \rangle$, $Im f = \mathbb{R}^2$. $f^{-1}(1, 1) = (-\frac{3}{25}, \frac{1}{5}, 0) + \langle (-\frac{1}{5}, 2, 5) \rangle$.

Esercizio 6. $A = \begin{pmatrix} 1 & -2 \\ -2 & 0 \\ 1 & 1 \end{pmatrix}$; $f(v) = (-\frac{5}{2}, 1, \frac{1}{2})_{\mathcal{B}'}$.

Esercizio 7. Se $\alpha = 0$, $Imf = \langle (1,0,1) \rangle$, $\ker f = \langle (1,0,-1), (0,1,0) \rangle$; se $\alpha \neq 0$, $Imf = \langle (1,0,1), (1,1,2) \rangle$, $\ker f = \langle (1,0,-1) \rangle$.

Esercizio 8. f_s è lineare se e solo se s=0; $Im f_0=\mathbb{R}^3$, $\ker f_0=\{0_{\mathbb{R}^3}\}$; non esiste una funzione L come richiesta; T=0; $f_0^{-1}(-1,1,1)=(\frac{1}{2},-\frac{1}{2},-1)$. **Esercizio 9.** $U_1+U_2=\langle (1,1,3),(-1,1,1)\rangle,\ U_1\cap U_2=\{0_{\mathbb{R}^3}\}$, dunque la somma di U_1 e U_2 è

Esercizio 9. $U_1 + U_2 = \langle (1,1,3), (-1,1,1) \rangle$, $U_1 \cap U_2 = \{0_{\mathbb{R}^3}\}$, dunque la somma di U_1 e U_2 è diretta. Non esistono delle funzioni L e T come richieste. Una funzione f come richiesta è, ad esempio, $f(x,y,z) = (x - \frac{1}{3}z, y - \frac{1}{3}z)$.

Esercizio 10. La matrice di f rispetto alle basi canoniche è: $\begin{pmatrix} 1 & 3 \\ 0 & 1 \\ 1 & 3 \end{pmatrix}$; $\ker f = \{0_{\mathbb{R}^2}\}$,

 $Imf = \langle (1,0,1), (0,1,0) \rangle; \, f^{-1}(1,1,-1) = \emptyset.$

Esercizio 11. La matrice di f_k rispetto alle basi canoniche è: $\begin{pmatrix} k & 1 & -1 \\ 0 & k & k+1 \\ 0 & 0 & k-1 \end{pmatrix}$; f_k è iniettiva

per $k \neq 0, 1$; $(1, 0, 0) \in Imf_k$ per ogni k; ad esempio $S = \langle (0, 1, 0), (0, 0, 1) \rangle$.

Esercizio 12. f esiste ed è unica; g come richiesta non esiste; esistono infinite funzioni h come richieste.

Esercizio 13. Una L come richiesta è, ad esempio, L(x, y, z) = (-x + y + z, -x + y + z).

Esercizio 14. ker $T = \{0_{\mathbb{R}^2}\}$, dunque T è iniettiva. T non è suriettiva, $ImT = \langle (1,1,0), (1,-1,1) \rangle$; una applicazione S come richiesta è, ad esempio, S(x,y) = (x-y,x+y,-y).

Esercizio 15. Esiste un'unica L come richiesta e vale $L(1,0,0)=(-1,-1,-\frac{7}{9},-\frac{8}{3});$ non esiste ℓ come richiesta.

Esercizio 16.
$$ImT = \langle x, x^2, x^3 \rangle$$
; $\ker T = \langle 1 \rangle$; la matrice richiesta è: $\begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{pmatrix}$; l'insieme

dei polinomi fissati dall'applicazione $T \ earline{e} \langle x \rangle$.

Esercizio 17. Per $\alpha \neq 0, \frac{1}{2}$, $Im f = \mathbb{R}^3$, $\ker f = \{0_{\mathbb{R}^3}\}$; per $\alpha = 0$: $Im f = \langle (1, 1, 2), (0, 0, 1) \rangle$, $\ker f = \langle (0, 1, 0) \rangle$; per $\alpha = \frac{1}{2}$: $Im f = \langle (1, 1, 2), (0, 1, 0) \rangle$, $\ker f = \langle (-\frac{1}{2}, 1, 1) \rangle$.

Esercizio 18. La matrice di f rispetto alla base canonica è: $\begin{pmatrix} 3 & 0 & 1 \\ -2 & 1 & 0 \\ -1 & 2 & 4 \end{pmatrix}$. Tale matrice

ha rango massimo dunque f è un isomorfismo; la matrice di f rispetto alla base $\{u, v, w\}$ è:

$$\left(\begin{array}{ccc} 7/2 & 3/2 & 2\\ -1/2 & 7/2 & 2\\ -1 & 1 & 1 \end{array}\right).$$

 $\begin{pmatrix} 7/2 & 3/2 & 2 \\ -1/2 & 7/2 & 2 \\ -1 & 1 & 1 \end{pmatrix}.$ **Esercizio 19.** Possiamo scegliere, ad esempio, $V_2 = \langle (0,0,1) \rangle$ e $V_3 = \langle (1,0,0) \rangle$. Allora $p_{V_1}^{V_2}(1,0,2) = (1,0,1)$ e $p_{V_1}^{V_3}(1,0,2) = (2,0,2)$.