Corso di Laurea in Informatica

Corso di ALGEBRA E GEOMETRIA Docente: Prof.ssa Nicoletta Cantarini Quarto Appello Bologna, 16 settembre 2013 TEMA n.1

Esercizio 1. (8 punti)

a) Stabilire per quali valori del parametro reale k il seguente sistema lineare Σ_k nelle incognite x,y,z ammette soluzioni:

$$\Sigma_k : \begin{cases} x + y = 1 \\ x + (3k+1)y + (2k+1)z = 5k + 2 \\ (3k)y + (4+k)z = 4 + 4k. \end{cases}$$

- b) Per ognuno dei valori di k per cui Σ_k ha una sola soluzione, determinare tale soluzione.
- c) Stabilire se esistono valori di k per cui l'insieme delle soluzioni di Σ_k è un sottospazio vettoriale di \mathbb{R}^3 .

Esercizio 2. (9 punti) Sia $S_t = \langle (1, t, 1), (1, t, 2), (1, -t, 1) \rangle \subseteq \mathbb{R}^3$.

- a) Al variare del parametro reale t determinare una base \mathcal{B}_t di S_t ;
- b) stabilire per quali valori reali di t il vettore v = (1,0,0) appartiene ad S_t e per ognuno dei valori trovati calcolare le coordinate di v rispetto alla base \mathcal{B}_t ;
- c) stabilire se esistono valori di t tali che S_t sia l'immagine di un'applicazione lineare $f: \mathbb{R}^3 \to \mathbb{R}^3$ tale che ker $f = \langle (-1,0,0) \rangle$. In caso affermativo scrivere la matrice di una siffatta f rispetto alla base canonica di \mathbb{R}^3 e stabilire se esiste una unica funzione f soddisfacente le condizioni richieste.

Esercizio 3. (10 punti) Sia f un endomorfismo di \mathbb{R}^3 avente $\langle (1,2,1), (1,1,1) \rangle$ e $\langle (1,0,-1) \rangle$ come autospazi relativi, rispettivamente, agli autovalori 0 ed 1.

- a) Dopo aver verificato che $\mathcal{B} = \{(1,2,1), (1,1,1), (1,0,-1)\}$ è una base di \mathbb{R}^3 , scrivere la matrice di f rispetto alla base \mathcal{B} sia nel dominio che nel codominio;
- b) stabilire se f è diagonalizzabile;
- c) stabilire se i vettori (0,1,0) e (2,1,0) sono autovettori di f;
- d) stabilire se esistono basi di \mathbb{R}^3 rispetto alle quali la matrice di f è:

$$\left(\begin{array}{ccc} 1 & 2 & 1 \\ 1 & 1 & 1 \\ 1 & 0 & -1 \end{array}\right).$$

Esercizio 4. (4 punti) Dimostrare, procedendo per induzione su $n \geq 1$, che

$$\sum_{k=1}^{n} k^3 = (\frac{n(n+1)}{2})^2.$$

N.B. Ogni risposta deve essere opportunamente motivata. Tutte le risposte prive di motivazione verranno ignorate.